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Abstract. This paper is devoted to the global attractors of the tropical climate model.
We first establish the global well-posedness of the system. Then by studying the existence of
bounded absorbing sets, the global attractor is constructed. The estimates of the Hausdorff
dimension and of the fractal dimension of the global attractor are obtained in the end.
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1. Introduction

In the present paper, we consider the following two-dimensional (2D) tropical

climate model in a bounded domain Ω ⊂ R2:

(1.1)





∂tu+ (u · ∇)u − µ∆u+∇p+∇ · (v ⊗ v) = f1,

∂tv + (u · ∇)v − ν∆v +∇θ + (v · ∇)u = f2,

∂tθ + (u · ∇)θ − η∆θ +∇ · v = f3,

∇ · u = 0,

where u = (u1(x, t), u2(x, t)), v = (v1(x, t), v2(x, t)) are the barotropic mode and the

first baroclinic mode of the velocity, respectively, θ = θ(x, t) and p = p(x, t) repre-

sent, respectively, the scalar temperature and the scalar pressure, f = (f1, f2, f3)

is the external volume force. Here v ⊗ v is the standard tensor notation, i.e.,
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v⊗v = (vivj)16i,j62, µ, ν, η are nonnegative constants, where µ, ν are the viscosities

and η is the thermal diffusivity. In the present paper, we consider µ = ν = η = 1.

When the region Ω is a smooth bounded domain, we supplement (1.1) with the

initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), θ(x, 0) = θ0(x) in Ω,

and the (non-slip) boundary conditions

u = 0, v = 0, θ = 0 on ∂Ω.

We shall also treat the space-periodic case, where Ω = (0, L1) × (0, L2) and the

boundary conditions are replaced by

u((x1, 0), t) = u((x1, L2), t), u((0, x2), t) = u((L1, x2), t),

v((x1, 0), t) = v((x1, L2), t), v((0, x2), t) = v((L1, x2), t),

θ((x1, 0), t) = θ((x1, L2), t), θ((0, x2), t) = θ((L1, x2), t)

for all 0 6 x1 6 L1, 0 6 x2 6 L2.

By performing a Galerkin truncation to the hydrostatic Boussinesq equations,

Frierson, Majda, and Pauluis [10] derived the tropical climate model without any

dissipation terms (µ = ν = η = 0). The first baroclinic mode of (1.1) was used

in some studies of large-scale dynamics of precipitation fronts in the tropical atmo-

sphere. The tropical climate model is related to other equations in fluid mechanics.

If the temperature θ is a constant, it is similar to the magnetohydrodynamics (MHD)

equations. If v = 0, it is analogous to the Boussinesq equations. The tropical cli-

mate model has attracted a lot of attentions recently. For tropical climate model

with fractional dissipation, α, µ, ν, η > 0, Ye [20] studied the global regularity:

‖(u, v, θ)‖2Hs(R2) +

∫ t

0

[‖u‖2Hs+α(R2) + ‖v‖2Hs+1(R2) + ‖θ‖2Hs+1(R2)] dτ 6 C.

If (u0, v0) ∈ Hs(R2), s > 2 and θ0 ∈ Ḣ−1(R2)∩Hs+1−β(R2), Dong, Wang, Wu, and

Zhang [7] established the global existence and regularity of solutions to the system

with fractional dissipative terms (−∆)αu, (−∆)βv, α + β = 2. For (u0, v0, θ0) ∈

Hs(R2), s > 2, Dong, Wu, and Ye [9] examined the global existence and regularity

of weak solutions with fractional dissipation. For (u0, v0, θ0) ∈ Hs(R2), s > 1, µ, ν,

η > β, for some β > 0, Dong, Li, Xu, and Ye [8] showed that there is a unique global

smooth solution of (1.1) in the Sobolev class Hs′ for any s′ > 0.
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It is important to study the long-time behavior of solutions to evolution partial dif-

ferential equations as t→ ∞. If the external force term decays to zero at some rate,

then the solutions will decay to zero either. Schonbek [18] first obtained the optimal

decay rates of weak solutions to the incompressible Navier-Stokes equations. He

and Zhou [15] showed the temporal decay for strong solutions of an incompressible

Newtonian flow with intrinsic degree of freedom. The spatial decay for the Navier-

Stokes equations in Rn was obtained by He and Xin [14]. Brandolese [4] studied

the space-time decay of left invariant Navier-Stokes flows. For the Navier-Stokes

equations in Rn, Bae and Jin [2], [3] obtained the upper and lower bounds for

temporal-spatial decays.

If the external force does not decay to zero, then solutions may not decay to

zero. But for evolution partial differential equations, the long-time behavior of

solutions can also be described in terms of attractors. The maximal attractor

is able to describe all the flows corresponding to all initial data [12]. There-

fore, it is also called the universal attractor or the global attractor. Theory of

attractors for dynamical systems has been widely studied. The existence of at-

tractors for the 2D Navier-Stokes equations was first proved in the works of

Ladyžhenskaya [16] for bounded domains. Caraballo,  Lukaszewicz and Real [5]

proved the existence of pullback attractors for the non-autonomous 2D Navier-

Stokes model in an unbounded domain. Lu, Wu, Zhong [17] and Gong, Song,

Zhong [13] proved the existence of the uniform attractor for the non-autonomous 2D

Navier-Stokes equations in a bounded domain and in a periodic domain. Ser-

mange and Temam [19] proved the existence of invariant sets for the MHD

equations in bounded domains with non-slip boundary conditions and with pe-

riodic conditions.

The geometrical properties of an attractor can be very complicated. An attractor

can be a fractal, like a Cantor set or the product of a Cantor set and an inter-

val. Global attractors can be complicated objects consisting of stationary points,

time periodic orbits, quasiperiodic orbits or even trajectories with chaotic behav-

iors (see [6]). Essentially, the concept of dimension is one of the few pieces of

information which is related to attractors. The global attractor is very thin in

some directions, and may possess finite dimension, because the semigroup on the

attractor is contracting in some directions and expanding in other directions. It

is well-known that the dimension of the global attractor for the 2D Navier-Stokes

equations (and for the 2D MHD equations) is finite. In the present paper, we shall

prove similar properties for the 2D tropical climate model. We understand that

the number of degrees of freedom of turbulent phenomenon is the dimension of the

attractor, which represents it in here. For the frameworks of general dimension

estimations, see [6].
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The nonlinear terms of the tropical climate model are subtler than those of the

Navier-stokes equations and those of the MHD equations. This gives some difficulties

on the uniqueness of weak solutions with L2-initial data.

This paper is organized as follows. In Section 2, we shall introduce some function

spaces, some operators, and the weak formulation of (1.1). In Section 3, we will

prove the existence and uniqueness of weak solutions. Moreover, we shall obtain

higher regularity. In the fourth section, we shall study bounded absorbing sets and

obtain the global attractor. The estimates of the dimension of the global attractor

will be given in the last section.

2. Functional settings

The spaces we shall use are combinations of those used for the Navier-Stokes

equations and the usual Sobolev spaces. For a Hilbert space X (e.g., L2(Ω) or

H1(Ω)), we do not distinguish the inner products on X and on [X ]2 := X × X ,

which will be denoted by (·, ·)X .

In the non-slip case, we set L̃2(Ω) = L2(Ω), H̃1(Ω) = H1
0 (Ω) and

V = {ϕ ∈ [C∞
c (Ω)]2 ; ∇ · ϕ = 0}.

