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Abstract. We investigate the invariant rings of two classes of finite groups G 6 GL(n, Fq)
which are generated by a number of generalized transvections with an invariant subspace H
over a finite field Fq in the modular case. We name these groups generalized transvection
groups. One class is concerned with a given invariant subspace which involves roots of
unity. Constructing quotient groups and tensors, we deduce the invariant rings and study
their Cohen-Macaulay and Gorenstein properties. The other is concerned with different
invariant subspaces which have the same dimension. We provide a explicit classification of
these groups and calculate their invariant rings.

Keywords: invariant ring; transvection; generalized transvection group

MSC 2010 : 13A50, 20F55, 20F99

1. Introduction

Let Fq be a finite field, where q = pν , ν ∈ Z+. Suppose that x1, . . . , xn ∈ V = Fn
q

form a basis and z1, . . . , zn ∈ V ∗ form the dual basis to {x1, . . . , xn}. We denote by

Fq[V ] the graded algebra of polynomial functions on V , which is defined to be the

symmetric algebra on V ∗. Hence Fq [V ] = Fq[z1, . . . , zn]. If G is a finite group, and

̺ : G →֒ GL(n, Fq) is a representation of G over Fq, then, via ̺,G acts on the left

of the vector space V = Fn
q . A central theme in invariant theory is the study of the

induced action on the algebra of polynomial functions Fq[V ] on V . This action arises

from the left action of G on V ∗ defined by (g ·z)(v) = z(̺(g)−1 ·v) for g ∈ G, z ∈ V ∗,

and v ∈ V , and its extensions to Sm(V ∗), the mth symmetric power of V ∗, which fit

together to give a left G-action on Fq[V ] by algebra automorphisms. By definition,
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the ring of invariants [17], denoted by Fq[V ]G, is

Fq [V ]G = {f ∈ Fq[V ] : g · f = f, ∀ g ∈ G}.

This is a graded subalgebra of Fq[V ].

In this paper, we are mainly concerned with the invariant rings of two classes

of groups G 6 GL(n, Fq) generated by generalized transvections and some related

properties over a finite field Fq. In this case, the order of group G is divisible by the

characteristic of the field Fq. Here are the two classes of groups G 6 GL(n, Fq):







(1) G with a given invariant subspace and several roots of unity

(Section 2 and 3),

(2) G with different invariant subspaces which have the same dimension

(Section 4).

The definitions of the two classes of groups will be introduced in the sequel.

Nakajima in [13] introduces pseudo-reflections and transvections. In addition, he

studies finite groups G ⊆ GL(V ) whose rings of invariants are polynomial in the

modular case when n = 2 (see [13]) and when G are p-groups over a prime field

F = Fp (see [15]). Kemple, Malle in [11] determine finite irreducible subgroups G of

GL(V ) such that F [V ]G are polynomial rings in the modular case. Neusel, Smith

in [16] also study transvections. They adopt a method associated with configurations

of hyperplanes and calculate several invariant rings of groups which are polynomial

and an invariant ring of a group which is Cohen-Macaulay.

If an invariant ring fails to be polynomial, people usually study its Cohen-Macaulay

and Gorenstein properties. Hochster, Eagon in [9] show that in the non-modular case

if a finite group G acts on a Cohen-Macaulay ring R then RG is Cohen-Macaulay. In

the modular case, although an invariant ring RG in three or fewer variables is Cohen-

Macaulay (see [18]), it may fail to be Cohen-Macaulay in more variables even if R

is Cohen-Macaulay. Bertin in [2] gives such a counter-example with lowest possible

dimension, the regular representation of the group Z/4 over a field of characteristic 2.

In fact, Campbell at al. in [5] prove that a class of vector invariant rings F [
⊕

m
V ]P

is not Cohen-Macaulay if m > 3 for any finite p-groups P in the modular case. For

the sake of Gorenstein property, Bass in [1] studies and concludes several results. In

the non-modular case, Stanley in [20] and Bruns and Herzog in [4] prove that every

subgroup of the special linear group SL(n, F ) is Gorenstein. In the modular case,

Braun in [3] proves that if a group G contains no pseudo-reflection, then Fq[V ]G is

Gorenstein. And we in [8] indicate that an invariant ring Fq[V ]G is Gorenstein when

the definition of the group G involves a root of unity.
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A plan of this paper follows. In the remainder of this section, we list the main

results in this paper and illustrate terminology used in the sequel. In the second

section, we study properties of i-transvections and determine the invariant rings of

groups generated by i-transvections with a given invariant subspace. Constructing

quotient groups and tensors is the key ingredient in the approach applied in this

section. In the third section, we investigate the invariant rings of groups gener-

ated by (ω, i)-transvections with two roots of unity and their Cohen-Macaulay and

Gorenstein properties. Then we extend these results to a generalization in which

the groups are generated by (ω, i)-transvections with several roots of unity. In the

fourth section, we consider the groups with different invariant subspaces which have

the same dimension. Before computing invariant rings, we need to figure out the

structures of these groups. Hence we provide a classification of them.

Below is a list of our main results in this paper.

(1) In Theorem 3.2, we determine the invariant ring Fq[V ]G(ω1,ω2) of the group

G(ω1, ω2) where ω1 and ω2 are two roots of unity.

(2) In Proposition 3.8 and Proposition 3.11, we prove that the invariant ring

Fq[V ]G(ω1,ω2) is Cohen-Macaulay, and indicate the conditions for it to be Gorenstein.

(3) In Theorem 3.14, we extend the result in Theorem 3.2 to a generalization which

involves several roots of unity.

(4) In Theorem 4.5, we consider the groups G with different invariant subspaces

which have the same dimension. We determine the structures of these groups. There

are totally four kinds of such groups up to isomorphism.

(5) In Proposition 4.9, Proposition 4.11, Proposition 4.12 and Proposition 4.15,

we calculate the invariant rings of these four kinds of groups, respectively.

(6) In Proposition 4.14, we discuss a property of the Dickson polynomials

dn,0, . . . , dn,n−1 : q−1
√
dn,0 = d

1/(q−1)
n,0 ∈ Fq [V ] but other d

1/(q−1)
n,r /∈ Fq[V ] for

r = 1, . . . , n− 1.

Next, we begin with a short review of some basic definitions concerning invariant

and pseudo-reflection as a preliminary to introducing i-transvections and i-reflections

which will be needed in this paper. We adopt the definitions from [22] and [13].

Definition 1.1 ([22]). Given an element T ∈ GL(n, Fq), we denote the dimen-

sion of the subspace Im(I−T ) ⊂ V by Res(T ). Hence the dimension of the subspace

Ker(I − T ) is equal to (n− Res(T )).

In a finite group G ⊆ GL(V ), a pseudo-reflection T ∈ G satisfies equality

dim(Im(I − T )) = 1 (see [13]), i.e., Res(T ) = 1. A pseudo-reflection T 6= I is called

a transvection (see [13]) if T |(I−T )V = I, and a reflection (see [13]) if T |(I−T )V = −I.

Similarly, we define i-transvection and i-reflection.
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Definition 1.2. Denote the floor of a number a by [a]. Let T ∈ GL(n, Fq) satisfy

Res(T ) = i where 1 6 i 6 [n/2]. Then T is called an i-transvection if T |(I−T )V = I,

and an i-reflection if T |(I−T )V = −I. A subspaceH ⊂ V = Fn
q is called the invariant

subspace of T if H = Ker(I − T ), and the subspace L = Im(I − T ) ⊂ V is called the

line subspace of T .

Remark. (1) Given an i-transvection T with the invariant subspace H and the

line subspace L, since T |(I−T )V = I and (I − T )V = Im(I − T ), it yields that

Im(I − T ) ⊆ Ker(I − T ), i.e., L ⊆ H .

(2) In Lemma 2.8, after obtaining the matrix form of i-transvection, we find that

the definition of i-transvection is invalid for [n/2] < i 6 n− 1. Hence we will extend

it to [n/2] < i 6 n− 1 in Definition 2.9.

Definition 1.3. We denote the group generated by all i-transvections with the

same invariant subspace H by G+
i,H . The space H is called the invariant subspace

of the group G+
i,H .

Note. For convenience, G+
i,H is briefly denoted by G

+
i in the sequel.

At the end of this section, we introduce several important invariants and propo-

sitions which will be frequently used in this paper. First, we introduce the Dickson

algebra.

Definition 1.4 ([17], Lemma 6.1.1). Let Fq be the Galois field with q elements

and V = Fn
q the n-dimensional vector space over Fq. Set Φn(X) =

∏

z∈V ∗

(X + z) ∈

Fq[V ][X ]. Then Φn(X) is q-polynomial, in the sense that Φn(X) =
n∑

i=0

(dn,iX
qi).

dn,0, . . . , dn,n are called the Dickson polynomials with degrees deg(dn,i) = (qn − qi)

for i = 0, . . . , n. L = d
1/(q−1)
n,0 is called the Euler class. The ring Fq[dn,0, . . . , dn,n−1]

is called the Dickson algebra. Notice that dn,n = 1.

The formulas of the Dickson polynomials are provided in [17], Theorem 6.1.7. And

we shall make use of them in Section 4.

Next, we list the definition of the top Chern class.

Definition 1.5 ([17], page 79). Let V be a finite dimensional representation of

a finite group G and B ⊂ V an orbit. Set Ctop(B) =
∏

v∈B

(v), which is called the top

Chern class of B.

In this paper we concentrate on a special case which has a close relation with the

Dickson polynomials. Let {z1, . . . , zn} be a basis for V ∗ and G a finite group. If the

orbit of zj is {zj+λ1zt1 + . . .+λizti : λ1, . . . , λi ∈ Fq} where j, t1, . . . , ti ∈ {1, . . . , n}
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are distinct, then its cardinality is equal to qi. Referring to [17], Theorem 6.1.7, its

top Chern class is

Ctop(zj) = zq
i

j +
i−1∑

r=0

(di,r · z
qr

j ),

where di,r is the Dickson polynomial in zt1 , . . . , zti with degree qi − qr for r =

0, . . . , i− 1. Since Ctop(zj) is q-polynomial, we substitute Cqi(zj) for Ctop(zj) in this

case.

A system of parameters (see [17]) for an algebra A over the field F is a finite set

of algebraically independent elements h1, . . . , hn in A such that the ring extension

F [h1, . . . , hn] ⊆ A is finite. The following proposition states a method to determine

the polynomial rings of invariants.

Proposition 1.6 ([17], Proposition 4.5.5). Let G →֒ GL(n, F ) be a representation

of a finite group G over the field F . Suppose F [V ]G contains a system of parameters

f1, . . . , fn such that deg(f1) . . . deg(fn) = |G|. Then F [V ]G ∼= F [f1, . . . , fn].

2. The properties of i-transvections and invariants of the group G+
i

The properties of 1-transvections, i.e., transvections, are studied in [17]. In this

section, we extend the results to i-transvections for i = 1, . . . , n − 1. Then we

compute the invariant ring Fq[V ]G
+
i of the group G+

i and introduce a related group

Gi(ω) where ω is a root of unity.

Let T ∈ GL(n, Fq) be an i-transvection and x1, . . . , xi ∈ Im(I − T ) linearly inde-

pendent vectors. So x1, . . . , xi form a basis of Im(I − T ). Then

T : V → V

v → v + ϕ1(v) · x1 + . . .+ ϕi(v) · xi,

where

ϕ : V → F i
q

v → (ϕ1(v), . . . , ϕi(v)).

The linearity of T entails the linearity of ϕ. Notice that Ker(ϕ) = Ker(I − T ).

The following lemma is simple but important.
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Lemma 2.1. Let T be an i-transvection, {x1, . . . , xi} a basis of the subspace

Im(I − T ) ⊂ V , and ϕ = (ϕ1, . . . , ϕi) : V → F i
q a nonzero linear map associated

with T as defined above. If v =
i∑

j=1

(kjxj) ∈ Im(I − T ), where k1, . . . , ki ∈ Fq, then

ϕ1(v) = . . . = ϕi(v) = 0.

P r o o f. Since T is an i-transvection, T |(I−T )V = I. Since v =
i∑

j=1

(kjxj) ∈

Im(I − T ) = (I − T )V , it follows that

i∑

j=1

(kjxj) = v = T (v) = v +

i∑

l=1

(ϕl(v) · xl),

i.e.,
i∑

l=1

(ϕl(v) · xl) = 0.

Since x1, . . . , xi are linearly independent, the result follows. �

Definition 2.2. Let x1, . . . , xi be vectors (not required to be linearly indepen-

dent), and ϕ = (ϕ1, . . . , ϕi) a nonzero linear map from V to F i
q with ϕl(xj) = 0 for

all 1 6 l, j 6 i. Define a linear transformation

t(ϕ, x1, . . . , xi) : V → V

v → v + ϕ1(v) · x1 + . . .+ ϕi(v) · xi.

Notice t(ϕ, 0, . . . , 0) = I.

Lemma 2.3. Let ϕ = (ϕ1, . . . , ϕi) : V → F i
q be a nonzero linear map with

Ker(ϕ) = H .

(1) If T is an i-transvection with the invariant subspace H = Ker(I − T ) and the

line subspace L = Im(I − T ) ⊆ H , then there exists a unique basis {x1, . . . , xi} of L

such that T = t(ϕ, x1, . . . , xi) with ϕl(xj) = 0 for all 1 6 l, j 6 i.

