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Abstract. Euler’s pentagonal number theorem was a spectacular achievement at the
time of its discovery, and is still considered to be a beautiful result in number theory
and combinatorics. In this paper, we obtain three new finite generalizations of Euler’s
pentagonal number theorem.
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1. INTRODUCTION

One of Euler’s most profound discoveries, the pentagonal number theorem, see [1],
Corollary 1.7, page 11, is stated as follows:
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(1.1) ﬁ(l — " = Z (_1)qu(3k’+1)/2.
k=1

k=—o0

For some connections between the pentagonal number theorem and the theory of
partitions, one refers to [1], page 10, and [2].
Throughout this paper, we assume |¢| < 1 and use the following g-series notation:

n—1 [e%s)
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m Mlq 0, otherwise.
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Some finite forms of Euler’s pentagonal number theorem have been already studied
by several authors. Shanks in [7] proved that

n

(1.2) zn:(—l)k (CI;.(])n q(k;l)ﬂzk _ Z (_1)qu(3k+1)/2’

k=0

k=—n

which was a truncated version of (1.1). Note that (1.2) reduces to (1.1) when n — oco.
Berkovich and Garvan in [3] have found some finite generalizations of Euler’s
pentagonal number theorem. For example, they showed that

e 2L — §] (s
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By using a well-known cubic summation formula, Warnaar in [8] obtained another
finite generalization of Euler’s pentagonal number theorem:
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Note that
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Then both (1.3) and (1.4) reduce to (1.1) when L — oc.
The first aim of the paper is to show the following finite form of (1.1):

Theorem 1.1. Let n be any non-negative integer. Then
ln/2] n— k (1) [n/3] ( y
k . _ k _k(3k+1)/2
(1.5) I i R SRS
k=—[(n+1)/3]

where | x| denotes the greatest integer less than or equal to a real number x.

Observe that
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By Tannery’s theorem, see [4], page 136, letting n — oo in (1.5) reduces it to

(—ZTCZ)(IC?) _ i (_1)qu(3k+1)/2.
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By [1], (2.2.6), we have

k;—l)

0 k(
(1.7) > % = (¢ @)oo

= (G
which is a special case of the g-binomial theorem, see [1], Theorem 2.1, page 17.
Combining (1.6) and (1.7), we are led to (1.1).

The second result consists of the following two finite generalizations of (1.1):

Theorem 1.2. Suppose m is a positive integer. Then

w8) 1—g3m [m/2] (_1)’f [Zm _ k;] qk(Bk—l)/Q _,
' 1+qm it m4k|1—g2m-k 7
L(m—1)/2] k(3k+1)/2
) o2m —k—1] ¢FGrD/
1. 1—g3m ! —1)k —_— =1.
I I M R e

Note that |g| < 1 and

) om —k ) 2m—k—1 1
lim = lim = .
m—oo | m+k m—00 m+k (45 9) o0

By Tannery’s theorem, see [4], page 136, we conclude that both (1.8) and (1.9) reduce
to (1.1) when m — oo.

2. PROOF OF THEOREMS 1.1 AND 1.2

In order to prove the main results, we need some lemmas.
Lemma 2.1 ([1], page 35). Let 0 < m < n be integers. Then

o) =]

= +4q )

m m—1 m

ni [n-—1 nem|m—1

A N R

The next two lemmas play important roles in our proof of Theorem 1.1 and 1.2.
We shall prove these two lemmas together with Theorem 1.1.
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Lemma 2.2. Suppose n is a non-negative integer. Then

(—1)mqm(3m*1)/2 if n = 3m,

21 Y (—n’“{n_k]q@ = (~1)mgnEmE2 i = 3m 41,

k=0 0 if n=23m—1.

Ekhad and Zeilberger in [5] proved (2.1) by Zeilberger’s algorithm, see [6]. War-
naar in [8] gave another proof of (2.1) using a well-known cubic summation formula.
We will present an essentially different proof by establishing relationships with other

two results and using mathematical induction.

Lemma 2.3. For any non-negative integer n, we have

[n/2] n— (%)
ey - Y o

_ qn—k
k=0 q

(=1)™ (1 g™)g™ D2 if n = 3m,
= { (=1)mgmBmtD/2 if n=3m+1,
(_1)mqm(3m—1)/2 if n=3m-—1.