In the periodic case, we define

Per(Ω) =

{
θ = Θ|Ω ; Θ ∈ C∞(R2) is periodic and

1

|Ω|

∫

Ω

Θ(x) dx = 0

}
,

V = {ϕ ∈ [Per(Ω)]2 ; ∇ · ϕ = 0},

and set L̃2(Ω), H̃1(Ω) the closure of Per(Ω) in L2(Ω) and in H1(Ω), respectively. In

both cases, we equip H̃1(Ω) with the inner product

(v1, v2)H̃1 =

2∑

i=1

(∂v1
∂xi

,
∂v2
∂xi

)

L2
∀ v1, v2 ∈ H̃1(Ω),

and set H , V the closure of V in [L̃2(Ω)]2 and in [H̃1(Ω)]2, respectively. Now we

introduce

H = H × [L̃2(Ω)]2 × L̃2(Ω), V = V × [H̃1(Ω)]2 × H̃1(Ω).

We equip H and V with inner products

(ϕ1, ϕ2)H = (u1, u2)H + (v1, v2)L2 + (θ1, θ2)L2 ∀ϕi = (ui, vi, θi) ∈ H,

(ϕ1, ϕ2)V = (u1, u2)V + (v1, v2)H̃1 + (θ1, θ2)H̃1 ∀ϕi = (ui, vi, θi) ∈ V.
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Then H,V are Hilbert spaces. If we identify H with its dual H′, then

V ⊂ H ≡ H
′ ⊂ V

′,

where each space is dense and can be continuously embedded into the following one.

We define two linear bounded operators A ∈ L(V, V ′) and A ∈ L(V,V′) by setting

〈Au1, u2〉V ′,V = (u1, u2)V ∀u1, u2 ∈ V,

〈Aϕ1, ϕ2〉V′,V = (ϕ1, ϕ2)V ∀ϕ1, ϕ2 ∈ V.

Obviously,

‖Au‖V ′ 6 ‖u‖V , ‖Aϕ‖V′ 6 ‖ϕ‖V.

From now on, we denote 〈·, ·〉V′,V by 〈·, ·〉 for simplicity. We can also consider A, A

as unbounded operators on H , H, respectively, whose domains (see [11]) are

D(A) = {u ∈ V ; Au ∈ H} = V ∩ [H2(Ω)]2,

D(A) = {Φ ∈ V ; AΦ ∈ H} = V ∩ ([H2(Ω)]2 × [H2(Ω)]2 ×H2(Ω)).

The operator A is a self-adjoint positive linear operator in H, and A−1 is a self-

adjoint positive compact linear operator on H. Therefore, we can consider the eigen-

value problem Aγ = λγ ∈ H, λ ∈ R, and all eigenvalues of A can be sorted into an

increasing positive sequence

0 < λ1 6 λ2 6 . . .→ ∞.

Moreover, {λj}
∞
j=1 = {λi(A)}

∞
i=1 ∪ {λi(−∆)}∞i=1 and each λi(−∆) is a triple

eigenvalue of A, where λi(A) is the ith eigenvalue of A and λi(−∆) is the ith

eigenvalue of −∆. Specially in the periodic case, the eigenvectors of −∆ are

e2πi(k1x1/L1+k2x2/L2) corresponding to the eigenvalues 4π
2(k21/L

2
1 + k22/L

2
2) for all

(k1, k2) ∈ Z2 \ {0}. If u ∈ D(A), then Au = −∆u. Therefore, the eigenvectors of A

are e2πi(k1x1/L1+k2x2/L2)(−k2/L2, k1/L1) w.r.t. the eigenvalues 4π
2(k21/L

2
1 + k22/L

2
2).

In other words, λi(A) = λi(−∆) for all i = 1, 2, . . .

The principle eigenvalue of A is λ1 = min{λ1(A), λ1(−∆)}, which gives the

Poincaré inequality

λ1‖ϕ‖
2
H 6 ‖ϕ‖2V.

In addition, ‖f‖V′ 6 λ
−1/2
1 ‖f‖H. For each ϕ ∈ D(A), Aϕ ∈ H,

‖ϕ‖2V = (ϕ, ϕ)V = 〈Aϕ, ϕ〉 = (Aϕ, ϕ)H 6 ‖Aϕ‖H‖ϕ‖H.
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This together with the Poincaré inequality gives

‖ϕ‖V 6 λ
−1/2
1 ‖Aϕ‖H.

Standard regularity theories show that

‖∇2ϕ‖L2 6 C‖Aϕ‖H 6 C‖∇2ϕ‖L2 .

Therefore, for ϕ ∈ D(A),

c(‖ϕ‖2L2 + ‖∇ϕ‖2L2 + ‖∇2ϕ‖2L2) 6 ‖Aϕ‖2H 6 C‖∇2ϕ‖2L2 ,

where c and C depend on Ω only. Moreover, D(A) is a closed linear subspace of

[H2(Ω)]2 × [H2(Ω)]2 ×H2(Ω) with the equivalent norm ‖ϕ‖D(A) = ‖Aϕ‖H.

Now we define a trilinear form b1 on [H1(Ω)]2 × [H1(Ω)]2 × [H1(Ω)]2 by

b1(v1, v2, v3) =

2∑

j,k=1

∫

Ω

vk1
∂vj2
∂xk

vj3 dx, vi = (v1i , v
2
i ), i = 1, 2, 3,

and a trilinear form b2 on [H1(Ω)]2 ×H1(Ω)×H1(Ω) by

b2(v, θ2, θ3) =
2∑

i=1

∫

Ω

vi
∂θ2
∂xi

θ3 dx, v = (v1, v2).

A continuous trilinear form b can be defined on V× V× V as

b(ϕ1, ϕ2, ϕ3) = b1(u1, u2, u3)− b1(v1, u3, v2) + b1(u1, v2, v3)

+ b1(v1, u2, v3) + b2(u1, θ2, θ3)

for all ϕi = (ui, vi, θi) ∈ V, i = 1, 2, 3. We can check that

b(ϕ1, ϕ2, ϕ3) = −b(ϕ1, ϕ3, ϕ2) ∀ϕ1, ϕ2, ϕ3 ∈ V,

b(ϕ, ψ, ψ) = 0 ∀ϕ, ψ ∈ V.

So for all ϕi ∈ V, i = 1, 2, 3,

|b(ϕ1, ϕ2, ϕ3)| 6 C(‖ϕ1‖L4‖ϕ2‖V‖ϕ3‖L4 + ‖ϕ1‖V‖ϕ2‖L4‖ϕ3‖L4),(2.1)

|b(ϕ1, ϕ2, ϕ3)| 6 C(‖ϕ1‖
1/2
H

‖ϕ1‖
1/2
V

‖ϕ2‖V‖ϕ3‖
1/2
H

‖ϕ3‖
1/2
V

(2.2)

+ ‖ϕ2‖
1/2
H

‖ϕ2‖
1/2
V

‖ϕ1‖V‖ϕ3‖
1/2
H

‖ϕ3‖
1/2
V

).
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Moreover, for all ϕ1, ϕ2 ∈ D(A), ϕ3 ∈ H,

|b(ϕ1, ϕ2, ϕ3)| 6 C(‖ϕ1‖
1/2
H

‖ϕ1‖
1/2
V

‖ϕ2‖
1/2
V

‖Aϕ2‖
1/2
H

‖ϕ3‖H(2.3)

+ ‖ϕ2‖
1/2
H

‖ϕ2‖
1/2
V

‖ϕ1‖
1/2
V

‖Aϕ1‖
1/2
H

‖ϕ3‖H),

|b(ϕ1, ϕ2, ϕ3)|+ |b(ϕ2, ϕ1, ϕ3)| 6 C(‖ϕ1‖
1/2
H

‖ϕ1‖
1/2
V

‖ϕ2‖
1/2
V

‖Aϕ2‖
1/2
H

‖ϕ3‖H(2.4)

+ ‖ϕ2‖
1/2
H

‖Aϕ2‖
1/2
H

‖ϕ1‖V‖ϕ3‖H),

where C depends on Ω only.