(2) If {x1, . . . , xi} is a basis of some i-dimensional subspace L ⊆ H , then there

exist a unique i-transvection T with the invariant subspace H = Ker(I −T ) and the

line subspace L = Im(I − T ) such that T = t(ϕ, x1, . . . , xi) with ϕl(xj) = 0 for all

1 6 l, j 6 i.

P r o o f. (1) Since ϕ = (ϕ1, . . . , ϕi) : V → F i
q is a linear map with Ker(ϕ) =

H = Ker(I − T ), there exists a basis {x1, . . . , xi} of L = Im(I − T ) such that

T (v) = v +
i∑

l=1

(ϕl(v) · xl) = t(ϕ, x1, . . . , xi)(v),
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where ϕl(xj) = 0 for all 1 6 l, j 6 i by the definition of T , Lemma 2.1 and

Definition 2.2. Suppose that x1, . . . , xn−i span H and x1, . . . , xn span V . Then

T (xj) =







xj if j 6 n− i,

xj +
∑

16l6i

(cjlxl) if j > n− i.

The matrix C = (cjl)i×i is invertible since H = Ker(I − T ). Similarly, the re-

striction of ϕ to the span of xn−i+1, . . . , xn gives another invertible matrix B =

(ϕ(xn−i+1), . . . , ϕ(xn))
t. This implies a unique basis B−1C(x1, . . . , xi)

t satisfying

the result.

(2) It is straightforward to check that T = t(ϕ, x1, . . . , xi) is the unique i-

transvection with the invariant subspace H = Ker(I − T ) and the line subspace

L = Im(I − T ). �

Recall that L = Im(I − T ) ⊆ H = Ker(I − T ) for an i-transvection T . According

to Lemma 2.3, we can see that if a nonzero linear map ϕ = (ϕ1, . . . , ϕi) is given

with Ker(ϕ) = H , then an i-transvection T with this invariant subspace H is in one-

to-one correspondence to a basis {x1, . . . , xi} of a subspace of H . Since the group

G+
i is generated by all i-transvections with the same invariant subspace H , it is

sufficient to study bases of subspaces of H instead of i-transvections when we study

the generators of G+
i . Before the study of generators, we collect some elementary

properties of i-transvections and the construction of t(ϕ, x1, . . . , xi).

Lemma 2.4. Let ϕ : V → F i
q be a nonzero linear map, T1 = t(ϕ, x1, . . . , xi)

and T2 = t(ϕ, y1, . . . , yi) two i-transvections with the same invariant subspace

H = Ker(ϕ). Suppose that {x1, . . . , xi} is a basis of the line subspace of T1 and

{y1, . . . , yi} is a basis of the line subspace of T2 with ϕl(xj) = ϕl(yj) = 0 for all

1 6 l, j 6 i. Then

t(ϕ, x1, . . . , xi) · t(ϕ, y1, . . . , yi) = t(ϕ, x1 + y1, . . . , xi + yi)

= t(ϕ, y1, . . . , yi) · t(ϕ, x1, . . . , xi),

i.e., T1T2(v) = T2T1(v) for all v ∈ V .

P r o o f. According to Definition 2.2, we derive

t(ϕ, x1, . . . , xi)(t(ϕ, y1, . . . , yi)(v))

= t(ϕ, x1, . . . , xi)

(

v +

i∑

l=1

(ϕl(v) · yl)

)

=

(

v +

i∑

j=1

(ϕj(v) · xj)

)

+

i∑

l=1

(

ϕl(v) ·

(

yl +

i∑

j=1

(ϕj(yl) · xj)

))
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=

(

v +

i∑

j=1

(ϕj(v) · xj)

)

+

i∑

l=1

(ϕl(v) · yl)

= v +

i∑

j=1

(ϕj(v) · (xj + yj)) = t(ϕ, x1 + y1, . . . , xi + yi)(v).

�

Lemma 2.5. Let ϕ = (ϕ1, . . . , ϕi) : V → F i
q be a nonzero linear map, T =

t(ϕ, x1, . . . , xi) an i-transvection with the invariant subspace H = Ker(ϕ) and

ϕl(xj) = 0 for all 1 6 l, j 6 i. Denote by F ∗
q = Fq \ {0} the multiplication group of

the field Fq. Then

t(aϕ, x1, . . . , xi) = t(ϕ, ax1, . . . , axi), a ∈ F ∗
q .

P r o o f. According to Definition 2.2, the formula follows from the following

computation:

t(aϕ, x1, . . . , xi)(v) = v +
i∑

l=1

(aϕl(v) · xl)

= v +
i∑

l=1

(ϕl(v) · axl) = t(ϕ, ax1, . . . , axi)(v).

�

We emphasize that two i-transvections with the same invariant subspace H may

generate a k-transvection for some k < i. For example, let ϕ = (ϕ1, ϕ2) : V → F 2
q

be a nonzero linear map, T1 = t(ϕ, x, y1) and T2 = t(ϕ,−x, y2) two 2-transvections

where y1 + y2 6= 0. Notice that they have the same invariant subspace H = Ker(ϕ).

However, T1T2 = t(ϕ, 0, y1 + y2), which is a 1-transvection. Besides, the invariant

subspace H ′ of T1T2 = t(ϕ, 0, y1 + y2) contains the common invariant subspace H

of T1 and T2. In fact, t(ϕ, 0, y1 + y2) = t(ϕ′, y1 + y2) where ϕ
′ = ϕ2 : V → Fq is

a nonzero linear map. Hence Ker(ϕ) ⊂ Ker(ϕ′), i.e., H ⊆ H ′.

Recall that the group G+
i with an invariant subspace H are generated by all i-

transvections with the same invariant subspace H in Definition 1.3. The preceding

discussion can be generalized in the following lemma.

Lemma 2.6. Let ϕ = (ϕ1, . . . , ϕi) : V → F i
q be a nonzero linear map, and

H = Ker(ϕ) a subspace of V . If a k-transvection T ′ = t(ϕ, x′
1, . . . , x

′
i) with an

invariant subspace H ′ is an element in the group G+
i with the invariant subspace H

for some 0 6 k 6 i, then
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(1) H ⊆ H ′;

(2) the vectors x′
1, . . . , x

′
i ∈ H ;

(3) and T ′−1 = t(ϕ,−x′
1, . . . ,−x′

i).

P r o o f. Suppose that T ′ = T1 . . . Tl ∈ G+
i , where Tj = t(ϕ, xj

1, . . . , x
j
i ) ∈ G+

i ,

is an i-transvection with the invariant subspace H for j = 1, . . . , l. It follows that

xj
1, . . . , x

j
i ∈ H for all j = 1, . . . , l. According to Lemma 2.4, T ′ = t(ϕ, x′

1, . . . , x
′
i) =

t
(

ϕ,
l∑

j=1

xj
1, . . . ,

l∑

j=1

xj
i

)

, i.e., x′
1 =

l∑

j=1

xj
1, . . . , x

′
i =

l∑

j=1

xj
i . Hence x′

1, . . . , x
′
i ∈ H.

Since x′
1, . . . , x

′
i span a k-dimensional subspace for some 0 6 k 6 i, it follows that

H ⊆ H ′. If T1T2 = t(ϕ, 0, . . . , 0) = I, then T−1
1 = T2 = t(ϕ,−x′

1, . . . ,−x′
i) according

to Definition 2.2. �

Remark. (1) It is easily seen that Lemma 2.4 and Lemma 2.5 both hold for all

elements in the group G+
i .

(2) A basis {x1, . . . , xi} of the line subspace L is ordered, i.e., the bases {x1, . . . , xi}

and {xσ(1), . . . , xσ(i)} are not the same if 1 6= σ ∈ Si where Si is the symmetric group

on i letters, since

t(ϕ, x1, . . . , xi)(v) = v +

i∑

l=1

(ϕl(v) · xl))

6= v +

i∑

l=1

(ϕl(v) · xσ(l))) = t(ϕ, xσ(1), . . . , xσ(i))(v).

A basis {x1, . . . , xi} of a subspace of H is in a one-to-one correspondence to an

i-transvection T with the invariant subspace H if ϕ = (ϕ1, . . . , ϕi) is given with

Ker(ϕ) = H by Lemma 2.3. Therefore we can derive the following conclusion.

Proposition 2.7. Let Fq be a finite field, q = pν , ν ∈ Z+, V = Fn
q a linear

space, H ⊂ V a subspace with dimH = (n − i), and ϕ = (ϕ1, . . . , ϕi) : V → F i
q

a given nonzero linear map with Ker(ϕ) = H . If the group G+
i is generated by all

i-transvections with the invariant subspace H , then the map

τ : H × . . .×H
︸ ︷︷ ︸

i copies

→ G+
i

(x1, . . . , xi) 7→ t(ϕ, x1, . . . , xi)

is an isomorphism of groups. Therefore, G+
i is an elementary abelian p-subgroup of

the special linear group SL(n, Fq) and the order |G
+
i | = (qn−i)i = qin−i2 .
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P r o o f. The map τ is bijective by Lemma 2.3 and Lemma 2.6, and a homo-

morphism of groups by Lemma 2.4. Since Fq is a finite additive group with order

q = pν , H ⊂ V = Fn
q is an elementary abelian p-group, so is G+

i .

Since dimH = (n− i), we have |H | = qn−i and |G+
i | = (qn−i)i = qin−i2 .

Let Det : G+
i → F ∗

q be the determinant homomorphism of groups. We denote by

|Det(G+
i )| the order of Det(G+

i ), then |Det(G+
i )| divides |G

+
i | = qin−i2 .

If q = p = 2, it follows that Det(G+
i ) = {1}, so G+

i is a subgroup of SL(n, Fq).

In the other cases, we suppose that G+
i * SL(n, Fq), so |Det(G+

i )| > 1. Since

|Det(G+
i )| divides |F

∗
q | = q − 1, it means that |Det(G+

i )| is a nontrivial factor of

(q − 1), which is a contradiction to that |Det(G+
i )| divides |G

+
i | = qin−i2 . Hence

G+
i ⊂ SL(n, Fq). �

Given an element z ∈ V ∗, we denote a subspace W = {v ∈ V : z · v = 0} ⊂ V

by Ker〈z〉. In this section, we fix H = Ker〈zn−i+1, . . . , zn〉. Before turning to the

invariant ring Fq[V ]G
+
i of the group G+

i , we must emphasize that Fq[V ]G
+
i is relevant

to the invariant subspaceH . In fact, it depends only onH according to Definition 2.9

and Proposition 2.10. We will introduce the groups in Section 4 when H is unfixed.

In order to determine the structure of the invariant ring Fq[V ]G
+
i , let us consider

the matrix forms of elements in the group G+
i .

Lemma 2.8. Let H = Ker〈zn−i+1, . . . , zn〉 be the invariant subspace of the

group G+
i . Suppose that 1 6 i 6 [n/2]. We denote by Matn−i,i(Fq) the vector space

of (n− i)× i matrices over Fq . Then the matrices of elements in the group G+
i are

of the form (
In−i ∗

0 Ii

)

where ∗ ∈ Matn−i,i(Fq). Besides, all such matrices of elements are included in the

group G+
i .

P r o o f. Since H = Ker〈zn−i+1, . . . , zn〉, it is straightforward by Definition 1.2

and Proposition 2.7. �

Remark. The definition of the group G+
i is invalid for [n/2] < i 6 n − 1 by

Lemma 2.8 since the definition of Res(T ) = i is invalid for [n/2] < i 6 n − 1.

Nevertheless, we find that if H = Ker〈zt1 , . . . , ztl〉 is the invariant subspace of an

i-transvection T , then i = l by Proposition 2.7. Hence we can extend the definitions

of Res(T ) and i-transvection as follows.

Definition 2.9. Let an element T ∈ GL(n, Fq) be isomorphic to the matrix form

(
In−i A

0 Ii

)
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whereA∈Matn−i,i(Fq) is of full column rank. ThenKer(I−T )=Ker〈zn−i+1, . . . , zn〉.

We denote the number i by Res(T ). T is called an i-transvection and the subspace

H = Ker〈zn−i+1, . . . , zn〉 is called the invariant subspace of T .

One can easily check that Res(T ) is the same as in Definition 1.1 for 1 6 i 6 [n/2]

and it is valid for [n/2] < i 6 n− 1.

According to Definition 2.9, we conclude that the elements in the group G+
i are

all of the forms in Lemma 2.8 for all 1 6 i 6 n− 1. Furthermore, the invariant ring

is well defined for all 1 6 i 6 n− 1 since it only depends on the matrix forms in the

group G+
i .

Now we are in a position to compute the invariant ring Fq[V ]G
+
i .

Proposition 2.10. Let Cqi(zj) be the top Chern class of zj for j = 1, . . . , n− i,

which is defined in Definition 1.5. Then

Fq[V ]G
+
i = Fq[Cqi(z1), . . . , Cqi(zn−i), zn−i+1, . . . , zn].

It is a polynomial algebra.

