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Abstract. We construct a special class of fermionic Novikov superalgebras from linear
functions. We show that they are Novikov superalgebras. Then we give a complete classifi-
cation of them, among which there are some non-associative examples. This method leads
to several new examples which have not been described in the literature.
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1. Introduction

The notion of Novikov algebras arises from mathematical physics and is closely

related to the Poisson brackets of hydrodynamic type (see [2], [4], [5]) and the

Hamiltonian operators in the formal variational calculus (see [6], [7], [8], [9], [10]).

In [6], [7], Gel’fand and Dikii gave a bosonic formal variational calculus and in [10]

Xu gave a fermionic formal variational version. Combining the bosonic theory of

Gel’fand-Dikii and the fermionic theory, Xu gave in [11] a formal variational calculus

of supervariables. Fermionic Novikov algebras are also related to the Hamiltonian

superoperator in terms of this theory.

The notion of a fermionic Novikov superalgebra is a super-version of that of

a fermionic Novikov algebra, which is a Z2-graded vector space A = A0 + A1 with

a bilinear product (x, y) 7→ xy satisfying the condition that for any x ∈ Ai, y ∈ Aj ,

z ∈ A, we have

(xy)z − x(yz) = (−1)ij((yx)z − y(xz)),(1.1)

(zx)y = −(−1)ij(zy)x.(1.2)
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The even part of a fermionic Novikov superalgebra is exactly a fermionic Novikov

algebra. The supercommutator

[x, y] = xy − (−1)ijyx ∀x ∈ Ai, y ∈ Aj

makes any fermionic Novikov superalgebra A into a Lie superalgebra.

Fermionic Novikov superalgebras constitute a special class of left symmetric su-

peralgebras which are defined by the identity (1.1). For algebras the most important

problem is to study their structure and classification. However, up to now there has

not been a suitable structure and classification theory for general fermionic Novikov

superalgebras due to their non-associativity. Since known fermionic Novikov super-

algebras are rather rare, it is important to construct new interesting and explicit

examples.

The main goal of this article is to produce a class of new examples of fermionic

Novikov superalgebras from linear functions. We will show that all of our examples

are also Novikov superalgebras. Our method is inspired by [1], in which the author

constructed a class of interesting left symmetric algebras (including some fermionic

Novikov algebras) from linear functions. Meanwhile, in the proof of our main results,

we will take use of some results in [3].

2. The main results

Let A = A0+A1 be a Z2-graded vector space over the complex field C. A bilinear

function h : A×A → C is said to be supersymmetric if

h(x, y) = (−1)ijh(y, x) ∀x ∈ Ai, y ∈ Aj .

Let f, g : A → C be two linear functions. Define a product on A by

(2.1) x ∗ y = f(x)y + g(y)x+ h0(x, y)c0 + h1(x, y)c1 ∀x, y ∈ A,

where h0, h1 are supersymmetric bilinear functions, c0 ∈ A0, c1 ∈ A1 and c0+c1 6= 0.

Suppose dimA0 = n, n > 2 and dimA1 = m, m > 1. Let {e1, . . . , en} be a basis

of A0, and {f1, . . . , fm} a basis of A1. The main theorem of this paper can be stated

as follows:

Theorem 2.1. Keep the above notation. Then the product defined in (2.1)

makes A a fermionic Novikov superalgebra. Moreover, any fermionic Novikov su-

peralgebra defined by (2.1) must be isomorphic to one of the following algebras:

1160



(1) F
(k)
1 = f2j−1 ∗ f2j = e1 = −f2j ∗ f2j−1, 1 6 j 6 k, 2k 6 m;

(2) F2 = ei ∗ fi = f1 = fi ∗ ei, e1 ∗ fj = h1(e1, fj)f1 = fj ∗ e1, 2 6 i 6 k, 2 6 j 6 m

for any k 6 min{m,n};

(3) F
(k),α
3 = f2j ∗ f2j+1 = e1 = −f2j+1 ∗ f2j , ei ∗ fl = αilf1 = fl ∗ ei, j 6 k,

2 6 i 6 n, 2 6 l 6 m, 2k + 1 6 m, αil ∈ C;

(4) F
(k1),(k2)
4 = ei ∗ ei = e1, f2j−1 ∗ f2j = e1 = −f2j ∗ f2j−1, 2 6 i 6 k1, j 6 k2,

2 6 k1 6 n, 2k2 6 m;

(5) F
(k1),(k2),α
5 = ei ∗ei = e1, f2j ∗f2j+1 = e1 = −f2j+1∗f2j, el∗ft = αltf1 = ft∗el,

2 6 i 6 k1, 1 6 j 6 k2, 2 6 l 6 n, 2 6 t 6 m, 2 6 k1 6 n, 1 6 2k2 + 1 6 m,

αlt ∈ C;

(6) F6 = e1 ∗ ei = ei, e1 ∗ fj = fj , 2 6 i 6 n, 1 6 j 6 m, where {e1, . . . , en} and

{f1, . . . , fm} are bases of A0 and A1, respectively.