The Poincaré inequality together with (2.2) shows that we can define a continuous

bilinear operator B : V× V → V′ by setting

〈B(ϕ1, ϕ2), ϕ3〉 = b(ϕ1, ϕ2, ϕ3) ∀ϕ1, ϕ2, ϕ3 ∈ V.

Inequality (2.3) gives

(2.5) ‖B(ϕ1, ϕ2)‖H 6 C(‖ϕ1‖
1/2
H

‖ϕ1‖
1/2
V

‖ϕ2‖
1/2
V

‖Aϕ2‖
1/2
H

+ ‖ϕ2‖
1/2
H

‖ϕ2‖
1/2
V

‖ϕ1‖
1/2
V

‖Aϕ1‖
1/2
H

).

We can also define a continuous linear operator C : V → H ⊂ V′ by setting

Cϕ = (0,∇θ,∇ · v) ∀ϕ = (u, v, θ) ∈ V.

Especially, 〈Cϕ, ψ〉 = (Cϕ, ψ)H and 〈Cϕ, ϕ〉 = (Cϕ, ϕ)H = 0 for all ϕ, ψ ∈ V. Direct

calculation gives

(Cϕ, ψ)H 6 ‖ϕ‖V‖ψ‖H,(2.6)

〈Cϕ, ψ〉 6 λ
−1/2
1 ‖ϕ‖V‖ψ‖V.(2.7)

Definition 2.1. Let f ∈ V′, Φ0 ∈ H. Then Φ ∈ L∞(0, T ;H) ∩ L2(0, T ;V) is

called a weak solution to (1.1) if for all ψ ∈ V,

(∂tΦ, ψ)H + (Φ, ψ)V + b(Φ,Φ, ψ) + (CΦ, ψ)H = 〈f, ψ〉, 0 < t < T,(2.8)

Φ(t) → Φ0 in H as t→ 0+.(2.9)

When f ∈ H, Φ0 ∈ V, if a weak solution Φ satisfies Φ ∈ L∞(0, T ;V) ∩

L2(0, T ;D(A)), we call Φ a strong solution.

R e m a r k 2.2. (i) Equation (2.8) is equivalent to the following operator equa-

tion:

∂tΦ+ AΦ + B(Φ,Φ) + CΦ = f in V
′.

(ii) If Φ is a strong solution, then we deduce from (2.8) that ∂tΦ ∈ L2(0, T ;H)

and Φ ∈ C([0, T ];V). More regularity will be obtained in the next section.
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3. Well-posedness and regularity

In this section, we shall prove the existence and uniqueness results for prob-

lem (2.8). Higher regularity will be obtained. At last, we will define a family of

operators {L(Φ0,f)(t)}t>0.

Theorem 3.1 (Uniqueness). Let f ∈ V′, Φ0 ∈ H, and Φ,Ψ be two weak solutions

to problem (2.8) with the same initial data Φ0. Then Φ ≡ Ψ ∈ C([0, T ];H) ∩

L2(0, T ;V), and

1

2

d

dt
‖Φ‖2H + ‖Φ‖2V = 〈f,Φ〉,(3.1)

‖Φ(t)‖2H + 2

∫ t

0

‖Φ(s)‖2V ds = ‖Φ0‖
2
H + 2

∫ t

0

〈f,Φ(s)〉ds.(3.2)

P r o o f. Estimates (2.1) and (2.2) give

‖B(Φ,Φ)‖V′ + ‖B(Φ,Φ)‖L4/3 6 C‖Φ‖
1/2
H

‖Φ‖
3/2
V
.

Because Φ ∈ L∞(0, T ;H) ∩ L2(0, T ;V), we deduce from (2.8) that

(3.3) ‖∂tΦ‖L4/3(0,T ;V′) 6 C,

which is not sufficient to obtain the uniqueness for weak solutions directly.

Notice that

(3.4) ‖Φ‖L4(0,T ;L4) 6 ‖Φ‖
1/2
L∞(0,T ;H)‖Φ‖

1/2
L2(0,T ;V) <∞.

Thanks to (2.7) and (2.8), if we set

Φ′
1 = −AΦ− CΦ+ f, Φ′

2 = −B(Φ,Φ),

then

Φ′
1 ∈ L2(0, T ;V′), Φ′

2 ∈ L4/3(0, T ;L4/3),

and

∂tΦ = Φ′
1 +Φ′

2 ∈ L2(0, T ;V′) + L4/3(0, T ;L4/3).

By standard extension and mollification, one can derive

(3.5)
d

dt
(Φ,Ψ)H = 〈Φ′

1,Ψ〉V′,V + 〈Φ′
2,Ψ〉L4/3,L4 + 〈Ψ′

1,Φ〉V′,V + 〈Ψ′
2,Φ〉L4/3,L4.

Then (3.1) follows from (3.5).
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Noticing that (CΨ,Φ)H = −(CΦ,Ψ)H, we integrate (3.5) on [ε, t] ⊂ (0, T ) and

deduce

(Ψ(t),Φ(t))H − (Ψ(ε),Φ(ε))H + 2

∫ t

ε

(Ψ,Φ)V ds

= −

∫ t

ε

[b(Ψ,Ψ,Φ) + b(Φ,Φ,Ψ)] ds+

∫ t

ε

〈f,Φ+Ψ〉ds.

Letting ε→ 0+ and using (2.9), we obtain

(3.6) (Ψ(t),Φ(t))H − ‖Φ0‖
2
H + 2

∫ t

0

(Ψ,Φ)V ds

= −

∫ t

0

[b(Ψ,Ψ,Φ) + b(Φ,Φ,Ψ)] ds+

∫ t

0

〈f,Φ +Ψ〉ds.

Then (3.2) follows from (3.6).

Letting Z = Ψ− Φ, we deduce from (3.2) and (3.6) that

‖Z(t)‖2H = ‖Ψ(t)‖2H + ‖Φ(t)‖2H − 2(Ψ(t),Φ(t))H

= −2

∫ t

0

‖Z(s)‖2V ds+ 2

∫ t

0

[b(Ψ,Ψ,Φ) + b(Φ,Φ,Ψ)] ds

= −2

∫ t

0

‖Z(s)‖2V ds+ 2

∫ t

0

b(Z,Z,Φ)ds.

Here we use

b(Ψ,Ψ,Φ) = b(Z,Ψ,Φ) + b(Φ,Ψ,Φ) = b(Z,Z,Φ) + b(Φ,Ψ,Φ),

and

b(Φ,Ψ,Φ) + b(Φ,Φ,Ψ) = b(Φ,Ψ,Φ)− b(Φ,Ψ,Φ) = 0.

Recalling (2.1) and (3.4),
∫ t

0

b(Z,Z,Φ)ds 6 C

∫ t

0

‖Z‖
1/2
H

‖Z‖
3/2
V

‖Φ‖L4 ds

6

∫ t

0

‖Z‖2V ds+ C

∫ t

0

‖Z‖2H‖Φ‖
4
L4 ds.

Thus,

(3.7) ‖Z(t)‖2H 6 C

∫ t

0

‖Z(s)‖2H‖Φ(s)‖
4
L4 ds.

Application of the Gronwall inequality gives
∫ t

0

‖Z(s)‖2H‖Φ(s)‖
4
L4 ds ≡ 0,

and therefore, ‖Z(t)‖2
H
≡ 0, i.e., Ψ = Φ. �
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Theorem 3.2 (Existence). For f ∈ V′, Φ0 ∈ H there exists a unique weak solu-

tion Φ to problem (2.8) with the initial data Φ0. Moreover, if f ∈ H, Φ0 ∈ V, then Φ

is a strong solution.