P r o o f. Referring to the matrix in Lemma 2.8, the top Chern class of zj ,

1 6 j 6 n− i, is

Cqi (zj) =
∏

λ1,...,λi∈Fq

(zj + λ1zn−i+1 + . . .+ λizn)

= zq
i

j +

i−1∑

r=0

(di,r · z
qr

j ),

where di,r is the Dickson polynomial in zn−i+1, . . . , zn with degree q
i − qr for r =

0, . . . , i−1. Since Cqi(z1), . . . , Cqi (zn−i), zn−i+1, . . . , zn form a system of parameters

of Fq[V ]G
+
i , and deg(Cqi (zj)) = qi for all 1 6 j 6 n− i, we have

|G+
i | = qi(n−i) =

n−i∏

j=1

deg(Cqi(zj)) ·
n∏

t=n−i+1

deg(zt).

The result follows from Proposition 1.6. �

Remark. The invariant ring Fq[V ]G
+
i is also given by Neusel, Smith in [16]

and Nakajima in [13]. Neusel, Smith take an arrangement of hyperplanes, see [16],

i.e., a set of hyperplanes {H1, . . . , Hl}, and consider the invariants of the stabilizer
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and hyperplanewise stabilizer subgroup which is an isomorphic to the group G+
i .

Nakajima directly considers a group, see [13],

A(m,n : q) =

{(
Im M

0 In

)

: M ∈ Matn,m(Fq)

}

,

which is an isomorphic to the group G+
i . The work we present here is to show the

properties of i-transvection.

Next, we consider a generalization of the results of Neusel, Smith and Nakajima.

Definition 2.11. Let T ∈ GL(n, Fq) satisfy Res(T ) = i where 1 6 i 6 n − 1.

Then T is called an (ω, i)-transvection if T |(I−T )V = ωI, where ω ∈ Fq is a kth root

of unity. A subspace H ⊂ V is called the invariant subspace of T if H = Ker(I −T )

and the subspace L = Im(I − T ) ⊂ V is called the line subspace of T .

Notice that an (ω, i)-transvection is an i-transvection if ω = 1, and an i-reflection

if ω = −1 according to Definition 1.2. Since T |(I−T )V = ωI, certainly the line

subspace L = Im(I − T ) is expanded ω-fold by T . We now indicate the matrix form

of T .

Proposition 2.12. Let T ∈ GL(n, Fq) be an (ω, i)-transvection with the invariant

subspace Ker(I−T ) = H = Ker〈zn−i+1, . . . , zn〉 ⊂ V . Then the matrix form of T is

(
In−i A

0 ωIi

)

where A ∈ Matn−i,i(Fq). Besides, if ω = 1, then A is of full column rank.

P r o o f. Since Res(T ) = i and H = Ker〈zn−i+1, . . . , zn〉, the matrix form of T

is (
In−i A

0 B

)

where A ∈ Matn−i,i(Fq) and B ∈ GL(i, Fq).

In addition, since T |(I−T )V = ωI, it is easy enough to figure out that B = ωIi.

If ω = 1, the result follows from Definition 2.9. �

Remark. If ω 6= 1, then T is indeed an (ω, i)-transvection for any A ∈

Matn−i,i(Fq).

In [8], we calculate the invariant ring of a group generated by all these elements

provided in Proposition 2.12. Here is the result.
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Proposition 2.13 ([8], Theorem 3.2). Let ω ∈ Fq be a kth root of unity. We

define a group

Gi(ω) =

〈(
In−i ∗

ωIi

)

: ∗ ∈ Matn−i,i(Fq)

〉

.

Then

Fq[V ]Gi(ω) =

i(k−1)
⊕

m=0
k|m

(
⊕

l1+...+li=m
06l1,...,li6k−1

(zl1n−i+1 . . . z
li
n ) ·M

)

,

where M = Fq[Cqi (z1), . . . , Cqi(zn−i), z
k
n−i+1, . . . , z

k
n].

We also present some properties of this invariant ring Fq[V ]Gi(ω) in the same

article.

Proposition 2.14 ([8], Section 3). The invariant ring Fq[V ]Gi(ω) satisfies the

following conditions.

(1) It is Cohen-Macaulay.

(2) It is Gorenstein if and only if i = 1 or k | i.

(3) It is a complete intersection if and only if (i) i = 1 or (ii) i = 2 and k = 1, 2.

3. Groups generated by (ω, i)-transvections with two roots of unity

In this section, we shall calculate the invariant rings of groups generated by (ω, i)-

transvections with two roots of unity. After that, we extend the result to a general-

ization.

Definition 3.1. Let ω1, ω2 ∈ Fq be two roots of unity with orders k1 and k2,

respectively. Let

∆1,n1(ω1) =

{(
ω1In1 ∗

0 In2

)

: ∗ ∈ Matn1,n2(Fq)

}

and

∆2,n2(ω2) =

{(
In1 ∗

0 ω2In2

)

: ∗ ∈ Matn1,n2(Fq)

}

be two sets. Define a group Gn1,n2(ω1, ω2) = 〈T : T ∈ ∆1,n1(ω1) ∪ ∆2,n2(ω2)〉 ⊆

GL(n, Fq). One can easily check that its order is |Gn1,n2(ω1, ω2)| = k1 · k2 · qn1n2 .

Note. For convenience, Gn1,n2(ω1, ω2) is briefly denoted by G(ω1, ω2).
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Referring to the matrices in the generating set ∆1,n1(ω1)∪∆2,n2(ω2) of the group

G(ω1, ω2), we can observe that the element T ∈ G(ω1, ω2) is of the form

(
ω
j1(T )
1 In1 ∗

0 ω
j2(T )
2 In2

)

,

where j1(T ), j2(T ) ∈ Z are irrelevant to each other and ∗ ∈ Matn1,n2(Fq).

Before computing the invariants, we introduce a notation for convenience. Let

X1, . . . , Xt be finite sets. Define a new set

X1 × . . .×Xt =

{ t∏

i=1

xi : xi ∈ Xi

}

.

Hence the cardinality of this set is equal to
t∏

i=1

Card(Xi) where Card(Xi) denotes

the cardinality of the set Xi for i = 1, . . . , t.

Now we calculate the invariant ring of the group G(ω1, ω2).

Theorem 3.2. The invariant ring of the group G(ω1, ω2) is

Fq[V ]G(ω1,ω2) =
⊕

b∈K

b ·M,

where

M = Fq[Cqn2 (z1)
k1 , . . . , Cqn2 (zn1)

k1 , zk2
n1+1, . . . , z

k2
n1+n2

],

and

K =

{
n1(k1−1)
⋃

m1=0
k1|m1

{
⋃

l1+...+ln1=m1

06l1,...,ln16k1−1

{Cqn2 (z1)
l1 . . . Cqn2 (zn1)

ln1}

}}

×

{
n2(k2−1)
⋃

m2=0
k2|m2

{
⋃

j1+...+jn2=m2

06j1,...,jn26k2−1

{zj1n1+1 . . . z
jn2
n1+n2

}

}}

.

In the formulas, Cqn2 (zj) = zq
n2

j +
n2−1∑

r=0
(dn2,r · z

qr

j ) for j = 1, . . . , n1, and dn2,r is the

Dickson polynomial in zn1+1, . . . , zn1+n2 with degree q
n2 − qr for r = 0, . . . , n2 − 1.

Before embarking upon the proof of this theorem, we require a preliminary result.
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Lemma 3.3. Let J be a group generated by
(
ω1In1 0

0 In2

)

and

(
In1 0

0 ω2In2

)

,

where ω1, ω2 ∈ Fq are two roots of unity with orders k1 and k2, respectively. Then

Fq [V ]J =
⊕

b∈L

b ·N,

where

N = Fq[z
k1
1 , . . . , zk1

n1
, zk2

n1+1, . . . , z
k2
n1+n2

],

and

L =

{
n1(k1−1)
⋃

m1=0
k1|m1

{
⋃

l1+...+ln1=m1

06l1,...,ln16k1−1

{zl11 . . . z
ln1
n1 }

}}

×

{
n2(k2−1)
⋃

m2=0
k2|m2

{
⋃

j1+...+jn2=m2

06j1,...,jn26k2−1

{zj1n1+1 . . . z
jn2
n1+n2

}

}}

.

P r o o f. Every element T ∈ J is of the form
(
ω
h1(T )
1 In1 0

0 ω
h2(T )
2 In2

)

,

where h1(T ), h2(T ) ∈ Z are irrelevant to each other.

It is easy enough to check that zk1
1 , . . . , zk1

n1
, zk2

n1+1, . . . , z
k2
n1+n2

are all invariants

and form a system of parameters of Fq[V ]J . We now computer other invariants.

Since every element T ∈ J is a diagonal matrix, the action of T on Fq[V ] sends

monomials to monomials. Suppose that f = zl11 . . . z
ln1
n1 zj1n1+1 . . . z

jn2
n1+n2

is an invari-

ant but does not belong to Fq[z
k1
1 , . . . , zk1

n1
, zk2

n1+1, . . . , z
k2
n1+n2

]. This yields that

f = T · f = ω
(l1+...+ln1)h1(T )
1 ω

(j1+...+jn2)h2(T )
2 zl11 . . . z

ln1
n1 zj1n1+1 . . . z

jn2
n1+n2

.

Hence

ω
(l1+...+ln1)h1(T )
1 ω

(j1+...+jn2)h2(T )
2 = 1 ∈ Fq,

where 0 6 h1(T ) 6 k1 − 1 and 0 6 h2(T ) 6 k2 − 1. Since this equation

holds for every T ∈ J , on the one hand, setting h1(T ) = 0 and h2(T ) = 1,

we deduce that k2 | j1 + . . . + jn2 ; on the other hand, setting h1(T ) = 1 and

h2(T ) = 0, we have that k1 | l1 + . . . + ln1 . Therefore, if f is an invariant and

f /∈ Fq[z
k1
1 , . . . , zk1

n1
, zk2

n1+1, . . . , z
k2
n1+n2

], then k1 | l1 + . . .+ ln1 and k2 | j1 + . . .+ jn2 .

The result follows. �
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Reasoning as above, we now come to the proof of Theorem 3.2.

P r o o f of Theorem 3.2. Referring to Definition 1.3 and Lemma 2.8, the group

G+
n2

=

〈(
In1 ∗

In2

)

: ∗ ∈ Matn1,n2(Fq)

〉

is generated by all n2-transvections with the same invariant subspaceH = Ker〈zn1+1,

. . . , zn1+n2〉. In addition, it is a normal subgroup of the group G(ω1, ω2) and

G(ω1, ω2)/G
+
n2

= J , where the quotient group J is defined in Lemma 3.3. Con-

sequently,

Fq[V ]G(ω1,ω2) = (Fq[V ]G
+
n2 )G(ω1,ω2)/G

+
n2

= Fq[Cqn2 (z1), . . . , Cqn2 (zn1), zn1+1, . . . , zn1+n2 ]
J

=
⊕

b∈K

b ·M,

where M and K are defined in Theorem 3.2. The second equation holds by Propo-

sition 2.10 and the last equation holds by Lemma 3.3. �

Remark. If G is an abelian group which is generated by pseudo-reflections and

Sylp(G) is its p-Sylow subgroup, Nakajima in [14] proves that Fp[V ]G is polynomial

if and only if Fp[V ]Sylp(G) is polynomial. This is no longer the case when G is non-

abelian. For example, G+
n2
is the p-Sylow subgroup of the group G(ω1, ω2), and

Fq[V ]G
+
n2 is polynomial by Proposition 2.10 but Fq[V ]G(ω1,ω2) is not polynomial by

Theorem 3.2.

Here we give an example to show what we have done.

Example 3.4. Let p = 5 and q = p2 = 25. Suppose that {x1, . . . , x5} is a basis

for V = F 5
25 and {z1, . . . , z5} is a dual basis for V ∗ to {x1, . . . , x5}. Let ω1, ω2, ω3

∈ F25 be three roots of unity with order 2, 3 and 4, respectively. We construct two

groups as follows:

G(ω1, ω2) =

〈(
ω1I2 ∗

0 I3

)

,

(
I2 ∗

0 ω2I3

)

: ∗ ∈ Mat2,3(F25)

〉

,

G(ω3, ω2) =

〈(
ω3I2 ∗

0 I3

)

,

(
I2 ∗

0 ω2I3

)

: ∗ ∈ Mat2,3(F25)

〉

.

Notice that n1 = 2 and n2 = 3. Then referring to Theorem 3.2, we conclude that

F25[V ]G(ω1,ω2) =
⊕

b∈K

b ·M,
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where

M = F25[C253(z1)
2, C253(z2)

2, z33 , z
3
4 , z

3
5 ],

K = {1, C253(z1)C253(z2)} × {1, z23z4, z
2
3z5, z3z

2
4 , z3z4z5, z3z

2
5 , z

2
4z5, z4z

2
5 , z

2
3z

2
4z

2
5}

and

F25[V ]G(ω3,ω2) =
⊕

b′∈K′

b′ ·M ′,

where

M ′ = F25[C253(z1)
4, C253(z2)

4, z33 , z
3
4 , z

3
5 ],

K ′ = {1, C253(z1)
3C253(z2), C253(z1)

2C253(z2)
2, C253(z1)C253(z2)

3}

× {1, z23z4, z
2
3z5, z3z

2
4 , z3z4z5, z3z

2
5 , z

2
4z5, z4z

2
5 , z

2
3z

2
4z

2
5}.

Since we have already got the invariant ring Fq[V ]G(ω1,ω2), what increases the

interest in, and the importance of our results, is the Cohen-Macaulay and Gorenstein

properties. Next, we discuss these properties.