Remark 2.1.

(1) It is easy to see that A is non-associative if and only if A is isomorphic to F6.

(2) F
(k),α
3 and F

(k1),(k2),α
5 are new examples of Novikov superalgebras, which have

not been described in [3].

(3) Note that for different complex numbers α1, α2, it can occur that

F
(k),α1

3 ≃ F
(k),α2

3 .

For convenience, we discuss F
(k),α
3 in some detail. Obviously, there is a one-to-

one correspondence between the set {αil, 2 6 i 6 n, 2 6 l 6 m} and the matrix

M=(αil)(n−1)×(m−1). Without loss of generality, we assume that the first column

of M is a nonzero vector. Then by a linear transformation on {e1, . . . , en}, the

matrix M can be reduced to the form











1 . . .

0 . . .
...
. . .

0 . . .











.

If the second column is still a nonzero vector, then by a similar transformation the

matrix M can be reduced to one of the following forms:

(a)











1 a . . .

0 0 . . .
...
...
. . .

0 0 . . .











(b)











1 0 . . .

0 1 . . .
...
...
. . .

0 0 . . .











.
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If all entries of the second column are zero, then we consider the third column. When

the third column is a nonzero vector, the matrix M can be reduced to one of the

following forms:

(a)











1 0 a . . .

0 0 0 . . .
...
...
...
. . .

0 0 0 . . .











(b)











1 0 0 . . .

0 0 1 . . .
...
...
...
. . .

0 0 0 . . .











.

If m 6 n, then we can repeat the above process to get a standard form which

corresponds to a fermionic Novikov superalgebra F
(k),α
3 up to isomorphisms. If

m > n, then the first n columns can be reduced to a standard form in a similar way

and the other entries of the matrix can be any complex numbers.

Corollary 2.1. All fermionic Novikov superalgebras induced by (2.1) are Novikov

superalgebras.

P r o o f. It follows from Theorem 2.1 that (x ∗ y) ∗ z = 0 for all x, y, z ∈ A. Then

the corollary follows. �

3. Proof of the main theorem

In this section, we will prove Theorem 2.1. We first prove the following two

lemmas.

Lemma 3.1. For any x ∈ A1, we have f(x) = g(x) = 0.

P r o o f. For any x ∈ A1, y ∈ A0, we have x ∗ y = f(x)y + g(y)x + h0(x, y)c0 +

h1(x, y)c1 ∈ A1. This implies that f(x)y + h0(x, y)c0 = 0. Note that dimA0 > 2.

Thus f(x) = 0. Similarly one can prove that g(x) = 0 for any x ∈ A1. �

Lemma 3.2. Assume that x ∗ y = h0(x, y)c0 for any x, y ∈ A1. Then there exists

a basis {f1, . . . , fm} such that f2j−1 ∗ f2j = c0 = −f2j ∗ f2j−1, j 6 k, 2k 6 m.

P r o o f. The proof of this lemma is easy and can be omitted. �

Proposition 3.1. If c0 = 0 and c1 6= 0, then A is isomorphic to F2.

P r o o f. By the assumption, we have

x ∗ y = f(x)y + g(y)x+ h1(x, y)c1 = f(x)y + g(y)x ∀x, y ∈ A0.
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Note that the even part of A is a fermionic Novikov algebra. Thus by [1], A0 is trivial

and f(x) = g(x) = 0 for all x ∈ A0. Then the product in A is given by

y ∗ x = h1(x, y)c1 = x ∗ y ∀x ∈ A0, y ∈ A1,

and

x ∗ y = 0 ∀x, y ∈ A1.

To verify (x ∗ y) ∗ z = 0 for any x, y, z ∈ A, we only need to show (x ∗ y) ∗ z = 0 for

x ∈ A1, y, z ∈ A0. Since for z ∈ A0,

(c1 ∗ z) ∗ z = −(c1 ∗ z) ∗ z,

we have 0 = (c1 ∗ z) ∗ z = (h1(c1, z))
2c1, which means h1(c1, z) = 0. Consequently,

for x ∈ A1, y, z ∈ A0 we have

(x ∗ y) ∗ z = h1(x, y)c1 ∗ z = h1(x, y)h1(c1, z)c1 = 0.