P r o o f. We obtain from (3.2) that

(3.8) ‖Φ(t)‖2H +

∫ t

0

‖Φ(s)‖2V ds 6 ‖Φ0‖
2
H + t‖f‖2V′.

This gives that

(3.9) sup
t∈[0,T ]

‖Φ(t)‖2H +

∫ T

0

‖Φ(t)‖2V dt 6 2‖Φ0‖
2
H + 2T ‖f‖2V′.

Estimate (3.9) is sufficient for us to construct a weak solution Φ to (2.8) by approx-

imation. Theorem 3.1 says that Φ is unique.

Next, taking ψ = AΦ in (2.8), we obtain from (2.5) and (2.6) that

1

2

d

dt
‖Φ‖2V + ‖AΦ‖2H = − b(Φ,Φ,AΦ)− (CΦ,AΦ) + 〈f,AΦ〉

6
1

2
‖AΦ‖2H + C(1 + ‖Φ‖2H‖Φ‖

2
V)‖Φ‖

2
V + C‖f‖2H.

Hence,

(3.10)
d

dt
‖Φ‖2V + ‖AΦ‖2H 6 C(1 + ‖Φ‖2H‖Φ‖

2
V)‖Φ‖

2
V + C‖f‖2H.

From (3.9) we have ∫ T

0

‖Φ(t)‖2H‖Φ(t)‖
2
V dt 6 C.

By the Gronwall inequality,

(3.11) sup
t∈[0,T ]

‖Φ(t)‖2V +

∫ T

0

‖AΦ(t)‖2H dt 6 C,

where C = C(T, ‖f‖H, ‖Φ0‖V). Substituting (3.11) into (2.5), we derive from (2.8)

that

(3.12)

∫ T

0

‖∂tΦ(t)‖
2
H dt 6 C.

�

By Theorem 3.2, for f ∈ V′ we can define an operator from H into V, denoted by

S(t) : Φ0 7→ Φ(t), where Φ is the unique weak solution to (2.8) with the initial data

Φ0 ∈ H and the external force f .
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R e m a r k 3.3. Let f ∈ V′, S(t) : Φ0 7→ Φ(t). Then

{
S(t) = S(t− s)S(s) ∀ t > s > 0,

S(0) = IdH.

Before studying higher regularity, we first recall the uniform Gronwall inequality.

Lemma 3.4. Let g, h, y be three positive locally integrable functions on (0,∞)

such that y′ is locally integrable on (0,∞), and which satisfy

y′ 6 gy + h ∀ t > 0,

and

∫ t+τ

t

g(s) ds 6 a1,

∫ t+τ

t

h(s) ds 6 a2,

∫ t+τ

t

y(s) ds 6 a3 ∀ t > 0,

where τ , a1, a2, a3 are positive constants. Then

y(t+ τ) 6
(a3
τ

+ a2

)
ea1 ∀ t > 0.

Theorem 3.5. For f ∈ H, Φ0 ∈ H, let Φ be the weak solution obtained in

Theorem 3.2. Then Φ ∈ C((0, T ];D(A)).

P r o o f. For any Φ0 ∈ H, we can deduce from (3.9) and (3.10) by Lemma 3.4 that

(3.13) sup
t∈[τ,T ]

‖Φ(t)‖2V +

∫ T

τ

‖AΦ(t)‖2H dt+

∫ T

τ

‖∂tΦ(t)‖
2
H dt 6 Cτ

for any 0 < τ < T , where Cτ = C(τ, T, ‖f‖H, ‖Φ0‖H).

Differentiate (2.8) w.r.t. time t and then obtain

(3.14) ∂tΦt + AΦt + B(Φt,Φ) + B(Φ,Φt) + CΦt = 0,

where Φt = ∂tΦ. Multiplying (3.14) by Φt, we deduce that

1

2

d

dt
‖Φt‖

2
H+‖Φt‖

2
V = −b(Φt,Φ,Φt) = b(Φt,Φt,Φ) 6 C‖Φ‖

1/2
H

‖Φ‖
1/2
V

‖Φt‖
1/2
H

‖Φt‖
3/2
V
.

Then

(3.15)
d

dt
‖Φt‖

2
H + ‖Φt‖

2
V 6 C‖Φ‖2H‖Φ‖

2
V‖Φt‖

2
H.
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Using Lemma 3.4 again,

(3.16) sup
t∈[τ,T ]

‖Φt(t)‖
2
H +

∫ T

τ

‖Φt(t)‖
2
V dt 6 Cτ .

Now, taking the H-inner product of (3.14) with AΦt, we obtain

1

2

d

dt
‖Φt‖

2
V + ‖AΦt‖

2
H = −b(Φt,Φ,AΦt)− b(Φ,Φt,AΦt)− (CΦt,AΦt).

Using Hölder’s inequality, Young’s inequality, (2.3), and (2.6), we deduce that

d

dt
‖Φt‖

2
V + ‖AΦt‖

2
H 6 C[1 + (‖Φ‖2H + ‖Φt‖

2
H)‖Φ‖

2
V]‖Φt‖

2
V + C‖AΦ‖2H.

Lemma 3.4 together with (3.9), (3.13), (3.16) yields that

(3.17) sup
t∈[τ,T ]

‖Φt(t)‖
2
V +

∫ T

τ

‖AΦt(t)‖
2
H dt 6 Cτ .

Combining (3.13) and (3.17), that is, Φ, ∂tΦ ∈ L2(τ, T ;D(A)), we find that Φ ∈

C([τ, T ];D(A)). �

R e m a r k 3.6. By induction, we can prove Φ ∈ C∞((0, T ];D(A)). Furthermore,

if f ∈ C∞(Ω) additionally, then Φ ∈ C∞(Ω× (0, T ]).

Theorem 3.7. If f ∈ H, then S(t) : H → V is locally Lipschitz for t > 0.

P r o o f. For any t > 0 we take T > t. Let Ψ,Φ be two weak solutions to (2.8)

with Ψ0,Φ0 ∈ H and Z = Ψ − Φ. Then Z ∈ C([0, T ];H) ∩ L2(0, T ;V) satisfies

(3.18)





d

dt
Z + AZ + B(Ψ, Z) + B(Z,Φ) + CZ = 0, 0 < t < T,

Z(0) = Ψ0 − Φ0.

By similar procedures to (3.7), we derive

‖Z(t)‖2H 6 ‖Z(0)‖2H + C

∫ t

0

‖Z(s)‖2H‖Φ(s)‖
4
L4 ds.

Using the Gronwall inequality, we deduce that

(3.19) sup
t∈[0,T ]

‖Z(t)‖2H +

∫ T

0

‖Z(t)‖2V dt 6 C‖Z(0)‖2H = C‖Ψ0 − Φ0‖
2
H,

where C = C(T, ‖f‖V′, ‖Φ0‖H).
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Multiplying (3.10) by t, we get

d

dt
(t‖Φ‖2V) + t‖AΦ‖2H 6 C(1 + ‖Φ‖2H‖Φ‖

2
V)(t‖Φ‖

2
V) + ‖Φ‖2V + C‖f‖2H.

Using the Gronwall inequality again, we deduce that

(3.20) sup
t∈[0,T ]

(t‖Φ(t)‖2V) 6 C,

where C = C(T, ‖f‖H, ‖Φ0‖H).

Multiplying (3.18)1 by AZ and using (2.4), we obtain that

1

2

d

dt
‖Z‖2V + ‖AZ‖2H = − b(Ψ, Z,AZ)− b(Z,Φ,AZ)− (CZ,AZ)H

6
1

2
‖AZ‖2H + C(‖Ψ‖2H‖Ψ‖2V + ‖Φ‖2H‖Φ‖

2
V)‖Z‖

2
V

+ C(‖Ψ‖4V + ‖Φ‖4V)‖Z‖
2
H + C‖Z‖2V.