First of all, we prove that Fq[V ]G(ω1,ω2) is Cohen-Macaulay. We need some pre-

liminaries before stating a lemma used in the proof of Cohen-Macaulay property.

Definition 3.5 ([6], Definition 2.4.6). Let F be a field and G a finite group. If

f1, . . . , fr ∈ F [V ]G is a homogeneous system of parameters, then fi is called primary

invariant. Therefore the invariant ring F [V ]G is a finite F [f1, . . . , fr]-module, say

F [V ]G = Mg1 +Mg2 + . . .+Mgs,

where M = F [f1, . . . , fr] and g1, . . . , gs ∈ F [V ]G are homogeneous. The invariants

g1, . . . , gs are called secondary invariants.

According to Definition 3.5, all primary invariants form a system of parameters

for Fq[V ]G.

The next lemma allows us to determine whether an invariant ring is Cohen-

Macaulay if we have known the primary and secondary invariants, even in the mod-

ular case.

Lemma 3.6 ([6], Theorem 3.7.1). Let F be a field and G a finite group. Assume

that the action of G on V is faithful. Let f1, . . . , fn ∈ F [V ]G be primary invariants

of degrees d1, . . . , dn, and let g1, . . . , gm be a minimal system of secondary invariants.

Then

m >
d1 . . . dn

|G|

with equality if and only if F [V ]G is Cohen-Macaulay.
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Lemma 3.6 reduces the problem of proving Cohen-Macaulay properties to that of

computing the degrees of primary invariants and counting the cardinality of a mini-

mal system of secondary invariants.

Lemma 3.7. In the invariant ring Fq[V ]G(ω1,ω2),

Cqn2 (z1)
k1 , . . . , Cqn2 (zn1)

k1 , zk2
n1+1, . . . , z

k2
n1+n2

∈ M

are primary invariants and

K =

{
n1(k1−1)
⋃

m1=0
k1|m1

{
⋃

l1+...+ln1=m1

06l1,...,ln16k1−1

{Cqn2 (z1)
l1 . . . Cqn2 (zn1)

ln1}

}}

×

{
n2(k2−1)
⋃

m2=0
k2|m2

{
⋃

j1+...+jn2=m2

06j1,...,jn26k2−1

{zj1n1+1 . . . z
jn2
n1+n2

}

}}

is a minimal system of secondary invariants where M and K are defined in Theo-

rem 3.2.

P r o o f. It is a direct conclusion by Theorem 3.2 and Definition 3.5. �

Now we come to the Cohen-Macaulay property.

Proposition 3.8. With the preceding hypotheses and notation, Fq[V ]G(ω1,ω2) is

Cohen-Macaulay.

P r o o f. Cqn2 (z1)
k1 , . . . , Cqn2 (zn1)

k1 , zk2
n1+1, . . . , z

k2
n1+n2

are all primary invari-

ants by Lemma 3.7. Moreover, deg(Cqn2 (zj)
k1 ) = k1q

n2 for all 1 6 j 6 n1, and

deg(zk2

i ) = k2 for all n1 + 1 6 i 6 n1 + n2. To complete the proof, it is suffi-

cient to count the cardinality of the minimal system of secondary invariants K. For

convenience, we introduce sets

A =

{
n1(k1−1)
⋃

m1=0
k1|m1

{
⋃

l1+...+ln1=m1

06l1,...,ln16k1−1

{Cqn2 (z1)
l1 . . . Cqn2 (zn1)

ln1}

}}

,

B =

{
n2(k2−1)
⋃

m2=0
k2|m2

{
⋃

j1+...+jn2=m2

06j1,...,jn26k2−1

{zj1n1+1 . . . z
jn2
n1+n2

}

}}

.
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So K = A × B for short. We first count the cardinality of the set A. There exist

kn1
1 elements Cqn2 (z1)

l1 . . . Cqn2 (zn1)
ln1 where 0 6 l1, . . . , ln1 6 k1 − 1. In addition,

it requires that

l1 + . . .+ ln1 = m1 ≡ 0 (mod k1),

hence Card(A) = kn1−1
1 according to number theory. A similar argument applies to

the set B for counting the cardinality, so Card(B) = kn2−1
2 . Therefore

Card(K) = Card(A) · Card(B) = kn1−1
1 · kn2−1

2 .

With the preceding argument, this induces

Card(K) = kn1−1
1 · kn2−1

2 =
(k1 · qn2)

n1 · kn2
2

k1 · k2 · qn1n2

=

( n1∏

j=1

deg(Cqn2 (zj)
k1 )
)

·
( n1+n2∏

i=n1+1

deg(zk2

i )
)

|G(ω1, ω2)|
.

The result follows from Lemma 3.6. �

Remark. Hochster and Eagon in [9] show that in the non-modular case if a finite

groupG acts on a Cohen-Macaulay ringR thenRG is Cohen-Macaulay. In this paper,

Proposition 3.8 proves that in the modular case, the invariant ring Fq[V ]G(ω1,ω2) is

also Cohen-Macaulay.

Next, we discuss the Gorenstein property of Fq[V ]G(ω1,ω2). If A is a Noetherian

ring, a parameter ideal, see [17], for A is an ideal generated by a system of parameters

for A. A commutative graded connected Noetherian algebra over a field is called

Gorenstein, see [17], if it is Cohen-Macaulay and every parameter ideal is irreducible.

We prove that it only depends on the numbers k1, k2, n1 and n2. To begin we need

the following characterization of Gorenstein algebra.

Definition 3.9 ([17], page 124). A commutative graded connected algebra A

over a field F is called a Poincaré duality algebra of dimension d if

(i) Ai = 0 for i > d,

(ii) dimF (Ad) = 1,

(iii) the pairing Ai⊗F Ad−i → Ad given by multiplication is nonsingular. A nonzero

element [A] of Ad is referred to as a fundamental class for A.
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Lemma 3.10 ([17], Corollary 5.7.4). Let A be a Noetherian commutative graded

connected Cohen-Macaulay algebra of Krull dimension d and let I ⊂ A be a param-

eter ideal. Then the following conditions are equivalent.

(i) A is Gorenstein.

(ii) A/I is a Poincaré duality algebra.

Remark. If R = F [x1, . . . , xn] is a polynomial ring, then it is Gorenstein since

taking I = 〈x1, . . . , xn〉 as a parameter ideal we deduce that R/I is a field, so

a Poincaré duality algebra.

Proposition 3.11. For the invariant ring Fq[V ]G(ω1,ω2), suppose ω1, ω2 ∈ Fq are

two roots of unity with orders k1 and k2, respectively, and n (= n1 + n2) is the size

of matrix which is defined in Definition 3.1. Then the invariant ring Fq[V ]G(ω1,ω2) is

Gorenstein if and only if nj = 1 or kj |nj for j = 1, 2.

P r o o f. (1) Suppose n1 = n2 = 1. Then

Fq[V ]G(ω1,ω2) = Fq[Cq (z1)
k1 , zk2

2 ]

is a polynomial ring by Theorem 3.2. Hence Fq[V ]G(ω1,ω2) is certainly Gorenstein.

(2) Suppose n1 6= 1 = n2. To work with the Gorenstein property of Fq[V ]G(ω1,ω2),

it will suffice to obtain the information about the Poincaré duality algebra. So we

take

I = 〈Cq(z1)
k1 , . . . , Cq(zn1)

k1 , zk2
n1+1〉

as a parameter ideal. We may therefore compute the fundamental class [A] of A =

Fq[V ]G(ω1,ω2)/I.

Let Fq[V ]G(ω1,ω2) be Gorenstein. According to Definition 3.9, [A] is a highest

graded element in the Poincaré duality algebra A. And there exists no monomial

f ∈ A such that f and [A] have the same grade and are Fq-linearly independent.

Notice that [A] is of the form Cq(z1)
l1 . . . Cq(zn1)

ln1 . If l1, . . . , ln1 are not all

equal, without loss of generality, let l1 > l2. Then (Cq(z1)
l1)(Cq(z2)

l2)(Cq(z3)
l3) . . .

(Cq(zn1)
ln1 ) and (Cq(z1)

l2)(Cq(z2)
l1)(Cq(z3)

l3) . . . (Cq(zn1)
ln1 ) are Fq-linearly inde-

pendent with the same grade. So there exist two different fundamental classes, which

is a contradiction. Hence l1 = . . . = ln1 .

Furthermore, since [A] is the highest graded secondary invariant and 0 6

l1, . . . , ln1 6 k1 − 1, we conclude that l1 = . . . = ln1 = k1 − 1 and that deg([A]) =
n1∑

i=1

(li · q) = n1 · (k1 − 1) · q. Since [A] ∈ A, it follows that k1| deg([A]), i.e.,

k1|(n1 · (k1 − 1) · q). Notice that ω1 ∈ Fq is a k1th root of unity and k1|(q− 1), hence

we obtain k1|n1. And the conclusion follows.
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(3) Suppose n1 = 1 6= n2. Then we take

I = 〈Cqn2 (z1)
k1 , zk2

2 , . . . , zk2
1+n2

〉

as a parameter ideal, it yields that k2|n2 by an argument similar to Case (2).

(4) Finally, suppose n1 6= 1 6= n2. We take

I = 〈Cqn2 (z1)
k1 , . . . , Cqn2 (zn1)

k1 , zk2
n1+1, . . . , z

k2
n1+n2

〉

as a parameter ideal, it yields that k1|n1 and k2|n2 by an argument similar to

Case (2). Notice that the polynomial Cqn2 (z1)
k1−1 . . . Cqn2 (zn1)

k1−1zk2−1
n1+1 . . . z

k2−1
n1+n2

is the fundamental class of the Poincaré duality algebra A = Fq[V ]G(ω1,ω2)/I.

Conversely, suppose n1 6= 1 6= n2. We take

I = 〈Cqn2 (z1)
k1 , . . . , Cqn2 (zn1)

k1 , zk2
n1+1, . . . , z

k2
n1+n2

〉

as a parameter ideal. It is easy enough to verify that A = Fq[V ]G(ω1,ω2)/I is

a Poincaré duality algebra according to Definition 3.9. Hence Fq[V ]G(ω1,ω2) is Goren-

stein.

The other cases are similar and thus omitted. �

Remark. In the non-modular case, Stanley in [20] and Bruns and Herzog in [4]

prove that if G ⊂ SL(n, Fq), then F [V ]G is Gorenstein. In Proposition 3.11, if k1|n1

and k2|n2, then G ⊂ SL(n, Fq). Hence we have proved a special case of their result

in the modular case.

In view of the preceding discussion, we present an example with these properties.

Example 3.12. We continue to discuss Example 3.4.

(1) According to Proposition 3.8, the invariant rings F25[V ]G(ω1,ω2) and

F25[V ]G(ω3,ω2) are both Cohen-Macaulay.

(2) Since k1 = n1 = 2 and k2 = n2 = 3, it follows that k1|n1 and k2|n2. Hence

the invariant ring Fq[V ]G(ω1,ω2) is Gorenstein by Proposition 3.11. However, the

invariant ring Fq[V ]G(ω3,ω2) is not Gorenstein since k3 = 4 does not divide n1 = 2.

In the remainder of this section, we consider the invariant ring of a group generated

by (ω, i)-transvections with several roots of unity. The result is a straightforward

extension of our previous result to the invariant ring of G(ω1, ω2) and thus presented

without proof.
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Definition 3.13. Let ω1, . . . , ωl, ̺1, . . . , ̺k ∈ Fq be l + k roots of unity with

orders a1, . . . , al, b1, . . . , bk, respectively. Define sets of matrices

∆t,it(ωt) =


























Ii1 . . . 0
. . .

... ωtIit
... ∗

. . .

0 . . . Iil

Ij1 . . . 0

0
...
. . .

...

0 . . . Ijk




















: ∗ ∈ Matı,(Fq)







for t = 1, . . . , l, and

∆l+s,js (̺s) =


























Ii1 . . . 0
...
. . .

... ∗

0 . . . Iil

Ij1 . . . 0
. . .

0
... ̺sIjs

...
. . .

0 . . . Ijk




















: ∗ ∈ Matı,(Fq)







for s = 1, . . . , k, where ı = i1 + . . . + il and  = j1 + . . . + jk. Let the group

Gı,(ω1, . . . , ωl, ̺1, . . . , ̺k) be generated by the matrices in the union of sets

∆1,i1(ω1) ∪ . . . ∪∆l,il(ωl) ∪∆l+1,j1(̺1) ∪ . . . ∪∆l+k,jk (̺k).

Then the order of the group Gı,(ω1, . . . , ωl, ̺1, . . . , ̺k) is equal to qı ·
( l∏

t=1
at

)

·

( k∏

s=1

bs

)

.

Note. For convenience, Gı,(ω1, . . . , ωl, ̺1, . . . , ̺k) is briefly denoted by G(ω, ̺).

Next, we determine the invariant ring of the group G(ω, ̺). Let

Cq(zt) = zq


t +

−1
∑

r=0

(d,r · z
qr

t )
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for t = 1, . . . , ı, where d,r is the Dickson polynomial in zı+1, . . . , zı+ with degree q
−

qr for r = 0, . . . , − 1. Since the invariant ring Fq[V ]G(ω,̺) has a tremendously long

formula, we prefer to list the primary invariants and a minimal system of secondary

invariants.