Therefore, by the assumption, A is a Novikov superalgebra and its structure is the

same as described in Proposition 2.6 in [3]. Thus, A is isomorphic to F2 (the notation

in [3] is Nk
3 ). �

Proposition 3.2. If c0 6= 0, c1 = 0 and h0(x, y) = 0 for any x, y ∈ A0, then A is

isomorphic to F
(k)
1 .

P r o o f. By the assumption, h0(x, y) = 0 for any x, y ∈ A0. Then it follows from

the discussions in [1] that A0 must be trivial and f(x) = g(x) = 0 for all x ∈ A0.

Note that

x ∗ y = g(y)x+ h0(x, y)c0 ∈ A1 ∀x ∈ A0, y ∈ A1,

which means x ∗ y = 0 for any x ∈ A0, y ∈ A1. Therefore, (x ∗ y) ∗ z = 0 for any

x, y, z ∈ A, namely, A is a Novikov superalgebra and its product structure is the

same as Case 1 in Proposition 2.4 in [3]. Therefore, A is isomorphic to F
(k)
1 (the

notation in [3] is Nk
2 ). �

Proposition 3.3. If c0 6= 0, c1 = 0 and there exists x, y ∈ A0 such that

h0(x, y) 6= 0, then A is isomorphic to F
(k1),(k2)
4 or F6.

P r o o f. Similarly to Proposition 3.5, we can easily show that A0 is isomorphic

to one of the following algebras:

(1) A
(k)
(1) = ejej = e1, 2 6 j 6 k + 1, k = 0, . . . , n− 1;

(2) A0
(4) = e1ej = ej , 2 6 j 6 n.
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Then the proof can be divided into two cases.

Case 1. A0 = A
(k)
(1) . It is shown in [1] that

f(x) = g(x) = 0, h0(x, c0) = 0 ∀x ∈ A0.

Thus we have

x ∗ y = g(y)x+ h0(x, y)c0 = 0 ∀x ∈ A0, y ∈ A1.

Similarly, we can show that y ∗ x = 0 for all x ∈ A0 and y ∈ A1. Then the nontrivial

product in A must be given by

x ∗ y = h0(x, y)c0 ∀x, y ∈ A0;

x ∗ y = h0(x, y)c0 ∀x, y ∈ A1.

Therefore (x∗y)∗z = 0 for any x, y, z ∈ A, and A is a Novikov superalgebra with the

same product structure as Case 1 of Proposition 2.5 in [3]. Therefore, A is isomorphic

to F
(k1),(k2)
4 (the notation in [3] is Nk1,k2

4 ).

Case 2. A0 = A
(0)
(4). In this case, it is shown in [1] that g(x) = 0 for all x ∈ A0

and there exists a basis {e1, . . . , en} of A0 such that h0(e1, e1) 6= 0, h0(ei, ek) = 0,

2 6 i 6 n, 1 6 k 6 n, f(e1) = 1, f(el) = 0, l > 2, f(c0) 6= 0 and A0 = e1 ∗ ej = ej ,

2 6 j 6 n.

Note that

x ∗ y = f(x)y + g(y)x+ h0(x, y)c0 = f(x)y ∀x ∈ A0, y ∈ A1,

y ∗ x = f(y)x+ h0(x, y)c0 = 0 ∀x ∈ A0, y ∈ A1,

and

x ∗ y = h0(x, y)c0 ∀x, y ∈ A1.

Thus the product in A must be given by

x ∗ y = f(x)y ∀x ∈ A0, y ∈ A1,

and

x ∗ y = h0(x, y)c0 ∀x, y ∈ A1.

So there exists a basis {f1, . . . , fm} ofA1 such that A1 = f2j−1∗f2j = c0 = f2j∗f2j−1,

j 6 k, 2k 6 m. We claim that k = 0. Otherwise, we have

(f1 ∗ f2) ∗ e2 = c0 ∗ e2 = f(c0)e2 6= 0.

However, (f1∗e2)∗f2 = 0, which is a contradiction. Hence A is isomorphic to F6. �
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Proposition 3.4. Assume that c0 6= 0, c1 6= 0 and h0(x, y) = 0 for any x, y ∈ A0.

Then A is isomorphic to F
(k)
1 , F2 or F

(k),α
3 .

