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Abstract. It is well known that in the case of constant dielectric permittivity and magnetic
permeability, the electric field solving the Maxwell’s equations is also a solution to the wave
equation. The converse is also true under certain conditions. Here we study an intermediate
situation in which the magnetic permeability is constant and a region with variable dielectric
permittivity is surrounded by a region with a constant one, in which the unknown field
satisfies the wave equation. In this case, such a field will be the solution of Maxwell’s
equation in the whole domain, as long as proper conditions are prescribed on its boundary.
We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-
wave equation coupling problem in an inexpensive and reliable way. Optimal convergence
in natural norms under reasonable assumptions holds for such a scheme, which is certified
by numerical exemplification.
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1. Motivation

The aim of this work is to study a Maxwell-wave equation coupling problem for

an unknown field defined in a bounded simply connected two- or three-dimensional

Lipschitz domain Ω.

The solution of coupling problems for two or more types of partial differential

equations that hold in complementary domains is a subject of growing interest. This

is mostly due to the need of modeling interactive phenomena occurring in different

neighboring regions, such as flow in a porous medium surrounded by shallow water

flow. The coupling problem for the classical wave equation and Maxwell’s equations
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has been shown to be a problem of paramount importance in the detection of objects

through the solution of coefficient inverse problems for both equations, as reported

in [8], [12], [34], [35]. However, to the best of the authors’ knowledge, a rigorous

study of the well-posedness of such a coupling problem and its numerical solution

was lacking. This is precisely the main novelty of this article.

Actually, beyond the above aspect, our motivation to study such a coupling prob-

lem is multifold. First, noting that Maxwell’s equations reduce to the wave equation

for a solenoidal field, wherever ε is constant, the Maxwell-wave equation coupling

problem does correspond to Maxwell’s equations in Ω, as long as we can ensure

that its solution is divergence free in the sub-domain where the wave equation hold.

Actually, this is an issue directly connected to the conditions under which we can

also recover Maxwell’s equations from the wave equation, in which case both equa-

tions are equivalent. Many authors have studied such conditions. For instance,

in [33] the author highlights a condition on the divergence and the curl of the initial

data. Alternatively we can achieve equivalence by requiring a condition only on the

divergence of the initial data, plus a divergence free boundary condition, in case

a classical zero tangential-component boundary condition also holds for the electric

field. However, this is not what we are going to do in this work, and hence in prin-

ciple, Maxwell’s equations will not necessarily hold in the sub-domain where the

wave equation holds. Nevertheless, as a by-product, our study will trivially apply

to the case where Maxwell’s equations for the electric field do hold in the whole

domain Ω. Moreover, since we will not be dealing with the latter case, we will be

free to consider boundary conditions typical of the wave equation, and not as much

of Maxwell’s equations, such as Dirichlet or Neumann boundary conditions.

Whatever the case, the problem at hand is solved here by means of an explicit P1

finite-element scheme. We can show that this is indeed a reliable numerical solution

tool, provided the coupled equations are written in a suitable variational form. As

far as the pure wave equation is concerned, we refer to [25] in this respect. On the

other hand, for Maxwell’s equations, this form corresponds to the AVF-Augmented

Variational Formulation thoroughly studied by Ciarlet Jr. (cf. [18]) in the static and

time-harmonic cases and in Jamelot [24] and Ciarlet Jr., Jamelot [19] in the time-

dependent case. An adaptive method for the time-harmonic Maxwell equations,

based on this approach, showed to be particularly efficient in [2], [3]. As we should

emphasize, in the framework considered here the difficulties brought about by corner

singularities are absent. However, nonnegligible additional complexities must be

dealt with, stemming form the fact that the dielectric permittivity varies in space.

This is one of the main reasons that compelled the authors to carry out in detail

a rigorous analysis of a P1 lumped-mass approximation of Maxwell’s equations in [10].

As a matter of fact, to the best of their knowledge, such results were lacking in the
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literature. For instance, the case of a variable permittivity had been addressed in

[20], [22], but not for conforming finite elements, while in [4], [18], [19] conforming

finite elements are dealt with, though for constant coefficients.

Incidentally, the standard conforming P1 FEM is a particularly tempting possi-

bility to solve Maxwell’s equations as a simple and inexpensive method at a time.