Theorem 3.14. Let ω1, . . . , ωl, ̺1, . . . , ̺k ∈ Fq be l+k roots of unity with orders

a1, . . . , al, b1, . . . , bk, respectively. The group G(ω, ̺) is defined in Definition 3.13.

Denote ı = i1 + . . .+ il and  = j1 + . . .+ jk. Then in the invariant ring Fq[V ]G(ω,̺),

M = {Cq(z1)
a1 , . . . , Cq(zi1)

a1 , Cq(zi1+1)
a2 , . . . ,

Cq(zı)
al , zb1ı+1, . . . , z

b1
ı+j1

, zb2ı+j1+1, . . . , z
bk
ı+}

is a set of primary invariants and

K =

l−1∏

t=0

{
it+1(at+1−1)

⋃

mt=0
at+1|mt

{
⋃

c1+...+cit+1
=mt

06c1,...,cit+1
6at+1−1

{Cq(zi0+...+it+1)
c1 . . . Cq(zi0+...+it+1)

cit+1 }

}}

×
k−1∏

s=0

{
js+1(bs+1−1)

⋃

ms=0
bs+1|ms

{
⋃

d1+...+djs+1
=ms

06d1,...,djs+1
6bs+1−1

{(zı+j0+...+js+1)
d1 . . . (zı+j0+...+js+1)

djs+1 }

}}

is a minimal system of secondary invariants where i0 = j0 = 0. The primary and sec-

ondary invariants yield a direct sum decomposition of the invariant ring Fq[V ]G(ω,̺).

Applying a method similar to Proposition 3.8, we can deduce the following result.

Proposition 3.15. The invariant ring Fq[V ]G(ω,̺) is Cohen-Macaulay.

Finally, we come to the Gorenstein property.

Proposition 3.16. The invariant ring Fq[V ]G(ω,̺) is Gorenstein if and only if

the following two conditions both hold: (i) it = 1 or at|it for all t = 1, . . . , l; and

(ii) js = 1 or bs|js for all s = 1, . . . , k.
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4. Groups with invariant subspaces which have the same dimension

In Section 2, we have discussed the groups generated by i-transvections with

a given invariant subspace H . For instance, the group G+
i with H = Ker〈zn−i+1, . . . ,

zn〉 is studied in Proposition 2.10. In this section, we focus on the groups generated

by i-transvections with several invariant subspaces which have the same dimension.

Before computing the invariant rings, we need to determine the structures of these

groups. By calculating the fixed vectors in the vector spaces V and V ∗ under the

action of a group G, we prove that there are totally four kinds of groups. After that,

we calculate the invariant rings of each kind of groups separately.

We denote a subspaceW = {k ·x ∈ V : k ∈ Fq} ⊆ V by SpanFq
〈x〉 and a subspace

W ′ = {k · z ∈ V ∗ : k ∈ Fq} ⊆ V ∗ by SpanFq
〈z〉. Let A be a set, B ⊂ A a subset. We

define the set A \B = {x : x ∈ A, x /∈ B}. A linear transform T ∈ GL(n, Fq) is said

to fix a space W , if Tv = v for all v ∈ W .

Lemma 2.8 tells us the matrix form of an element in the group generated

by all i-transvections with the invariant subspace H = Ker〈zn−i+1, . . . , zn〉 =

SpanFq
〈x1, . . . , xn−i〉. Similarly, we can obtain the matrix form with other invariant

subspaces. Lemmas 4.1–4.3 follow directly from Lemma 2.8 by permuting the basis

{x1, . . . , xn} of Fq and thus they are presented without proof.

Lemma 4.1. If a subspace H = Ker〈zl1 , . . . , zli〉 = SpanFq
〈xh1 , . . . , xhn−i〉,

where the set {h1, . . . , hn−i} = {1, . . . , n} \ {l1, . . . , li}, then the matrix form

(aαβ)n×n of an element T in the group generated by all i-transvections with this

invariant subspace H satisfies:

(1) the main diagonal entry is aαα = 1 for all α ∈ {1, . . . , n};

(2) aαβ ∈ Fq is arbitrary for all α ∈ {h1, . . . , hn−i} for all β ∈ {l1, . . . , li};

(3) and other entries are all zero.

Conversely, if a matrix satisfies (1)–(3), then it is an element in the group gen-

erated by all i-transvections with the invariant subspace H = Ker〈zl1 , . . . , zli〉 =

SpanFq
〈xh1 , . . . , xhn−i〉, where {h1, . . . , hn−i} = {1, . . . , n} \ {l1, . . . , li}.

Lemma 4.2. Let x1, . . . , xn ∈ V = Fn
q form a basis and z1, . . . , zn ∈ V ∗ a dual

basis to {x1, . . . , xn}. Suppose that T = (aαβ)n×n is an element in the group gener-

ated by all i-transvections with the invariant subspace H .

(1) If T fixes a subspace SpanFq
〈xr〉 ⊂ V for some r ∈ {1, . . . , n}, then arr = 1

and aαr = 0 in the matrix form of T for all α ∈ {1, . . . , n} \ {r}.

(2) If T fixes a subspace SpanFq
〈zr〉 ⊂ V ∗ for some r ∈ {1, . . . , n}, then arr = 1

and arβ = 0 in the matrix form of T for all β ∈ {1, . . . , n} \ {r}.
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Lemma 4.3. If a subspace H = Ker〈zl1 , . . . , zli〉 = SpanFq
〈xh1 , . . . , xhn−i〉

is the invariant subspace of an i-transvection T , where the set {h1, . . . , hn−i} =

{1, . . . , n} \ {l1, . . . , li}, then T fixes the subspaces SpanFq
〈xh1 , . . . , xhn−i〉 ⊂ V and

SpanFq
〈zl1 , . . . , zli〉 ⊂ V ∗.

Conversely, if a linear transform T = (aαβ)n×n fixes the above two subspaces,

then it is an i-transvection with the invariant subspace H = Ker〈zl1 , . . . , zli〉 =

SpanFq
〈xh1 , . . . , xhn−i〉, where the set {h1, . . . , hn−i} = {1, . . . , n} \ {l1, . . . , li}.

We next establish an example to show what we have done.

Example 4.4. Let Fq be a finite field where q = pν , ν ∈ Z∗. We set n = 4.

Then x1, . . . , x4 ∈ V = F 4
q form a basis and z1, . . . , z4 ∈ V ∗ form a dual basis to

{x1, . . . , x4}.

Here we offer several sets of 1-transvections, 2-transvections and 3-transvections.

In each of the following matrices, every empty entry is zero which is omitted, and

the symbols ∗ ∈ Fq.

1-transvections: let H1 = Ker〈z3〉 = SpanFq
〈x1, x2, x4〉 and H2 = Ker〈z4〉 =

SpanFq
〈x1, x2, x3〉, then

∆1 =













1 ∗

1 ∗

1

∗ 1













and ∆2 =













1 ∗

1 ∗

1 ∗

1













are sets of 1-transvections with the same invariant subspacesH1 andH2, respectively.

It is clear that every element in the set ∆1 fixes SpanFq
〈x1, x2, x4〉 and SpanFq

〈z3〉.

2-transvections: let H3 = Ker〈z2, z3〉 = SpanFq
〈x1, x4〉, H4 = Ker〈z1, z4〉 =

SpanFq
〈x2, x3〉 and H5 = Ker〈z2, z4〉 = SpanFq

〈x1, x3〉, then

∆3 =













1 ∗ ∗

1

1

∗ ∗ 1













, ∆4 =













1

∗ 1 ∗

∗ 1 ∗

1













, ∆5 =













1 ∗ ∗

1

∗ 1 ∗

1













are sets of 2-transvections with the same invariant subspaces H3, H4 and H5, re-

spectively.

3-transvections: let H6 = Ker〈z1, z2, z4〉 = SpanFq
〈x3〉 and H7 = Ker〈z1, z3, z4〉 =

SpanFq
〈x2〉, then

∆6 =













1

1

∗ ∗ 1 ∗

1













and ∆7 =













1

∗ 1 ∗ ∗

1

1
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are sets of 3-transvections with the same invariant subspacesH6 andH7, respectively.

We will structure several groups generated by these sets of i-transvections and

compute their invariant rings in the sequel.

Next, we concentrate on the groups generated by i-transvections with several

arbitrary invariant subspaces which have the same dimension.

Theorem 4.5. Let k > 2 and 1 6 i 6 n− 1 be two given integers. Let

H1 = Ker〈zh1
1
, . . . , zh1

i
〉 = SpanFq

〈{x1, . . . , xn} \ {xh1
1
, . . . , xh1

i
}〉,

...

Hk = Ker〈zhk
1
, . . . , zhk

i
〉 = SpanFq

〈{x1, . . . , xn} \ {xhk
1
, . . . , xhk

i
}〉

be different (n− i)-dimensional subspaces where zhα
β
∈ {z1, . . . , zn} for all 1 6 α 6 k

and 1 6 β 6 i. Suppose that ∆m is the set of all i-transvections with the same

invariant subspace Hm for m = 1, . . . , k. Define a group Gi,k = 〈T : T ∈ ∆1 ∪ . . . ∪

∆k〉. Then

Gi,k
∼=












In−t ∗1

0 It−l 0

0 ∗2 SL(l, Fq)




 :

∗1 ∈ Matn−t,t(Fq),

∗2 ∈ Matl,t−l(Fq)







.

The integers t and l, which are irrelevant to each other, satisfy 2 6 l 6 t 6 n.

There is some preparatory work to be done before proving this theorem.

Definition 4.6. Denote by E(ij) the matrix (aαβ)n×n whose

(1) main diagonal entry is aαα = 1 for all α ∈ {1, . . . , n},

(2) aij = 1,

(3) and the other entries are all zero.

Denote by E(−ij) the matrix (aαβ)n×n whose

(1) main diagonal entry is aαα = 1 for all α ∈ {1, . . . , n},

(2) aij = −1,

(3) and the other entries are all zero.

Denote by E(±ij) the two matrices E(ij) and E(−ij).

Based on this notation, we derive a special case of Whitehead formula as follows.
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Lemma 4.7 ([12]).

E(−ij)× E(−kl)× E(ij)× E(kl) =

{

E(il) if j = k, i 6= l,

E(−kj) if j 6= k, i = l.

It is well known that {E(±ij) : 1 6 i 6= j 6 n} is the set of generators of the

special linear group SL(n, Fq). Lemma 4.7 indicates several relations between these

generators in preparation for getting a simple set of generators. Now, we come to

the proof of Theorem 4.5.

P r o o f of Theorem 4.5. Denote the subgroup Sj = 〈T : T ∈ ∆j〉 ⊂ Gi,k for

j = 1, . . . , k. The union of sets ∆1 ∪ . . . ∪∆k is a generating set of the group Gi,k,

so is the union of subgroups S1 ∪ . . . ∪ Sk.

We consider the following three statements for these k different invariant subspaces

H1, . . . , Hk:

⊲ Statement (a): ∃ r1 ∈ {1, . . . , n}, such that xr1 ∈
k⋂

m=1
Hm;

⊲ Statement (b): ∃ r2 ∈ {1, . . . , n}, such that xr2 /∈
k⋃

m=1
Hm;

⊲ Statement (c): ∃ r3 ∈ {1, . . . , n}, such that xr3 ∈ Hm1 but xr3 /∈ Hm2 for some

m1,m2 ∈ {1, . . . , k}.

Next, let us explicitly exploit the influence of Statements (a), (b) and (c) on the

matrix forms of elements in the group Gi,k separately. Let T = (aαβ)n×n ∈ Gi,k be

an element.

Influence of Statement (a). First, we discuss the influence on the columns of matrix

forms. According to Statement (a), SpanFq
〈xr1 〉 ⊆ Hm for all m ∈ {1, . . . , k}, hence

every i-transvection in the generating set ∆1 ∪ . . . ∪∆k fixes SpanFq
〈xr1 〉 according

to Lemma 4.3, so does T = (aαβ)n×n ∈ Gi,k. Therefore ar1r1 = 1 and aαr1 = 0 for all

α ∈ {1, . . . , n} \ {r1}, in the matrix form of T = (aαβ)n×n according to Lemma 4.2.

Next, we study the influence on the rows of matrix forms. Without loss of general-

ity, we suppose that x1, . . . , xn−t ∈
k⋂

m=1
Hm, but xn−t+1, . . . , xn /∈

k⋂

m=1
Hm for some

integer 2 6 t 6 n. Notice 2 6 k, so 2 6 t. If t = n, then
k⋂

m=1
Hm = ∅. Referring to

the previous discussion, we indicate that the first (n− t) columns of the matrix form

of T agree with the first (n− t) columns of the identity matrix I ∈ GL(n, Fq).

Now, we come to the first n − t rows of the matrix form of T . Since for all

β ∈ {n − t + 1, . . . , n}, xβ /∈
k⋂

m=1
Hm, there exists an integer c ∈ {1, . . . , k} such

that xβ /∈ Hc = Ker〈zhc
1
, . . . , zhc

i
〉, so β ∈ {hc

1, . . . , h
c
i}. Let Tc = (bαβ)n×n ∈ Sc =

〈T : T ∈ ∆c〉 be an element with the invariant subspace Hc, then Tc fixes SpanFq
〈zβ〉
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according to Lemma 4.3, i.e., Ker〈zβ〉 ⊃ Hc. It yields that bαβ ∈ Fq can be an

arbitrary number for all α ∈ {1, . . . , n − t}, in the matrix form of Tc = (bαβ)n×n

according to Lemma 4.1. For every β ∈ {n − t + 1, . . . , n}, there exists such an i-

transvection Tc. Notice that Tc is one generator of the group Gi,k, hence the matrix

form of the element T ∈ Gi,k is

(1)

(
In−t ∗

0 B

)

,

where ∗ ∈ Matn−t,t(Fq) and B ∈ GL(t, Fq).