Thus,

(3.21)
d

dt
(t‖Z‖2V) + t‖AZ‖2H 6 C(‖Ψ‖2H‖Ψ‖2V + ‖Φ‖2H‖Φ‖

2
V)(t‖Z‖

2
V)

+ C(t‖Ψ‖4V + t‖Φ‖4V)‖Z‖
2
H + C‖Z‖2V.

Estimates (3.9), (3.19), (3.20) imply that

∫ T

0

(t‖Ψ(t)‖4V + t‖Φ(t)‖4V)‖Z(t)‖
2
H dt 6 C‖Ψ0 − Φ0‖

2
H.

Application of the Gronwall inequality to (3.21) gives

sup
t∈[0,T ]

(t‖Z(t)‖2V) 6 C‖Ψ0 − Φ0‖
2
H.

Therefore, for any fixed t ∈ (0, T ],

(3.22) ‖Ψ(t)− Φ(t)‖2V = ‖Z(t)‖2V 6
C

t
‖Ψ0 − Φ0‖

2
H,

where C = C(T, ‖f‖H, ‖Ψ0‖H, ‖Φ0‖H). �
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Now we study the linearized problem to (2.8). Let f ∈ V′, Φ0 ∈ H, Φ(t) = S(t)Φ0,

define F ′
(Φ0,f)

(t) : D(A) → H,

F ′
(Φ0,f)

(t) : w 7→ −Aw − B(w,Φ(t)) − B(Φ(t), w) − Cw.

Theorem 3.8. If f ∈ V′, Φ0 ∈ H, then there exists a family of linear operators

{L(Φ0,f)(t) ; t > 0} such that:

(i) For any W0 ∈ H, let Φ(t) = S(t)Φ0 and W (t) = L(Φ0,f)(t)W0. Then for all

T > 0, W ∈ C([0, T ];H) ∩ L2(0, T ;V) is the unique weak solution to

(3.23)

{
∂tW + AW + B(W,Φ) + B(Φ,W ) + CW = 0, t > 0,

W (0) =W0.

(ii) {
L(Φ0,f)(t) = L(Φ(s),f)(t− s)L(Φ0,f)(s) ∀ t > s > 0,

L(Φ0,f)(0) = IdH.

(iii) If f ∈ H, then L(Φ0,f)(t) ∈ L(H,V) for t > 0.

P r o o f. The proof is similar to those of Theorems 3.2, 3.5, and 3.7. Multiplying

(3.23)1 by W yields

1

2

d

dt
‖W‖2H + ‖W‖2V = −b(W,Φ,W ) = b(W,W,Φ)

6
1

2
‖W‖2V + C‖Φ‖2H‖Φ‖

2
V‖W‖2H.

Thus,
d

dt
‖W‖2H + ‖W‖2V 6 C‖Φ‖2H‖Φ‖

2
V‖W‖2H.

Using the Gronwall inequality, we deduce that

(3.24) sup
t∈[0,T ]

‖W (t)‖2H +

∫ T

0

‖W (t)‖2V dt 6 C‖W0‖
2
H,

where C = C(T, ‖f‖V′, ‖Φ0‖H). Let L(Φ0,f)(t) : W0 7→ W (t). Then (i) follows

from (3.24) and (ii) is derived from (i).

Taking the H-inner product of (3.23)1 w.r.t. AW , we obtain

1

2

d

dt
‖W‖2V + ‖AW‖2H = −b(W,Φ,AW )− b(Φ,W,AW )− (CW,AW )

6
1

2
‖AW‖2H + C(1 + ‖Φ‖2H‖Φ‖

2
V)‖W‖2V + C‖Φ‖4V‖W‖2H.
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Then
d

dt
‖W‖2V + ‖AW‖2H 6 C(1 + ‖Φ‖2H‖Φ‖

2
V)‖W‖2V + C‖Φ‖4V‖W‖2H.

Multiplying it by t, we have

(3.25)
d

dt
(t‖W‖2V)+t‖AW‖2H 6 C(1+‖Φ‖2H‖Φ‖

2
V)(t‖W‖2V)+Ct‖Φ‖

4
V‖W‖2H+‖W‖2V.

Estimates (3.9), (3.20), (3.24) give

∫ T

0

t‖Φ(t)‖4V‖W (t)‖2H dt 6 C‖W0‖
2
H.

Putting it into (3.25), we obtain from the Gronwall inequality that

sup
t∈[0,T ]

(t‖W (t)‖2V) 6 C‖W0‖
2
H.

Therefore, for any fixed t ∈ (0, T ],

‖W (t)‖2V 6
C

t
‖W0‖

2
H,

where C = C(T, ‖f‖H, ‖Φ0‖H). �

4. Semigroups and attractors

For dynamic systems whose states can be described by elements of a complete

metric space (X, dX), we often want to find a family of continuous operators S(t) :

X → X , t > 0, satisfying the semigroup properties

{
S(t) = S(t− s)S(s) ∀ t > s > 0,

S(0) = IdH.

If ϕ is the state of the system at time s, then S(t)ϕ is the state of the system at

time t+s. For problem (2.8), {S(t)}t>0 defined in Section 3 is a continuous operator

semigroup from X to X , X = H or V.

Definition 4.1. Let (X, dX) be a complete metric space and {S(t)}t>0 be a con-

tinuous operator semigroup defined on X .

(i) Operators {S(t)}t>0 are said to be uniformly compact for t large if for every

bounded set K ⊂ X there exists tK > 0 such that
⋃
t>tK

S(t)K is relatively

compact in X .
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(ii) For any nonempty set K ⊂ X we define the ω-limit set of K by

ω(K;X) =
⋂

s>0

⋃

t>s

S(t)K,

where the closures are taken in X .

(iii) A nonempty set K ⊂ X is said to be invariant for {S(t)}t>0 if

K = S(t)K ∀ t > 0.

Speaking informally, the ω-limit set ω(K;X) describes the limit behaviors of all

trajectories starting at Φ0 ∈ K. We can check that if for some t0 > 0,
⋃
t>t0

S(t)K is

nonempty and relatively compact in X , then ω(K;X) is nonempty, compact, and

invariant.

Definition 4.2. Let (X, dX) and {S(t)}t>0 be as in Definition 4.1.

(i) An invariant set A ⊂ X is called an attractor if it possesses an open neighbor-

hood O such that for all ϕ ∈ O,

(4.1) inf
ψ∈A

dX(S(t)ϕ, ψ) → 0 as t→ ∞.

(ii) Let A be an attractor. The largest open set O such that (4.1) is satisfied for all

ϕ ∈ O is called the basin of attraction of A.

(iii) Let A be an attractor and O be its basin of attraction, B ⊂ O. If

(4.2) sup
ϕ∈B

inf
ψ∈A

dX(S(t)ϕ, ψ) → 0 as t→ ∞,

we say that A uniformly attracts B.

(iv) Let A be an attractor. If A is compact and uniformly attracts all bounded sets

in X , then A is said to be a global attractor for {S(t)}t>0.

Obviously, the basin of attraction of a global attractor is X . For a global attrac-

tor A and a bounded invariant set K ⊂ X , for any ε > 0 we derive from (4.2) that

there exists tε,K > 0 such that for any t > tε,K ,

(4.3) K = S(t)K ⊂
⋃

ψ∈A

BX(ψ, ε),

where BX(ψ, ε) is the ball centered at ψ with radius ε in space X . By the compact-

ness of A and the arbitrariness of ε, we have K ⊂ A. Thus, we say that a global

attractor A is maximal for the inclusion relation among the bounded invariant sets.