However, it is not always a reliable method for this purpose. Approximately four

decades ago, this motivated Nédélec to propose ago a family of H(curl)-conforming

methods to solve these equations (cf. [32]), also known as edge elements. These

methods are still widely in use, and comprehensive descriptions thereof can be found

in [13] and [31]. Alternatively, the solution of the time-dependent Maxwell equations

with conforming nodal finite elements was considered in the early nineties (cf. [4]) for

convex domains. Later on, specialists studied formulations of the static or the time-

harmonic Maxwell equations suitable for a numerical solution with nodal elements,

even in nonconvex domains. In this respect, we refer to [21], [24], [19] and [5]. Such

studies revealed the adequacy of nodal elements, at least in some relevant practical

situations. Underlying this work lies precisely one such a case, characterized by the

fact that Maxwell’s equations in a given simply connected domain are coupled with

the wave equation in a surrounding domain. Actually, by applying a mass-lumping

explicit P1 finite-element scheme to such a Maxwell-wave equation coupling problem,

we establish here that optimal approximations of Maxwell’s equations in terms of

the electric field are also generated, provided a classical CFL condition is fulfilled.

An outline of this paper is as follows: In Section 2 the model problem being solved

is described in detail together with its equivalent variational form. Well-posedness

of this problem is established. In Section 3 a space discretization of the model

problem by the finite element method combined with a standard finite-difference time

discretization is presented; the stability condition to be fulfilled by this numerical

model, together with the resulting optimal error estimates are also given. In Section 4

a numerical validation of the error estimates is provided, followed by conclusions and

final remarks given in Section 5.

2. The model problem

We study a Maxwell-wave equation coupling problem in a bounded simply con-

nected two- or three-dimensional Lipschitz domain Ω in the following particular

framework:

Maxwell’s equations hold in a simply connected sub-domain Ωin whose clo-

sure is completely immersed in Ω, while the wave equation holds in the com-

plementary sub-domain Ωout. Let Γ be the interface between Ωin and Ωout. In

Figure 1 (a) we sketch problem’s geometry for a rectangular domain Ω, together
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with a typical finite-element mesh thereof in Figure 1 (b). We assume that the

magnetic permeability of the medium in Ωin is constant, so that Maxwell’s equa-

tions can be expressed therein in terms of the sole electric field denoted by e.

We also denote by e the unknown field satisfying the wave equation in the sub-

domain Ωout.

Γ

Ωin

Ωout

ε> 1

ε=1

(a) Ω=Ωin ∪ Ωout ∪ Γ

Γ

Ωin

Ωout

(b) FE mesh in Ω

Figure 1. Maxwell-wave equation coupling in Ω.

For the sake of conciseness, in this work we only address the case where e satisfies

homogeneous Dirichlet boundary conditions. In doing so we rule out the occurrence

of singularities in the presence of re-entrant corners. As far as the authors can

see, these conditions are only of academic interest in case Maxwell’s equations also

hold in the outer layer Ωout. However, it can be established that the reliability

results given in the sequel are derived from those that hold for other uncoupling

boundary conditions carrying a physical meaning. In particular this assertion holds

true for the case of absorbing boundary conditions studied in [10]. As pointed out in

Section 1, the latter correspond to situations addressed in [8], [12], [30], [29], [28], [27].

Bearing in mind this introductory statement, let us switch to the description of the

problem to solve.

2.1. Maxwell-wave equation coupling. Referring to Figure 1 (a), we wish

to find a field e defined in a bounded simply connected domain Ω of ℜN with

N = 2 or 3, satisfying Maxwell’s equations in the sub-domain Ωin occupied

by a medium having dielectric permeability ε and the wave equation with con-

stant wave speed v in the complementary sub-domain Ωout. Although this is

not essential, in order to ensure a suitable regularity of e, we consider that the

dielectric permittivity ε is continuous and takes a constant value ε0 on the in-

terface Γ between Ωout and Ωin, say, ε0 = 1 and we take v = 1. In doing so,
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we extend the function ε by one in Ωout for convenience (cf. Figure 1 (a)). In

order to claim the validity of the analytical results given in [10], we assume in

this work that ε belongs to W 2,∞(Ω) and ε > 1 everywhere. Actually the as-

sumption that ε attains a minimum in Ωout is not essential for the methodology

studied in this paper to work. However, as far as we can see, it guarantees op-

timal convergence results in the case of boundary conditions other than Dirich-

let conditions (cf. [10]). In this respect we also refer to Remark (i) in Subsec-

tion 2.6 hereafter.