Influence of Statement (b). For all m ∈ {1, . . . , k}, since xr2 /∈ Hm, Tm ∈ ∆m

cannot fix SpanFq
〈xr2 〉. According to Lemma 4.3, Tm fixes SpanFq

〈zr2〉, so does

T = (aαβ)n×n ∈ Gi,k. Therefore ar2r2 = 1 and ar2β = 0 for all β ∈ {1, . . . , n} \ {r2},

in the matrix form of T = (aαβ)n×n according to Lemma 4.2.

Next, we study the influence on the columns of matrix forms. Without loss of

generality, suppose that SpanFq
〈zn−t+1, . . . , zn−l〉 ⊂ V ∗ is the maximum subspace

fixed by every i-transvection in the generating set ∆1∪ . . .∪∆k where t is the integer

presented in the influence of Statement (a) and 1 6 l 6 t for some integer l. By an

argument similar to that in the influence of Statement (a) on the rows of the matrix

form of T = (aαβ)n×n, we can deduce that aαβ ∈ Fq can be an arbitrary number for

all α ∈ {1, . . . , n− t} ∪ {n− l+ 1, . . . , n} for all β ∈ {n− t+1, . . . , n− l}, according

to Lemma 4.1. Therefore, the matrix form of the element T ∈ Gi,k is

(2)





C1 ∗1 C2

0 It−l 0

C3 ∗2 C4



 ,

where ∗1 ∈ Matn−t,t−l(Fq), ∗2 ∈ Matl,t−l(Fq) and

(
C1 C2

C3 C4

)

∈ GL(n− t+ l, Fq).

Influence of Statement (c). We still adopt the previous notation, i.e., x1, . . . ,

xn−t ∈
k⋂

m=1
Hm, xn−t+1, . . . , xn /∈

k⋂

m=1
Hm, and SpanFq

〈zn−t+1, . . . , zn−l〉 ⊂ V ∗ is

the maximum subspace fixed by every i-transvection in the generating set ∆1 ∪ . . .∪

∆k. Based on matrices (1) and (2) we conclude that the matrix form of T is

(3)





In−t ∗1 ∗2
0 It−l 0

0 ∗3 A



 ,

where ∗1 ∈ Matn−t,t−l(Fq), ∗2 ∈ Matn−t,l(Fq), ∗3 ∈ Matl,t−l(Fq) and A ∈ GL(l, Fq)

according to the influence of Statements (a) and (b).
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Next, we will prove that the bottom right block A in matrix (3) is exactly the

special linear group SL(l, Fq) according to the influence of Statement (c). Since

{E(±αβ) : n− l + 1 6 α 6= β 6 n} is a set of generators of the special linear group

SL(l, Fq), it will suffice to prove that every E(αβ) and E(−αβ) for all α 6= β ∈

{n− l + 1, . . . , n}, can be equal to a product of several i-transvections in the union

of sets ∆1 ∪ . . . ∪∆k.

Before solving this problem, we emphasize that if T = (aαβ)n×n ∈ Sm is an

element with the invariant subspace Hm = Ker〈zhm
1
, . . . , zhm

i
〉 for any 1 6 m 6 k,

then there are totally i entries in the row α and totally (n−i) entries in the column β

which can be arbitrary numbers in the matrix form of T according to Lemma 4.1,

for all α ∈ {1, . . . , n} \ {hm
1 , . . . , hm

i } and for all β ∈ {hm
1 , . . . , hm

i }.

Now, we return to discuss the influence of Statement (c). Statement (c) is: for

all r3 ∈ {n − l + 1, . . . , n}, there exist two integers m1,m2 ∈ {1, . . . , k} such that

xr3 ∈ Hm1 but xr3 /∈ Hm2 . Since k > 2, Statement (c) is always true. Hence

n− l+1 < n, i.e., 2 6 l. Referring to Statement (c), for every β′ ∈ {n− l+1, . . . , n}

there exists an integer m ∈ {1, . . . , k} such that xβ′ /∈ Hm, so Hm ⊂ Ker〈zβ′〉

according to Lemma 4.1. Let us fix β′ and m. Suppose that Tm = (aαβ)n×n ∈ Sm =

〈T : T ∈ ∆m〉 is an element with the invariant subspace Hm, so there are totally

(n− i) entries in the column β′ which can be arbitrary numbers in the matrix form

of Tm. Specially,

Tm







(i) can become E(±α1β
′), . . . ,E(±αn−iβ

′)

for some subset {α1, . . . , αn−i} ⊂ {1, . . . , β′ − 1, β′ + 1, . . . , n};

(ii) cannot become E(±αn−i+1β
′), . . . ,E(±αn−1β

′)

for the subset {αn−i+1, . . . , αn−1}

= {1, . . . , β′ − 1, β′ + 1, . . . , n} \ {α1, . . . , αn−i}.

Without loss of generality, suppose that {αn−i+1, . . . , αd} ⊂ {n − l + 1, . . . , n}.

Notice that E(±αn−i+1β
′), . . . , E(±αdβ

′) ∈ {E(±αβ) : n − l + 1 6 α 6= β 6 n},

but Tm can become none of them. Hence we need to prove that each of them can

be generated by Tm and another element Tm′ ∈ Sm′ = 〈T : T ∈ ∆m′〉 with another

invariant subspace Hm′ .

We first consider E(±αn−i+1β
′).

Since αn−i+1 ∈ {n − l + 1, . . . , n}, there exists an integer m′ ∈ {1, . . . , k} such

that xαn−i+1 ∈ Hm′ according to Statement (c). Let Tm′ = (bαβ)n×n ∈ Sm′ =

〈T : T ∈ ∆m′〉 be an element with the invariant subspace Hm′ , so there are totally i

entries in the row αn−i+1 which can be arbitrary numbers in the matrix form of Tm′

by Lemma 4.1. Hence Tm′ can become E(±αn−i+1γ1), . . . , E(±αn−i+1γi) for some
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subset {γ1, . . . , γi} ⊂ {1, . . . , n} \ {αn−i+1}. Since

Card({α1, . . . , αn−i}) + Card({γ1, . . . , γi}) = n− i+ i = n > n− 1

= Card({1, . . . , n} \ {αn−i+1}),

it follows that

{α1, . . . , αn−i} ∩ {γ1, . . . , γi} 6= ∅.

We suppose that η ∈ {α1, . . . , αn−i}∩{γ1, . . . , γi}. Referring to Lemma 4.7, it yields

that

E(αn−i+1β
′) = E(−αn−i+1η) · E(−ηβ′) · E(αn−i+1η) ·E(ηβ′),

E(−αn−i+1β
′) = E(−ηβ′) ·E(−αn−i+1η) ·E(ηβ′) · E(αn−i+1η).

Since Tm can become E(±ηβ′) and Tm′ can become E(±αn−i+1η), E(±αn−i+1β
′)

can be generated by Tm and Tm′ .

Similarly, we can prove that E(±αn−i+2β
′), . . . , E(±αdβ

′) can be generated by

i-transvections Tm and Tm′ ∈ ∆m′ for some m′ ∈ {1, . . . , k}. Since β′ ∈ {n −

l + 1, . . . , n} is arbitrary, every element in the set of generators {E(±αβ) : n− l+1 6

α 6= β 6 n} of the special linear group SL(l, Fq) can be generated by several elements

in the union of subgroups S1 ∪ . . . ∪ Sk, i.e., in the generating set ∆1 ∪ . . . ∪ ∆k.

Hence the bottom right block A in matrix (3) is precisely equal to the special linear

group SL(l, Fq). Therefore we conclude that the matrix form of T is





In−t ∗1 ∗2
0 It−l 0

0 ∗3 SL(l, Fq)



 ,

where ∗1 ∈ Matn−t,t−l(Fq), ∗2 ∈ Matn−t,l(Fq) and ∗3 ∈ Matl,t−l(Fq).

Reasoning as above, we have completed the proof. �

In order to show the connection with and difference from the existing results, we

divide the groups Gi,k into four kinds. Notice that Statement (c) is always true since

k > 2.

(1) If only Statement (c) is true, then 2 6 l = t = n, so the group Gi,k is the

special linear group SL(n, Fq) with order 1/(q − 1) ·
n−1∏

j=0

(qn − qj) and we denote it

by G1.

(2) If Statements (a) and (c) are true, then 2 6 l = t < n, so the group is

Gi,k
∼=

{(
In−t ∗

0 SL(t, Fq)

)

: ∗ ∈ Matn−t,t(Fq)

}
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with order q(n−t)t/(q − 1) ·
t−1∏

j=0

(
qt − qj

)
and we denote it by G2.

(3) If Statements (b) and (c) are true, then 2 6 l < t = n, so the group is

Gi,k
∼=

{(
In−l 0

∗ SL(l, Fq)

)

: ∗ ∈ Matl,n−l(Fq)

}

with order ql(n−l)/(q − 1) ·
l−1∏

j=0

(ql − qj) and we denote it by G3.

(4) If Statements (a), (b) and (c) are all true, then 2 6 l < t 6 n− 1, so the group

is

Gi,k
∼=












In−t ∗1

0 It−l 0

0 ∗2 SL(l, Fq)




 :

∗1 ∈ Matn−t,t(Fq),

∗2 ∈ Matl,t−l(Fq)







with order q(n−t)t+l(t−l)/(q − 1) ·
l−1∏

j=0

(ql − qj) and we denote it by G4.

We prepare for a description of Theorem 4.5 with an example. We continue to

discuss Example 4.4.

Example 4.8. As mentioned in Example 4.4, let n = 4, and let ∆j be a set of

i-transvections with the same invariant subspace Hj for j = 1, . . . , 7.

First, we set a group J1 = 〈T : T ∈ ∆3 ∪∆4 ∪∆5〉. Only Statement (c) is true for

the invariant subspaces H3, H4 and H5, so J1 is the special linear group SL(4, Fq)

according to Theorem 4.5. In fact, one can check that 〈T : T ∈ ∆3 ∪ ∆4 ∪ ∆5〉 =

〈T : T ∈ ∆3 ∪∆4〉.

Then we set a group J2 = 〈T : T ∈ ∆1 ∪∆2〉. Since Statements (a) and (c) are

true for the invariant subspaces H1 and H2, it follows that

J2 =

{(
I2 ∗

0 SL(2, Fq)

)

: ∗ ∈ Mat2,2(Fq)

}

.

Next, we set a group J3 = 〈T : T ∈ ∆6 ∪∆7〉. Since Statements (b) and (c) are

true for the invariant subspaces H6 and H7, it follows that

J3 =

















1 0 0 0

∗ ∗

SL(2, Fq)

∗ ∗

0 0 0 1











: ∗ ∈ Fq







∼=

{(
I2 0

∗ SL(2, Fq)

)

: ∗ ∈ Mat2,2(Fq)

}

.

685



Finally, we set a group J4 = 〈T : T ∈ ∆3 ∪∆5〉. Since Statements (a), (b) and (c)

are all true for the invariant subspaces H3 and H5, it follows that

J4 =
















1 ∗ ∗ ∗

0 1 0 0

0 ∗

SL(2, Fq)

0 ∗










: ∗ ∈ Fq







.

We next take up the investigation of the invariant rings of every kind of groups

separately.

The group G1 is the special linear group SL(n, Fq) whose invariant ring is calcu-

lated by Dickson in [7]. And we list the result as follows.

Proposition 4.9 ([7]). The invariant ring of the group G1 = SL(n, Fq) is

Fq[V ]G1 = Fq[dn,1, . . . , dn,n−1, Ln],

where dn,r is the Dickson polynomial in z1, . . . , zn with degree qn − qr for r =

0, . . . , n− 1, and Ln = d
1/(q−1)
n,0 is the Euler class.

Before computing the invariant ring of the groupG2, we prove a very useful lemma.

Lemma 4.10. Let ω ∈ Fq be a kth root of unity and n = n1 + n2. Suppose that

G ⊆ GL(n, Fq) is a group with a set of generators

{

Ti =

(
ωIn1 ∗

0 Ai

)

: ∗ ∈ Matn1,n2(Fq), Ai ∈ GL(n2, Fq), i ∈ I

}

.

Then (1) the invariants of the group G(A) = 〈Ai : i ∈ I〉 are also the ones of the

group G;

(2) the polynomials Cqn2 (z1)
k, . . . , Cqn2 (zn1)

k and Cqn2 (z1)
l1 . . . Cqn2 (zn1)

ln1 ,

where k|l1 + . . . + ln1 , are all invariants of the group G where Cqn2 (zj) is provided

in Definition 1.5 for j = 1, . . . , n1.