P r o o f. By the assumption that h0(x, y) = 0 for any x, y ∈ A0, we have

x ∗ y = f(x)y + g(y)x ∀x, y ∈ A0.

Note that the even part of A is a fermionic Novikov algebra. Thus by [1], A0 is trivial

and f(x) = g(x) = 0 for all x ∈ A0. Therefore, by Lemma 3.1, the nonzero product

in A must be given by

x ∗ y = h1(x, y)c1 = y ∗ x ∀x ∈ A0, y ∈ A1,

and

x ∗ y = h0(x, y)c0 ∀x, y ∈ A1.

Note that

0 = (x ∗ y) ∗ z = −(x ∗ z) ∗ y = −h1(x, z)h1(c1, y)c1 ∀x, y ∈ A0, z ∈ A1

and

0 = (x ∗ y) ∗ z = −(x ∗ z) ∗ y = −h1(x, z)h0(c1, y)c0 ∀x, y ∈ A1, z ∈ A0.

If h1(x, y) = 0 for any x ∈ A0, y ∈ A1, then by Lemma 3.2 we can find a basis

{f1, . . . , fm} of A1 such that A is isomorphic to F
(k)
1 .

If there exist x ∈ A0 and y ∈ A1 such that h1(x, y) 6= 0, then we have

h1(c1, x) = h0(c1, y) = 0 ∀x ∈ A0, y ∈ A1.

Now let e1 = c0 and f1 = c1. Then by Lemma 3.2, there exists a basis {f1, . . . , fm}

of A1 such that f2j ∗ f2j+1 = e1 = −f2j+1 ∗ f2j, j 6 k, 2k + 1 6 m. Thus the

discussion can be divided into the following two cases:

Case 1. k = 0. In this case it is easy to see that A is isomorphic to F2 through

the basis transformation.

Case 2. k > 1. Note that

0 = (f2 ∗ fi) ∗ f3 = (f2 ∗ f3) ∗ fi = h1(e1, fi)f1, i 6= 3

and

h1(e1, f3)f1 = (f2 ∗ f3) ∗ f3 = −(f3 ∗ f2) ∗ f3 = −(f3 ∗ f3) ∗ f2 = 0.

Therefore h1(e1, fi) = 0, 1 6 i 6 m. Hence h1(e1, x) = 0 for all x ∈ A1. Thus A is

isomorphic to F
(k),α
3 . �
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Proposition 3.5. Assume that c0 6= 0, c1 6= 0 and there exist x, y ∈ A0 such that

h0(x, y) 6= 0. Then A is isomorphic to F
(k1),(k2)
4 , F

(k1),(k2),α
5 or F6.

P r o o f. By the assumption, there exist x, y ∈ A0 such that h0(x, y) 6= 0. Then

it follows from the discussions in [1] that A0 is isomorphic to one of the following

algebras:

(1) A
(k)
(1) = ejej = e1, 2 6 j 6 k + 1, k = 0, . . . , n− 1;

(2) A0
(4) = e1ej = ej , 2 6 j 6 n.

Thus the proof can be divided into two cases.

Case 1. A0 = A
(k)
(1) . By [1], we have f(x) = g(x) = h0(x, c0) = 0 for any x ∈ A0.

Then by Lemma 3.1, the product in A must be given by

x ∗ y = h1(x, y)c1 = y ∗ x ∀x ∈ A0, y ∈ A1;

x ∗ y = h0(x, y)c0 ∀x, y ∈ A1.

Note that for any x ∈ A0 and y, z ∈ A1, we have

(x ∗ y) ∗ z = h1(x, y)c1 ∗ z = h1(y, x)c1 ∗ z = (y ∗ x) ∗ z

= −(y ∗ z) ∗ x = −h0(y, z)h0(c0, x)c0 = 0

and

(x ∗ y) ∗ z = h1(x, y)h0(c1, z)c0.

This implies that

h1(x, y)h0(c1, z) = 0 ∀x ∈ A0, y, z ∈ A1.

If for any x ∈ A0 and y ∈ A1, h1(x, y) = 0, then by Lemma 3.2 there exist bases

{e1 = c0, . . . , en} of A0 and {f1, . . . , fm} of A1 such that A is isomorphic to F
(k1),(k2)
4 .