The maximal property also gives that the global attractor (if exists) is unique.
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Definition 4.3. Let (X, dX) and {S(t)}t>0 be as in Definition 4.1. For an open

subset O of X and B ⊂ O, if for any bounded set K ⊂ O there exists tK,B > 0 such

that for any t > tK,B, S(t)K ⊂ B, then we say that B is absorbing in O.

The bounded absorbing sets are highly related to the global attractor. We de-

duce from (4.3) that any ε-neighborhood of the global attractor is absorbing in X .

Conversely, we can construct a global attractor by bounded absorbing sets. To be

specific, the following theorem is valid (see [6]).

Theorem 4.4. Let (X, dX) and {S(t)}t>0 be as in Definition 4.1. If {S(t)}t>0

are uniformly compact and there exists a bounded set B absorbing in X , then the

ω-limit set A = ω(B;X) is a global attractor. Furthermore, if X is a Banach space

and for each ϕ ∈ X , the mapping t 7→ S(t)ϕ is continuous from [0,∞) into X ,

then A is connected.

5. Existence of the global attractor

Now we go back to problem (2.8).

Lemma 5.1. Let f ∈ H, Φ0 ∈ H. There exists t∗ = t∗(λ1, ‖f‖H, ‖Φ0‖H), s.t.

‖Φ(t)‖2H +

∫ t+1

t

‖Φ(s)‖2V ds 6 C‖f‖2H ∀ t > t∗.

P r o o f. Theorem 3.1 together with the Poincaré inequality gives

1

2

d

dt
‖Φ‖2H + λ1‖Φ‖

2
H 6 〈f,Φ〉.

Using Hölder’s inequality together with Young’s inequality, we deduce that

1

2

d

dt
‖Φ‖2H + λ1‖Φ‖

2
H 6 ‖f‖H‖Φ‖H 6

1

2λ1
‖f‖2H +

λ1
2
‖Φ‖2H.

Then
d

dt
‖Φ‖2H + λ1‖Φ‖

2
H 6

1

λ1
‖f‖2H.

Multiplying this by eλ1t, we derive

d

dt
(eλ1t‖Φ‖2H) 6

1

λ1
eλ1t‖f‖2H.
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Integrating from 0 to t, we deduce that

‖Φ‖2H 6 e−λ1t‖Φ0‖
2
H +

1

λ21
‖f‖2H(1− e−λ1t).

Let

t∗ = max
{
−

1

λ1
ln

‖f‖2
H

λ21‖Φ0‖2H
, 0
}
.

Then for any t > t∗ we have

‖Φ(t)‖2H 6
2

λ21
‖f‖2H.

Estimate (3.8) gives

∫ t+1

t

‖Φ(s)‖2V ds 6 ‖Φ(t)‖2H + ‖f‖2V′ 6 C‖f‖2H.

�

Lemma 5.2. Let f ∈ H, Φ0 ∈ H. Then

‖Φ(t)‖2V +

∫ t+1

t

‖AΦ(s)‖2H 6 C‖f‖2He
C‖f‖4

H ∀ t > t∗ + 1.

P r o o f. We rewrite (3.10) as

(5.1)
d

dt
‖Φ‖2V + ‖AΦ‖2H 6 C‖Φ‖2H‖Φ‖

4
V + C(‖Φ‖2V + ‖f‖2H).

By Lemma 3.4 and Lemma 5.1, we deduce

‖Φ(t)‖2V 6 C‖f‖2He
C‖f‖4

H ∀ t > t∗ + 1.

Integrating (5.1) on [t, t+ 1], we obtain that

∫ t+1

t

‖AΦ(s)‖2H ds 6 ‖Φ(t)‖2V + C

∫ t+1

t

(‖Φ(s)‖2H‖Φ(s)‖
4
V + ‖Φ(s)‖2V + ‖f‖2H) ds

6 C‖f‖2He
C‖f‖4

H + C‖f‖6He
C‖f‖4

H + C‖f‖2H.

Using ‖f‖4
H
6 ‖f‖4

H
+ 1 6 e‖f‖

4
H , we derive

∫ t+1

t

‖AΦ(s)‖2H ds 6 C‖f‖2He
C‖f‖4

H .

�

Lemma 5.3. Let f ∈ H, Φ0 ∈ H. Then

‖AΦ(t)‖2H 6 C‖f‖2He
C‖f‖4

H ∀ t > t∗ + 2.
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P r o o f. For t > t∗ + 1, using (2.5), Lemmas 5.1 and 5.2, we obtain

‖B(Φ,Φ)‖H 6 C‖Φ‖
1/2
H

‖Φ‖V‖AΦ‖
1/2
H

6 C‖f‖
3/2
H

eC‖f‖4
H‖AΦ‖

1/2
H
.

Thus, Lemma 5.2 together with Hölder’s inequality gives

∫ t+1

t

‖B(Φ(s),Φ(s))‖2H ds 6 C‖f‖3He
C‖f‖4

H

(∫ t+1

t

‖AΦ(s)‖2H ds

)1/2

6 C‖f‖4He
C‖f‖4

H .

Noticing that ‖f‖4
H
6 C‖f‖2

H
(1 + ‖f‖4

H
) 6 C‖f‖2

H
eC‖f‖4

H ,

∫ t+1

t

‖B(Φ(s),Φ(s))‖2H ds 6 C‖f‖2He
C‖f‖4

H .

So Lemmas 5.1 and 5.2 together with (2.8) imply that

(5.2)

∫ t+1

t

‖∂sΦ(s)‖
2
H ds 6 C‖f‖2He

C‖f‖4
H .

Recalling (3.15), we have

d

dt
‖∂tΦ‖

2
H + ‖∂tΦ‖

2
V 6 C‖Φ‖2H‖Φ‖

2
V‖∂tΦ‖

2
H.

By Lemma 3.4, Lemma 5.1, Lemma 5.2, and (5.2), we derive for all t > t∗ + 2 that

(5.3) ‖∂tΦ(t)‖
2
H 6 C‖f‖2He

C‖f‖4
H .

Then

‖AΦ‖2H 6 C‖∂tΦ‖
2
H + C‖B(Φ,Φ)‖2H + C‖CΦ‖2H + C‖f‖2H

6 C‖f‖2He
C‖f‖4

H + C‖f‖3He
C‖f‖4

H‖AΦ(t)‖H

6
1

2
‖AΦ‖2H + C‖f‖2He

C‖f‖4
H + C‖f‖6He

C‖f‖4
H

6
1

2
‖AΦ‖2H + C‖f‖2He

C‖f‖4
H .

Therefore,

‖AΦ(t)‖2H 6 C‖f‖2He
C‖f‖4

H ∀ t > t∗ + 2.

�

Lemma 5.1–Lemma 5.3 tell us that for any Φ0 ∈ H there exists a time t∗ depending

on Ω, ‖f‖H, and ‖Φ0‖H, such that S(t)Φ0 goes into a bounded ball in D(A) after

time t∗. Therefore, there exists a bounded absorbing set in D(A). By Theorem 4.4,

we can construct the global attractor.
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Theorem 5.4. Assume that f ∈ H. Then there exists a connected global attrac-

tor A for {S(t)}t>0 in H. Moreover, A is also the connected global attractor in V

and is bounded in [H2(Ω)]2 × [H2(Ω)]2 ×H2(Ω).