P r o o f. (1) According to the matrix form of generator Ti for all i ∈ I, it is

easy to observe that the action of Ti on SpanFq
〈zn1+1, . . . , zn1+n2〉 is equivalent to

the action of Ai on the same subspace. Therefore, if f ∈ Fq[zn1+1, . . . , zn1+n2 ]
G(A),

then Ti · f = Ai · f = f, i.e., f ∈ Fq[z1, . . . , zn1+n2 ]
G.

(2) All orbits of z1 are of the form

{ωjz1 + λ1zn1+1 + . . .+ λn2zn1+n2 : 0 6 j 6 k − 1, λ1, . . . , λn2 ∈ Fq}.
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Since ωq = ω ∈ Fq, it follows that

Ctop(z1) =

k−1∏

j=0

(
∏

λ1,...,λn2∈Fq

(ωjz1 + λ1zn1+1 + . . .+ λn2zn1+n2)

)

=
k−1∏

j=0

( n2∑

r=0

dn2,r · (ω
jz1)

qr
)

=

(k−1∏

j=0

ωj

)

·

( n2∑

r=0

dn2,r · z
qr

1

)k

.

If k is odd, then

Ctop(z1) = 1 ·

( n2∑

r=0

dn2,r · z
qr

1

)k

= Cqn2 (z1)
k,

which belongs to Fq[V ]G. If k is even, then

Ctop(z1) = −1 ·

( n2∑

r=0

dn2,r · z
qr

1

)k

= −Cqn2 (z1)
k,

which belongs to Fq[V ]G. Since Fq[V ]G is an additive group, Cqn2 (z1)
k ∈ Fq[V ]G.

Similarly, Cqn2 (z2)
k, . . . , Cqn2 (zn1)

k ∈ Fq[V ]G.

We next prove that Cqn2 (z1)
l1 . . . Cqn2 (zn1)

ln1 ∈ Fq[V ]G, where k | l1 + . . . + ln1 .

To investigate this problem, we suppose that Ti is a generator of the group G for all

i ∈ I. By a simple computation,

Ti(Cqn2 (z1)
l1 . . . Cqn2 (zn1)

ln1 ) = (ωl1 · Cqn2 (z1)
l1) . . . (ωln1 · Cqn2 (zn1)

ln1 )

= ω(l1+...+ln1) · (Cqn2 (z1)
l1 . . . Cqn2 (zn1)

ln1 )

due to the matrix form of Ti. Since k | l1 + . . . + ln1 , it yields that Cqn2 (z1)
l1 . . .

Cqn2 (zn1)
ln1 is an invariant of the group G.

Reasoning as above, we deduce the results. �

Remark. By the same method, we can extend this lemma to a generalization

which involves several roots of unity.

Referring to Lemma 4.10, we can easily determine the invariant ring of the

group G2.
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Proposition 4.11. The invariant ring of the group G2 is

Fq[V ]G2 = Fq[Cqt(z1), . . . , Cqt(zn−t), dt,1, . . . , dt,t−1, Lt],

where Cqt(zj) = zq
t

j +
t−1∑

r=0
(dt,r ·z

qr

j ) for j = 1, . . . , n−t, dt,r is the Dickson polynomial

in zn−t+1, . . . , zn with degree q
t − qr for r = 0, . . . , t − 1, and Lt = d

1/(q−1)
t,0 is the

Euler class.

P r o o f. Since dt,1, . . . , dt,t−1, Lt ∈ Fq[zn−t+1, . . . , zn]
SL(t,Fq), they all are invari-

ants of Fq[V ]G2 according to Lemma 4.10. And by the same lemma, Cqt(z1), . . . ,

Cqt(zn−t) ∈ Fq[V ]G2 . In addition, Cqt(z1), . . . , Cqt(zn−t), dt,1, . . . , dt,t−1, Lt form

a system of parameters of Fq[V ]G2 .

Based on Definition 1.4, deg(dt,r) = qt − qr for r = 0, . . . , t − 1. And based on

Definition 1.5, deg(Cqt(zj)) = qt for all j = 1, . . . , n− t. Since the order of the group

G2 is q
(n−t)t · 1/(q − 1) ·

t−1∏

j=0

(qt − qj) and deg(Lt) = (qt − q0)/(q − 1), we have

|G2| = deg(Lt) ·
t−1∏

r=1

deg(dt,r) ·
n−t∏

j=1

deg(Cqt(zj)).

And the result follows from Proposition 1.6. �

Next, we are going to study the invariant ring of the group G3. In [21], Steinberg

considers a subgroup G(n − l) ⊆ GL(n, Fq) defined by the requirement that g ∈

G(n − l) if and only if the first n − l rows of the matrix of g agree with the first

n − l rows of the identity matrix I ∈ GL(n, Fq). He computes the invariant ring

Fq[V ]G(n−l) = Fq[z1, . . . , zn−l, dn,n−l, . . . , dn,n−1]. The group G3 here is a subgroup

of G(n − l), and the order is |G3| = 1/(q − 1)|G(n − l)|, so Fq[V ]G3 ⊃ Fq[V ]G(n−l).

We describe Fq[V ]G3 in the following proposition.

Proposition 4.12. The invariant ring of the group G3 is

Fq[V ]G3 = Fq[z1, . . . , zn−l, hn,n−l, dn,n−l+1, . . . , dn,n−1],

where dn,r is the Dickson polynomial in z1, . . . , zn with degree qn − qr for r =

n− l + 1, . . . , n− 1, and

hn,n−l =

{
∏

µ1,...,µl∈Fq not all zeros,
λ1,...,λn−l∈Fq

(λ1z1+. . .+λn−lzn−l+µ1zn−l+1+. . .+µlzn)

}1/(q−1)

.
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Before we prove this proposition, let us first make an explanation. The relationship

between the group G(n − l) and its subgroup G3 is similar to the one between the

group GL(n, Fq) and its subgroup SL(n, Fq). It is well known that

Fq[V ]GL(n,Fq) = Fq [dn,0, dn,1, . . . , dn,n−1],

Fq[V ]SL(n,Fq) = Fq[Ln, dn,1, . . . , dn,n−1],

where Ln = d
1/(q−1)
n,0 . Similarly, we wish to find a polynomial f in the set of generators

S = {z1, . . . , zn−l, dn,n−l, . . . , dn,n−1} of Fq[V ]G(n−l). Then we take f1/(q−1) instead

of f in the set S to form a set of generators of Fq[V ]G3 . Unfortunately, it turns out

that this is misleading. We shall prove that only d
1/(q−1)
n,0 = Ln ∈ Fq [V ] but the other

d
1/(q−1)
n,r /∈ Fq[V ] for r = 1, . . . , n − 1 in Proposition 4.14. So the previous method

used in Fq[V ]SL(n,Fq) cannot work. This fact forces us to seek a new invariant for

Fq[V ]G3 and it is hn,n−l. In fact, hn,n−l is a (q − 1)-root of the product of orbits of

zn−l+1 under the action of the group G3. We first prove that hn,n−l ∈ Fq[V ]G3 .

Lemma 4.13. Define

hn,n−l =

(
∏

µ1,...,µl∈Fq not all zeros,
λ1,...,λn−l∈Fq

(λ1z1+. . .+λn−lzn−l+µ1zn−l+1+. . .+µlzn)

)1/(q−1)

,

then hn,n−l ∈ Fq[V ]G3 .

P r o o f. We apply induction on (n− l) to prove that hn,n−l ∈ Fq [V ].

First, let n − l = 1. Since λqi−1
1 = 1 ∈ Fq for all i = 0, . . . , n − 1, and the Euler

class is d
1/(q−1)
n−1,0 = Ln−1 ∈ Fq[V ], we obtain

hn,1 =

(
∏

µ1,...,µn−1∈Fq not all zeros,
λ1∈Fq

(λ1z1 + µ1z2 + . . .+ µn−1zn)

)1/(q−1)

=

(
∏

µ1,...,µn−1∈Fq not all zeros,
06=λ1∈Fq

(λ1z1 + µ1z2 + . . .+ µn−1zn)

)1/(q−1)

× d
1/(q−1)
n−1,0

=

(
∏

06=λ1∈Fq

(n−1∑

r=0

(dn−1,r · λ
qr−1
1 · zq

r−1
1 )

))1/(q−1)

× Ln−1

=

(n−1∑

r=0

(dn−1,r · z
qr−1
1 )

)

× Ln−1,

which belongs to Fq[V ].
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Suppose that the result is true on n− l < k. We now come to n− l = k. According

to the Euler class Ln−k = d
1/(q−1)
n−k,0 ∈ Fq[V ], we have

hn,k =

(
∏

λ1,...,λk∈Fq

not all zeros

(
∏

µ1,...,µn−k∈Fq

not all zeros

(λ1z1 + . . .+ λkzk

+ µ1zk+1 + . . .+ µn−kzn)

))1/(q−1)

× d
1/(q−1)
n−k,0

=

(
∏

λ2,...,λk∈Fq

not all zeros,
λ1=0

(
∏

µ1,...,µn−k∈Fq

not all zeros

((λ2z2 + . . .+ λkzk)

+ µ1zk+1 + . . .+ µn−kzn)

))1/(q−1)

× Ln−k

×

(
∏

λ1 6=0,
λ2,...,λk∈Fq

(
∏

µ1,...,µn−k∈Fq

not all zeros

λ1

((

z1 +
λ2

λ1
z2 + . . .+

λk

λ1
zk

)

+
µ1

λ1
zk+1 + . . .+

µn−k

λ1
zn

)
))1/(q−1)

=

(
∏

λ2,...,λk∈Fq

not all zeros,
λ1=0

(
∏

µ1,...,µn−k∈Fq

not all zeros

((λ2z2 + . . .+ λkzk)

+ µ1zk+1 + . . .+ µn−kzn)

))1/(q−1)

× Ln−k

×

(
∏

λ1 6=0,
λ′
2,...,λ

′
k∈Fq

λqn−k−1
1

(n−k∑

r=0

(dn−k,r · (z1 + λ′
2z2 + . . .+ λ′

kzk)
qr−1)

))1/(q−1)

,

where dn−k,r is the Dickson polynomial in zk+1, . . . , zn with degree q
n−k − qr for

r = 0, . . . , n− k, and λ′
j = λj/λ1 for j = 2, . . . , k.

Denote

A =

(
∏

λ2,...,λk∈Fq

not all zeros,
λ1=0

(
∏

µ1,...,µn−k∈Fq

not all zeros

((λ2z2 + . . .+ λkzk)

+ µ1zk+1 + . . .+ µn−kzn)

))1/(q−1)

× Ln−k,

B =

(
∏

λ1 6=0,
λ′
2,...,λ

′
k∈Fq

λqn−k−1
1

(n−k∑

r=0

(dn−k,r · (z1 + λ′
2z2 + . . .+ λ′

kzk)
qr−1)

))1/(q−1)

.
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Since

A =

(
∏

µ1,...,µn−k∈Fq not all zeros,
λ2,...,λk∈Fq

(λ2z2 + . . .+ λkzk + µ1zk+1 + . . .+ µn−kzn)

)1/(q−1)

,

we conclude A ∈ Fq[V ] by induction.

In addition, since λqn−k−1
1 = 1 ∈ Fq, it follows that

B =

((
∏

λ′
2,...,λ

′
k∈Fq

(n−k∑

r=0

(dn−k,r · (z1 + λ′
2z2 + . . .+ λ′

kzk)
qr−1)

))q−1)1/(q−1)

=
∏

λ′
2,...,λ

′
k∈Fq

(n−k∑

r=0

(dn−k,r · (z1 + λ′
2z2 + . . .+ λ′

kzk)
qr−1)

)

.

Hence B ∈ Fq[V ].

Therefore hn,k = A×B ∈ Fq[V ].

Since hn,n−l is a (q − 1)-root of the product of orbits of zn−l+1 under the action

of the group G3, we deduce that hn,n−l ∈ Fq[V ]G3 . �

Now, we come to the proof of Proposition 4.12.

P r o o f of Proposition 4.12. Referring to Lemma 4.13, it follows that hn,n−l ∈

Fq[V ]G3 and deg(hn,n−l) = q(n−l)(ql − 1)/(q − 1).

To finish this proof, it will suffice to indicate that z1, . . . , zn−l, hn,n−l, dn,n−l+1, . . . ,

dn,n−1 form a system of parameters for Fq[V ]G3 .

For every field extension Fq ⊃ Fq, we consider the linear space V = Fq
n
. Since

z1, . . . , zn−l are algebraically independent, it follows that

n−l⋂

j=1

Ker〈zj〉 = {(0, . . . , 0, xn−l+1, . . . , xn) : xn−l+1, . . . , xn ∈ Fq}.

Next, we consider
n−1⋂

j=n−l+1

Ker〈dn,j〉 ∩ Ker〈hn,n−l〉. Taking z1 = . . . = zn−l = 0,

we obtain

hn,n−l =

((
∏

µ1,...,µl∈fq not all zeros

(µ1zn−l+1 + . . .+ µlzn)

)qn−l)1/(q−1)

= (dl,0)
(qn−l)/(q−1) = (Ll)

qn−l

.
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In addition, we denote by dn,r|z1=...=zn−l=0 the formula of the Dickson algebra dn,r

in which z1 = . . . = zn−l = 0. Referring to Definition 1.4, we conclude that

dn,r|z1=...=zn−l=0 = dl,r−n+l for r = n− l + 1, . . . , n− 1.