Proof of Theorem 1.1, Lemma 2.2 and Lemma 2.3. Denote the left-hand sides
of (2.1), (2.2) and (1.5) by U,, V,, and W,,, respectively. We shall prove (2.1), (2.2)
and (1.5) by establishing the following relationships:

(23) Wn = Wn—l - qn_lUn—Qa
(24) Vn - Un - qn_lUn—Qa
(2.5) Vi = Wy — Wi,

Substituting (2.3) into (2.5) gives
(2.6) Vi =Wn 1 —Wpn_o—q" U .
By (2.4) and (2.6), we have
(2.7) Up=Wp_1 — Wy_o.
Replacing n by n — 1 in (2.3), we get
(2.8) Wy1 —Wyo=—q""2U,_3.
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By (2.7) and (2.8), we get
U, =—¢""%U,_5 forn>3.

We can deduce (2.1) by induction from the initial values Uy = 1, U; = 1 and Uy = 0.
Substituting (2.1) into (2.4), we get (2.2) directly.

We will prove (1.5) by using induction on n. It is easy to verify that (1.5) is true
for n =0,1,2. Assume (1.5) is true for N < n. By (2.3), we have

(29) Wn+1 = Wn — ann71~

If n = 3m, by (2.1) and (2.9), we have W,,.1 = W,,. It follows from the induction
that

[n/3] [(n+1)/3]
Wn+1 =W, = Z (_1)qu(3k+1)/2 — Z (_1)qu(3k+1)/27
k=—[(n+1)/3] k=—[(n+2)/3]

which implies that (1.5) is also true for N = n + 1.
If n =3m+ 1, it follows from (2.1) and (2.9) that

Wn+1 =W, + (_1)m+1q(m+1)(3m+2)/2.

So we have
[n/3]
Wn+1 _ Z (_1)qu(3k+1)/2 + (_1)m+1q(m+1)(3m+2)/2
k=—|(n+1)/3]
[(n+1)/3]

_ Z (_1)qu(3k+1)/2,
k=—[(n+2)/3]

which proves (1.5) for the case N =n + 1.
If n = 3m + 2, using (2.1) and (2.9), we get

Wn+1 =Wn+ (_1)m+1q(m+1)(3m+4)/27

and hence

ln/3]
Wi = 3 (S)RgMORID 4 (Cppnrigmeemay2

k=—[(n+1)/3]
[n+1/3]

_ Z (_1)qu(3k+1)/2’

k=—[(n+2)/3]

which implies that (1.5) is true for N = n + 1. This concludes the proof of (1.5).
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It remains to prove (2.3)—(2.5). From Lemma 2.1, we have

BNERE vy

It follows that

[(n—1)/2] n/2]

W, = Z (—1)k[n—11:— 1}(]('“31) s Z (1) {n;le}q(gl)
k=0 k=1
o L(ngém(_l)k {n - Z - 2} 0

—1
= n—1— qn Un72~

This concludes the proof of (2.3).
Note that 1 — ¢" =1 —¢" % + ¢"%(1 — ¢*). Then

[n/2] n—k ® [n/2] n—k] 1—g* (1)
_ _ k 2 n—1 _ k - - ;
Vn - § ( 1) |: k :|q +4q E_O ( 1) |: k :| 1— qnfkq

[n/2] h 1] e
=Un+q" " ) (—1)’“{ }q( =)
k=1

k—1
[(n—=2)/2]
el e[ k=2
=Un—q Z(l)[k]qz
k=0
=U, — qn_lUn—Qa
which is (2.4).
Applying the fact:
1—q" 1-— qk k
1_qn—k = 1_qn—k +a,
we get
n—k| 1—-¢" [n—k-1 n—k|
o [ s
Substituting (2.10) into the left-hand side of (2.2) gives
Lo/ n—k—1 (5 e/ n—k (54
— k . k
D NS K TE RS DTG T Ve
k=1 k=0
L(n—-2)/2]
—— Y T =
k=0

This proves (2.5). Now we complete the proof of (2.3)—(2.5).
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Proof of Theorem 1.2. Replacing n by 3m in (2.2) and then letting k — m + k,

we obtain
m m-+4k
2m —k q( 2") B
2.11 1-— 3m —1 k = (1 my m(3m 1)/2.
D D Gt i P S R
k=—m
Note that

[N] _ 1-¢H1-¢2)...0=¢™")

ml, (=g )...(l-¢g™)(L-g)...(1 - g (=m)

_ (1-9U-¢)...(1=q") ST (8
1-q...(0=gm(A—-gq)...(1—¢"™)

(2.12) - {”} gmm=m),

m

Letting ¢ — ¢~ ! in (2.11) and then using (2.12), we obtain (1.8).
Similarly, replacing n by 3m — 1 in (2.2) and then letting k — m +k and ¢ — ¢!,
we get (1.9). O
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