If there exist x ∈ A0 and y ∈ A1 such that h1(x, y) 6= 0, then h0(c1, x) = 0 for

any x ∈ A1. By the discussions in [1], one easily sees that A0 = ei ∗ ei = e1, i > 2,

where {e1 = c0, . . . , en} is a basis of A0. Now set f1 = c1. Then for any 1 6 i, l 6 n,

1 6 j 6 m, we have

(ei ∗ fj) ∗ el = h1(ei, fj)f1 ∗ el = h1(ei, fj)h1(f1, el)f1

and

(ei ∗ fj) ∗ el = −(ei ∗ el) ∗ fj = −h0(ei, el)e1 ∗ fj = −h0(ei, el)h1(e1, fj)f1,

which gives the equation

h1(ei, fj)h1(f1, el) = −h0(ei, el)h1(e1, fj).

Setting i = l = j = 1, we get h1(f1, e1) = 0. Similarly, setting i = l, j = 1, we get
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h1(f1, ei) = 0, 1 6 i 6 n; setting i = l = 2, we get h1(e1, fj) = 0, 1 6 j 6 m. Thus,

by Lemma 3.2, A is isomorphic to F
(k1),(k2),α
5 .

Case 2. A0 = A0
(4). It is shown in [1] that g(x) = 0 (for all x ∈ A0), h0(e1, e1) 6= 0,

h0(ei, ek) = 0, 2 6 i 6 n, 1 6 k 6 n, and f(e1) = 1, f(el) = 0, l > 2, f(c0) 6= 0.

Consider the equation

x ∗ y = h0(x, y)c0 ∀x, y ∈ A1.

By Lemma 3.2, we can choose a basis {f1, . . . , fm} ofA1 such that A1 = 〈f2j−1∗f2j =

c0 = −f2j ∗ f2j−1, j 6 k〉, 2k 6 m. We claim that k = 0. Otherwise, for any

fi, fj , fl ∈ A1, we have

(fi ∗ fj) ∗ fl = h0(fi, fj)c0 ∗ fl = h0(fi, fj)(f(c0)fl + h1(c0, fl)c1)

and

(fi ∗ fl) ∗ fj = h0(fi, fl)c0 ∗ fj = h0(fi, fl)(f(c0)fj + h1(c0, fj)c1).

Note that (fi ∗ fj) ∗ fl = (fi ∗ fl) ∗ fj . Thus we have

h0(fi, fj)(f(c0)fl + h1(c0, fl)c1) = h0(fi, fl)(f(c0)fj + h1(c0, fj)c1).

Now, setting i = j = 1, l = 2, we have f(c0)f1 + h1(c0, f1)c1 = 0. Since f(c0) 6= 0,

f1 and c1 are linearly dependent. Considering the case i = j = 2, l = 1, we can

similarly deduce that f2 and c1 are linearly dependent, which is a contradiction.

Now setting f1 = c1, we have

(e1 ∗ fk) ∗ e1 = (fk + h1(e1, fk)f1) ∗ e1 = (h1(fk, e1) + h1(e1, fk)h1(f1, e1))f1.

Moreover, setting k = 1 and taking into account the fact that (e1 ∗ e1) ∗ fk = 0, we

obtain h1(f1, e1) + h1(e1, f1)h1(f1, e1) = 0, which implies that h1(e1, f1) = 0 or −1.

If h1(e1, f1) = 0, then we have h1(e1, fk) = 0, 1 6 k 6 m. Note that for 2 6 j 6 n,

we have

(ej ∗ ej) ∗ f1 = 0 and (ej ∗ f1) ∗ ej = h1(ej , f1)h1(f1, ej)f1,

which implies that h1(ej , f1)h1(f1, ej) = 0. It follows that h1(ej, f1) = 0 for all

j > 2. On the other hand, for 2 6 j 6 n and 1 6 k 6 m, we have

(e1 ∗ ej) ∗ fk = ej ∗ fk = h1(ej, fk)f1,

and

(e1 ∗ fk) ∗ ej = (fk + h1(e1, fk)f1) ∗ ej = (h1(fk, ej) + h1(e1, fk)h1(f1, ej))f1.
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Therefore −2h1(ej , fk) = h1(e1, fk)h1(f1, ej) = 0. It follows that h1(ej , fk) = 0 for

2 6 j 6 n, 1 6 k 6 m. Hence A is isomorphic to F6.

Finally, if h1(e1, f1) = −1, then we have

(f1 ∗ e1) ∗ e1 = h1(f1, e1)f1 ∗ e1 = (h1(e1, f1))
2f1 = f1.

On the other hand, we have (f1 ∗ e1) ∗ e1 = −(f1 ∗ e1) ∗ e1. Thus (f1 ∗ e1) ∗ e1 = 0,

which is a contradiction. This completes the proof. �
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