Since (Ll)
qn−l

, dl,1, . . . , dl,l−1 with respect to zn−l+1, . . . , zn are algebraically inde-

pendent, it follows that

l−1⋂

j=1

Ker〈dl,j〉 ∩Ker〈(Ll)
qn−l

〉 = {(x1, . . . , xn−l, 0, . . . , 0): x1, . . . , xn−l ∈ Fq}.

Moreover,

n−1⋂

j=n−l+1

Ker〈dn,j〉 ∩Ker〈hn,n−l〉 ⊆
l−1⋂

j=1

Ker〈dl,j〉 ∩Ker〈(Ll)
qn−l

〉.

Hence

(n−l⋂

j=1

Ker〈zj〉

)

∩

( n−1⋂

j=n−l+1

Ker〈dn,j〉

)

∩Ker〈hn,n−l〉 = {(0, . . . , 0)}.

Therefore z1, . . . , zn−l, hn,n−l, dn,n−l+1, . . . , dn,n−1 form a system of parameters for

Fq[V ]G3 according to [17], Proposition A.3.6.

In addition, since deg(dn,r) = qn − qr for r = n− l+ 1, . . . , n− 1, this yields that

(n−l∏

j=1

deg(zj)

)

·

( n−1∏

r=n−l+1

deg(dn,r)

)

· deg(hn,n−l)

= (qn − qn−l+1) · . . . · (qn − qn−1) ·
qn−l · (ql − 1)

q − 1
= |G3|.

And the result follows from Proposition 1.6. �

Remark. Since the invariant ring Fq[V ]G3 is polynomial, we can also compute

Fq[V ]G3 by the gluing method in [10]. The result is presented here without compu-

tation and proof. Let dl,k be the Dickson polynomial in zn−l+1, . . . , zn with degree

ql − qk for k = 0, . . . , l− 1 and Cqn−l(zt) =
∏

µ1,...,µn−l∈Fq

(zt + µ1z1 + . . .+ µn−lzn−l)

for t = n − l + 1, . . . , n. We denote by dl,k|(zt 7→C
qn−l (zt), n−l+16t6n) the formula of

the Dickson polynomial dl,k in which Cqn−l(zt) replaces zt for all n− l + 1 6 t 6 n.

According to the gluing method, we calculate

Fq[V ]G3 = Fq[z1, . . . , zn−l, (dl,0|(zt 7→C
qn−l (zt), n−l+16t6n))

1/(q−1),

dl,1|(zt 7→C
qn−l (zt), n−l+16t6n), . . . , dl,l−1|(zt 7→C

qn−l (zt), n−l+16t6n)].
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We can prove that

hn,n−l = (dl,0|(zt 7→C
qn−l (zt), n−l+16t6n))

1/(q−1),

dn,n−l+r 6= dl,r|(zt 7→C
qn−l (zt), n−l+16t6n), r = 1, . . . , l − 1.

Hence we have obtained two different systems of parameters for the invariant

ring Fq[V ]G3 .

There are two reasons for preferring the method applied in the proof of Proposi-

tion 4.12 to the gluing method. First, the formulas of invariants in Proposition 4.12

are more explicit than the ones obtained by the gluing method. Second, Proposi-

tion 4.12 leads to an interesting property of the Dickson polynomials which we do

not find in other papers.

We now digress temporarily from studying the invariant ring, in order to deal with

the property of the Dickson polynomials.

Proposition 4.14. Let dn,r denote the Dickson polynomial in z1, . . . , zn with

degree qn − qr for r = 0, . . . , n− 1, then the Euler class d
1/(q−1)
n,0 = Ln ∈ Fq[V ] but

other d
1/(q−1)
n,r /∈ Fq[V ] for all r = 1, . . . , n− 1.

P r o o f. Denote Fq = {0, a1, a2 . . . , aq−1} where a1 = 1. Since V ∗ ∼= Fn
q , we

consider every element in the dual space V ∗ as a linear form. So there are totally

(qn − 1) linear forms except 0 and they divide into totally (qn − 1)/(q − 1) linear in-

dependent classes. Denote by {l1, . . . , l(qn−1)/(q−1)} a complete set of representatives

of these (qn − 1)/(q − 1) linear independent classes.

Referring to [17], Proposition 6.1.7, the Dickson polynomial

dn,r = (−1)n−r

(
∑

W∗⊆V ∗

dim(W∗)=r

(
∏

z /∈W∗

z∈V ∗

z

))

for r = 0, . . . , n− 1, where z ∈ V ∗ is a linear form.

Given a linear form l1, there are totally (q − 2) nonzero linear dependent forms

a2l1, . . . , aq−1l1 in the dual space V
∗. And their product including l1 = a1l1 is

q−1
∏

i=1

(ail1) = lq−1
1 ·

q−1
∏

i=1

ai = −lq−1
1

according to the field theory. Notice that if p = 2, then −1 = 1.

We now prove this proposition.
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Referring to [19], it follows that the Euler class d
1/(q−1)
n,0 = Ln ∈ Fq [V ]. In fact,

d
1/(q−1)
n,0 =

(

(−1)n
∑

W∗⊆V ∗

dim(W∗)=0

(
∏

z /∈W∗

z∈V ∗

z

))1/(q−1)

=

(

(−1)n
(qn−1)/(q−1)

∏

j=1

(q−1
∏

i=1

ailj

))1/(q−1)

= ±

(qn−1)/(q−1)
∏

j=1

lj ∈ Fq[V ].

Next, we prove that d
1/(q−1)
n,r /∈ Fq[V ] for all r = 1, . . . , n− 1.

Since the degree of dn,r is q
n− qr, this yields that dn,r is a sum of products of any

(qn − qr)/(q − 1) linear independent classes, i.e.,

dn,r = (−1)n−r

(
∑

dim(W∗)=r

(
∏

j∈{1,...,(qn−1)/(q−1)}
lj /∈W∗

(q−1
∏

i=1

ailj

)))

= (−1)n−r

(
∑

{t1,...,tI}⊆{1,...,(qn−1)/(q−1)}

(−1)I(lt1 · . . . · ltI )
q−1

)

where I = (qn − qr)/(q − 1). In this formula, {t1, . . . , tI} runs over all subsets of

{1, . . . , (qn − 1)/(q − 1)}. Hence the coefficient of the Dickson polynomial dn,r is

always±1 for r = 1, . . . , n−1. If we have proved |dn,r|
1/(q−1) /∈ Fq[V ], then d

1/(q−1)
n,r /∈

Fq[V ]. Therefore we omit the coefficient ±1 for convenience.

We introduce the lexicographical order on {l1, . . . , l(qn−1)/(q−1)} with l1 > l2 >

. . . > l(qn−1)/(q−1), and denote

SI =

(
∑

{t1,...,tI}⊆{1,...,(qn−1)/(q−1)}

(lt1 . . . ltI )
q−1

)

.

Notice that the leading term of SI is (l1 . . . lI)
q−1.

Our goal is to prove S
1/(q−1)
I /∈ Fq[V ]. Suppose that S

1/(q−1)
I = H ∈ Fq[V ].

Without loss of generality, let

H =
∑

j

l
aj,1

1 . . . l
aj,(qn−1)/(q−1)

(qn−1)/(q−1) ,

where 0 6 aj,l 6 (qn − 1)/(q − 1) for l = 1, . . . , (qn − 1)/(q − 1).

Since SI is symmetric and homogeneous, so isH , hence aj,1+. . .+aj,(qn−1)/(q−1) =

I = (qn − qr)/(q − 1) for every j. Notice that r > 1, so I = (qn − qr)/(q − 1) <

(qn − 1)/(q − 1), which forces that there are several zeros among aj,1, . . . ,
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aj,(qn−1)/(q−1). We consider the leading term of H , i.e., j = 1. According to the

lexicographical order, the leading term of Hq−1 is
(
q−1
0

)
(l

a1,1

1 . . . l
a1,(qn−1)/(q−1)

(qn−1)/(q−1) )q−1

and the leading term of SI is (l1 . . . lI)
q−1
. Since Hq−1 = SI , it follows that

(
q − 1

0

)

(l
a1,1

1 . . . l
a1,(qn−1)/(q−1)

(qn−1)/(q−1) )q−1 = (l1 . . . lI)
q−1.

Hence a1,1 = . . . = a1,I = 1 and a1,I+1 = . . . = a1,(qn−1)/(q−1) = 0. Since H is

symmetric and homogeneous, it follows that

H =
∑

{t1,...,tI}⊆{1,...,(qn−1)/(q−1)}

(lt1 . . . ltI ),

where {t1, . . . , tI} runs over all subsets of {1, . . . , (qn − 1)/(q − 1)}. Then the leading

term of H is l1 . . . lI and the second term is l1 . . . lI−1lI+1. Since p does not divide
(
q−1
1

)
= q − 1, there is a term

0 6=

(
q − 1

1

)

· (l1 . . . lI)
q−2 · (l1 . . . lI−1lI+1) = −lq−1

1 . . . lq−1
I−1l

q−2
I lI+1

in Hq−1, which cannot be a term of SI since it is not homogeneous. Therefore

Hq−1 6= SI .

Reasoning as above, we cannot find a polynomialH ∈ Fq[V ] such that Hq−1 = SI ,

therefore d
1/(q−1)
n,r /∈ Fq[V ] for all r = 1, . . . , n− 1. �

Finally, we consider the group G4. Referring to Theorem 4.5, we observe that the

matrix forms of elements in the group G4 are combined with the ones in the group

G2 and the ones in the group G3 in such a way that the invariant ring Fq[V ]G4 can

be obtained by combining the invariant rings Fq[V ]G2 and Fq[V ]G3 .

Proposition 4.15. The invariant ring of the group G4 is

Fq[V ]G4 = Fq[Cqt(z1), . . . , Cqt(zn−t), zn−t+1, . . . , zn−l, ht,t−l, dt,t−l+1, . . . , dt,t−1],

where Cqt(zj) = zq
t

j +
t−1∑

r=0
(dt,r · z

qr

j ) is the top Chern class for j = 1, . . . , n− t, dt,r

is the Dickson polynomial in zn−t+1, . . . , zn with degree q
t − qr for r = 0, . . . , t− 1,

and

ht,t−l =

(
∏

µ1,...,µl∈Fq not all zeros,
λ1,...,λt−l∈Fq

(λ1zn−t+1+. . .+λt−lzn−l+µ1zn−l+1+. . .+µlzn)

)1/(q−1)

.
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P r o o f. According to Lemma 4.10, it we have that Cqt(z1), . . . , Cqt(zn−t),

zn−t+1, . . . , zn−l, ht,t−l, dt,t−l+1, . . . , dt,t−1 ∈ Fq[V ]G4 . With an argument similar to

that shown in the proof of Proposition 4.12, we conclude that they form a system

of parameters for the invariant ring Fq[V ]G4 . In addition, since the product of their

degrees is

qt(n−t) ·
qt−l(ql − 1)

q − 1
·

t−1∏

j=t−l+1

(qt − qj),

which is equal to the order of the group G4, the result follows from Proposition 1.6.

�

Remark. Similarly to Proposition 4.12, we can also calculate another system of

parameters for the invariant ring Fq[V ]G4 by the gluing method [10]. We omit the

process here.

Up to now, our calculation of all invariant rings of these four kinds of groups is

complete and we utilize our results in the following example.

Example 4.16. We continue the same example discussed in Example 4.4 and

Example 4.8. Below is the list of the invariant rings of these groups.

(1) The group J1 = 〈T : T ∈ ∆3 ∪∆4 ∪∆5〉; then

Fq[V ]J1 = Fq[L4, d4,1, d4,2, d4,3],

where d4,r is the Dickson polynomial in z1, . . . , z4 with degree q
4−qr for r = 0, . . . , 3,

and L4 = d
1/(q−1)
4,0 is the Euler class.

(2) The group J2 = 〈T : T ∈ ∆1 ∪∆2〉; then

Fq[V ]J2 = Fq[Cq2 (z1), Cq2 (z2), L2, d2,1],

where Cq2 (zj) = zq
2

j +
1∑

r=0
(d2,r · z

qr

j ) is the top Chern class for j = 1, 2, d2,r is the

Dickson polynomial in z3 and z4 with degree q
2 − qr for r = 0, 1, and L2 = d

1/(q−1)
2,0

is the Euler class.

(3) The group J3 = 〈T : T ∈ ∆6 ∪∆7〉; then

Fq[V ]J3 = Fq[z1, h4,2, d4,3, z4],

where d4,3 is the Dickson polynomial in z1, . . . , z4 with degree q
4 − q3 and

h4,2 =

(
∏

µ1,µ2∈Fq not all zeros,
λ1,λ2∈Fq

(λ1z1 + µ1z2 + µ2z3 + λ2z4)

)1/(q−1)

.
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(4) The group J4 = 〈T : T ∈ ∆3 ∪∆5〉; then

Fq[V ]J4 = Fq[Cq3(z1), z2, h3,1, d3,2],

where Cq3(z1) = zq
3

1 +
2∑

r=0
(d3,r · zq

r

1 ) is the top Chern class, d3,r is the Dickson

polynomial in z2, z3 and z4 with degree q
3 − qr for r = 0, 1, 2, and

h3,1 =

(
∏

µ1,µ2∈Fq not all zeros,
λ1∈Fq

(λ1z2 + µ1z3 + µ2z4)

)1/(q−1)

.
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