P r o o f. Let B = BD(A)(0, C‖f‖
2
H
eC‖f‖4

H). By Lemma 5.3, for any bounded set

K ⊂ V, there exists t∗ > 0 such that S(t)K ⊂ B for all t > t∗ + 2. Thus, B

is absorbing in V. Because the imbedding D(A) →֒ V is compact,
⋃

t>t∗+2

S(t)K is

relatively compact in V and then {S(t)}t>0 are uniformly compact in V. Theorem 4.4

shows that A = ω(B;V) is a connected global attractor in V.

By similar procedures, we can prove that ω(B;H) is a connected global attractor

in H. To obtain ω(B;H) = ω(B;V), we only need to prove that if a sequence in B

converges to some Φ∗ in H, then it converges to Φ∗ in V too. This can be derived

from the interpolation inequality

‖ϕ‖H1(Ω) 6 C‖ϕ‖
1/2
L2(Ω)‖ϕ‖

1/2
H2(Ω) ∀ϕ ∈ H2(Ω),

where C depends on Ω only. �

6. Dimension estimates

We shall prove that S(t) is so-called uniformly differentiable in A.

Lemma 6.1. Let A be the global attractor obtained in Theorem 5.4. Then, for

any fixed t > 0, S(t) is uniformly differentiable in A ⊂ H. That is,

sup
ψ,ϕ∈A

0<‖ψ−ϕ‖H6ε

‖S(t)ψ − S(t)ϕ− L(ϕ,f)(t)(ψ − ϕ)‖H

‖ψ − ϕ‖H
→ 0 as ε→ 0.

P r o o f. For ϕ, ψ ∈ H, set Φ(t) = S(t)ϕ, Ψ(t) = S(t)ψ, then Φ,Ψ ∈ C([0, T ];H)∩

L2(0, T ;V) ∩ C((0, T ];D(A)) for all T > 0. Let Z = Ψ− Φ, then Z satisfies

(6.1)

{
∂tZ + AZ + B(Ψ, Z) + CZ = −B(Z,Φ), 0 < t < T,

Z(0) = ψ − ϕ.

Estimate (3.19) gives

(6.2) sup
t∈[0,T ]

‖Z(t)‖2H +

∫ T

0

‖Z(t)‖2V dt 6 C‖ψ − ϕ‖2H,

where C = C(T, ‖f‖V′, ‖ϕ‖H).
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We rewrite (3.23) as

(6.3)

{
∂tW + AW + B(Ψ,W ) + CW = −B(W,Φ) + B(Z,W ), 0 < t < T,

W (0) =W0,

and set

R = Ψ− Φ− L(ϕ,f)(t)(ψ − ϕ) = Z −W

with W0 = ψ − ϕ and W (t) = L(ϕ,f)(t)W0. Taking the difference of (6.1) and (6.3),

we deduce

(6.4)

{
∂tR+ AR+ B(Ψ, R) + CR = −B(R,Φ)− B(Z,W ), 0 < t < T,

R(0) = 0.

Multiplying (6.4)1 by R, we deduce from (2.2) and the Poincaré inequality that

d

dt
‖R‖2H + ‖R‖2V 6 C(‖Φ‖2H‖Φ‖

2
V + ‖W‖2V + ‖Z‖2V)‖R‖

2
H

+ C(‖Z‖H + ‖W‖H)(‖Z‖
2
V + ‖W‖2V).

Combining (3.24) and (6.2) yields

∫ T

0

(‖Z(t)‖H + ‖W (t)‖H)(‖Z(t)‖
2
V + ‖W (t)‖2V) dt 6 C‖ψ − ϕ‖3H.

Application of the Gronwall inequality gives

sup
06t6T

‖R(t)‖2H +

∫ T

0

‖R(t)‖2V dt 6 C‖ψ − ϕ‖3H

and

(6.5)
‖Ψ(t)− Φ(t)− L(ϕ,f)(t)(ψ − ϕ)‖2

H

‖ψ − ϕ‖2
H

=
‖R(t)‖2

H

‖ψ − ϕ‖2
H

6 C‖ψ − ϕ‖H → 0

as ψ → ϕ in H, where C = C(T, ‖f‖H, ‖ϕ‖H, ‖ψ‖H). This shows that L(ϕ,f)(t) is the

Fréchet differential of S(t) at ϕ ∈ H. Moreover, if ϕ, ψ ∈ A, then ‖ϕ‖H, ‖ψ‖H are

bounded according to Lemma 5.1, and the constant C in (6.5) is independent of ϕ.

�
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Except for the uniformly differentiable property of S(t), we also need some bounds

for the linear operator L(ϕ,f)(t). Estimate (3.24) says that

sup
t∈[0,1]

sup
ϕ∈A

‖L(ϕ,f)(t)‖L(H) 6 CL = CL(‖f‖H).

By Theorem 3.8,

L(ϕ,f)(t) = L(S(⌊t⌋)ϕ,f)(t− ⌊t⌋) ◦ L(S(⌊t⌋−1)ϕ,f)(1) ◦ . . . ◦ L(ϕ,f)(1),

where ⌊t⌋ is the integer part of t. Then

(6.6) sup
ϕ∈A

‖L(ϕ,f)(t)‖L(H) 6 C
⌊t⌋+1
L .

For the global attractor A obtained in Theorem 5.4, we define

q̃j = lim sup
t→∞

sup
ϕ∈A

sup
ψi∈H

‖ψi‖H61
i=1,...,j

1

t

∫ t

0

Tr[F ′
(ϕ,f)(s) ◦Qj(s)] ds,

where Qj(s) = Qj(s, ϕ;ψ1, . . . , ψj) is the projection from H onto the space spanned

by L(ϕ,f)(s)ψ1, . . ., L(ϕ,f)(s)ψj . The number Tr[F ′
(ϕ,f)(s) ◦Qj(s)] is the trace of the

linear operator (of finite rank) F ′
(ϕ,f)(s) ◦ Qj(s). The dimension of A relies on the

negativeness of q̃j . Lemma 6.1 together with (6.6) gives the following theorem.

Theorem 6.2. If

q̃j 6 qj , j = 1, 2, . . .

for a concave function qj with respect to j, and

qm > 0 > qm+1

for an integer m, then the Hausdorff dimension and the fractal dimension can be

estimated by

dimH(A;H) 6 dimF (A;H) 6 m+
qm

qm − qm+1
.

Moreover, if m = 0, then dimH(A;H) = dimF (A;H) = 0.

The proof of Theorem 6.2 (see [6]) relies on the (uniform) Lyapunov numbers and

the (uniform) Lyapunov exponents which indicate the distortion of finite dimensional

volumes produced by S(t). If we can find some qm+1 < 0 6 qm, then we can estimate

the dimension of A by m and qm, qm+1. To obtain our estimates for the dimension

of A, we need the following lemma (see [6]).
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Lemma 6.3. For a family of elements e1, . . . , em of V which is orthonormal in H,

m∑

i=1

‖ei‖
2
V > λ1 + . . .+ λm,

where {λi}i∈N is the complete sequence of eigenvalues of A, 0 < λ1 6 λ2 6 . . ..

According to Theorem 5.4, A is not only a global attractor in H but also in V, so

the dimension of A in V, and the relation between dimensions of A in V and in H

are also of interest. To this end, we introduce the following lemma which can be

verified easily.

Lemma 6.4. Let (X, dX), (Y, dY ) be two complete metric spaces. Assume that

Π: X → Y satisfies

dY (Π(ϕ),Π(ψ)) 6 LdX(ϕ, ψ) ∀ϕ, ψ ∈ X,

for a nonnegative number L > 0. Then for any K ⊂ X we have

dimH(Π(K);Y ) 6 dimH(K;X),

dimF (Π(K);Y ) 6 dimF (K;X).

Using Theorems 5.4, 6.2 and Lemmas 6.1, 6.3, 6.4, we can derive the following

theorem.

Theorem 6.5. Let A be the global attractor obtained in Theorem 5.4. Then

dimH(A;H) = dimH(A;V) 6 dimF (A;H) = dimF (A;V) 6 C0‖f‖
4
H,

where C0 depends on Ω only. Moreover, if C0‖f‖
4
H
< 1, then

dimH(A;H) = dimH(A;V) = dimF (A;H) = dimF (A;V) = 0.

P r o o f. Let Φ(t) = S(t)ϕ. Then

Tr[F ′
(ϕ,f)(s) ◦Qj(s)] =

j∑

i=1

〈F ′
(ϕ,f)(s)ei(s), ei(s)〉

= −

j∑

i=1

[‖ei(s)‖
2
V + b(ei(s),Φ(s), ei(s))]

= −

j∑

i=1

[‖ei(s)‖
2
V − b(ei(s), ei(s),Φ(s))].
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For the last term, we deduce from (2.2) that

∣∣∣∣
j∑

i=1

b(ei(s), ei(s),Φ(s))

∣∣∣∣ 6 C

j∑

i=1

‖Φ(s)‖
1/2
H

‖Φ(s)‖
1/2
V

‖ei(s)‖
1/2
H

‖ei(s)‖
3/2
V

6
1

2

j∑

i=1

‖ei(s)‖
2
V + Cj‖Φ(s)‖2H‖Φ(s)‖

2
V.

Therefore,

(6.7) Tr[F ′
(ϕ,f)(s) ◦Qj(s)] 6 −

1

2

j∑

i=1

‖ei(s)‖
2
V + Cj‖Φ(s)‖2H‖Φ(s)‖

2
V.

It is known that (in both the non-slip case and the periodic case) λj > cj, where c

depends on Ω only. Therefore,

Tr[F ′
(ϕ,f)(s) ◦Qj(s)] 6 −

c

4
j2 + Cj‖Φ(s)‖2H‖Φ(s)‖

2
V,

which implies

q̃j 6 −
c

4
j2 + Cj lim sup

t→∞

1

t

∫ t

0

‖Φ(s)‖2H‖Φ(s)‖
2
V ds.

Taking advantage of (3.9) and Lemma 5.1, we derive

q̃j 6 −
c

4
j2 + Cj‖f‖4H = −

c

4
j(j − C0‖f‖

4
H) , qj .

Take m = ⌊C0‖f‖
4
H
⌋, then qm > 0 > qm+1. Thus

dimH(A;H) 6 dimF (A;H) 6 m+
qm

qm − qm+1
.

Noticing that

qm
qm − qm+1

6
m(C0‖f‖

4
H
−m)

2m− C0‖f‖4H + 1
6 C0‖f‖

4
H −m,

we deduce

dimH(A;H) 6 dimF (A;H) 6 C0‖f‖
4
H.

Now we are going to check that the dimensions in H are equal to those in V,

respectively. This results from two applications of Lemma 6.4.

On the one hand, let X = V, Y = H, Π = Id : V → H, then by Lemma 6.4,

dimH(A;H) 6 dimH(A;V),

dimF (A;H) 6 dimF (A;V).

352



On the other hand, by Theorem 3.7, for t > 0, S(t) is locally Lipschitz continuous

from H into V. Take X = (B, ‖ · ‖H), B = BD(A)(0, C‖f‖
2
H
eC‖f‖4

H), and Y = V,

Π = S(t). Then by Lemma 6.4,

dimH(A;H) = dimH(S(t)A;H) > dimH(A;V),

dimF (A;H) = dimF (S(t)A;H) > dimF (A;V).

�

From Theorem 6.5, we know that if ‖f‖H is sufficiently small, then the Hausdorff

dimension and the fractal dimension of A vanish. To be specific, the following

proposition is valid.

Proposition 6.6. There exists a small positive number ε0 > 0 depending on Ω

only, such that if ‖f‖H < ε0, then (2.8) has a unique stationary solution ψ ∈ V which

is globally asymptotically stable, i.e., A = {ψ}.

P r o o f. Because ψ is a stationary solution to (2.8), we have

Aψ + B(ψ, ψ) + Cψ = f.

Acting on ψ, we obtain that

‖ψ‖2V = 〈f, ψ〉 6 λ
−1/2
1 ‖f‖H‖ψ‖V.

Therefore,

(6.8) ‖ψ‖V 6 λ
−1/2
1 ‖f‖H.

Then we can construct a stationary weak solution ψ to (2.8) by the Galerkin method.

We omit the details here. Each weak solution Φ(x, t) can be written as Φ(x, t) =

ψ(x) + Z(x, t), where Z satisfies





d

dt
Z + AZ + B(Φ, Z) + B(Z,ψ) + CZ = 0,

Z(0) = Φ(0)− ψ.

Similarly to (3.7), we deduce that

d

dt
‖Z‖2H + ‖Z‖2V 6 C‖ψ‖2H‖ψ‖

2
V‖Z‖

2
H.

Substituting (6.8) into the Poincaré inequality, we derive

d

dt
‖Z‖2H + λ1‖Z‖

2
H 6 C‖f‖4H‖Z‖

2
H.
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Hence,
d

dt
‖Z‖2H + (λ1 − C‖f‖4H)‖Z‖

2
H 6 0.

If ‖f‖H is sufficiently small such that

λ1 − C‖f‖4H 6
λ1
2
,

then
d

dt
‖Z‖2H +

λ1
2
‖Z‖2H 6 0.

This implies

‖Z(t)‖2H 6 e−λ1t/2‖Φ(0)− ψ‖2H → 0 as t→ ∞.

Consequently, the stationary solution is unique and A = {ψ}. �

Corollary 6.7. Under the assumption of Proposition 6.6, for any Φ0 ∈ H, Φ(t) =

S(t)Φ0 we have for all 0 < α < 1,

‖Φ(t)− ψ‖Cα(Ω) → 0 as t→ ∞.

P r o o f. Because ψ ∈ A, we have ψ ∈ D(A). Interpolation between L2 and H2

gives

‖Φ(t)− ψ‖L∞(Ω) 6 C‖Φ(t)− ψ‖
1/2
L2 ‖Φ(t)− ψ‖

1/2
H2 6 C‖Φ(t)− ψ‖

1/2
H

‖AΦ(t)− Aψ‖
1/2
H

6 C‖Φ(t)− ψ‖
1/2
H

→ 0.

For any 0 < α < 1, we take α < α′ < 1, the imbeddings H2(Ω) →֒ Cα
′

(Ω) →֒

Cα(Ω) →֒ C(Ω) are continuous. Then Φ(t)−ψ converges to 0 in C(Ω). Interpolation

of Hölder’s spaces yields

‖Φ(t)− ψ‖Cα(Ω) 6 C‖Φ(t)− ψ‖
1−α/α′

C(Ω)
‖Φ(t)− ψ‖

α/α′

Cα′(Ω)
6 C‖Φ(t)− ψ‖

1−α/α′

C(Ω)
→ 0.

�

For lower bounds of the dimension of the global attractor, we should estimate the

dimension of the local unstable set in a neighborhood of a stationary point. However,

it is not easy to construct such a good stationary point in general case.

For a special case f2 = 0, f3 = 0, we let ANS be the global attractor to the 2D

Navier-Stokes equations, then ANS × {0} × {0} ⊂ A. The lower bounds for the

Hausdorff dimension and for the fractal dimension of the global attractor to the 2D

Navier-Stokes equations can also be viewed as those for the tropical climate model,

dimH(A;V) = dimH(A;H) > dimH(ANS ;H),

dimF (A;V) = dimF (A;H) > dimF (ANS ;H).

For lower bounds of the dimension of ANS , see [1].
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