Let V be the space H1
0 (Ω) and V be [V ]N . Given (e0; e1) in V × V satisfying

∇ · (εe0) = ∇ · (εe1) = 0, together with f ∈ H(div,Ω), satisfying ∇ · f = 0 for all

t ∈ (0, T ), we wish to

(2.1)





Find e ∈ V := H2[(0, T ); {L2(Ω)}N ] ∩ L2[(0, T );V]

such that

ε∂tte+∇×∇× e = f in Ωin × (0, T ),

and

∂tte−∆e = f in Ωout × (0, T ),

with the initial conditions

e(·, 0) = e0(·), and ∂te(·, 0) = e1(·) in Ω.

At this point it is important to emphasize that, usually, in mathematical models

coupling two equations in different domains, two sets of unknowns correspond to

each one of the domains in which the coupling problem is defined. Then some

compatibility condition at the interface Γ between both domains has to be en-

forced (see, e.g., [37]). Typically these conditions are expressed by the coinci-

dence of traces and normal derivatives on Γ from both domains. However, (2.1)

is a simpler problem, and therefore we allowed ourselves to disregard the state-

ment of the problem with two different unknown fields in each domain, since

such compatibility conditions are implicitly satisfied. Indeed, by requiring that

e ∈ {H1(Ω)}N , we force the coincidence on Γ of the traces of the solution e re-

stricted to Ωin and Ωout. For the same reason, normal derivatives on Γ will also

coincide in a sense underlying the actual regularity of e. Nevertheless, for the

sake of clarity, we recast (2.1) in a usual equation coupling form posed in two

nonoverlapping domains with a common interface. With this aim we first introduce

the spaces

Vin := H2[(0, T ); {L2(Ωin)}N ] ∩ L2[(0, T ); {H1(Ωin)}N ],

Vout := H2[(0, T ); {L2(Ωout)}N ] ∩ L2[(0, T ); {H1(Ωout)}N ].
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Now denoting by γ0(A) the trace of a function or field A on Γ and by γ1(A) the

first-order normal derivative of A on Γ in a given but fixed sense (outwards or

inwards Ωout, for instance), we have

(2.2)





Find ein ∈ Vin and eout ∈ Vout such that

ε∂ttein +∇×∇× ein = f in Ωin × (0, T ),

∂tteout −∆eout = f in Ωout × (0, T ),

satisfying at t = 0,

ein = e0 and ∂tein = e1 in Ωin,

eout = e0 and ∂teout = e1 in Ωout,

together with

γ0(eout) = γ0(ein) and γ1(eout) = −γ1(ein) on Γ× (0, T ].

Notice that, in general, the above compatibility condition on γ1 is only satisfied in

the sense of L2[(0, T ); {H−1/2(Γ)}N ], since it cannot hold in a stronger form for

every function of the H1-class. Of course if it happens that eout ∈ {H2(Ωout)}N and
ein ∈ {H2(Ωin)}N for all t ∈ (0, T ], then it holds in L2[(0, T ); {H1/2(Γ)}N ].

Whatever the case, one can easily figure out that, setting eout := e|Ωout
and

ein := e|Ωin
, where e is a solution to (2.1), then the pair (eout; ein) solves problem

(2.2). Conversely, the field e defined by e = eout in Ωout and e = ein in Ωin lies in V
owing to the compatibility condition for γ0, and clearly solves (2.1).

Now we observe that (2.1) implies that Maxwell’s equations hold in Ωin. Indeed,

let u be the function ∇ · (εe). Taking the divergence of both sides of the second
equation of (2.1) we have:

utt = 0 in Ωin × (0, T ).

Taking into account that u|t=0 = ut|t=0 = 0 by our assumption on e0 and e1,

it must hold that ∇ · (εe) = 0 in Ωin × (0, T ). This equation, together with the

second equation, of (2.1) make up Maxwell’s system of equations in Ωin for the sole

electric field.

Notice that the same conclusion cannot be drawn for eout. This is because in

Ωout × (0, T ), u := ∇ · e solves a wave equation utt − ∆u = 0 with zero initial

conditions. But since zero boundary conditions do not necessarily hold for u, this is

not sufficient to infer that u ≡ 0 in Ωout.

We shall prove that a solution to (2.1) exists and is unique, which is a consequence

of Lemma 2.1 given below. However, before addressing the well-posedness of (2.1),

it is important to make some practical considerations about this problem.
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2.2. Notations. Before pursuing, we present some nonstandard notation to be

used in the sequel.

Whenever no confusion is possible we shall refer to n as the outer normal vector

to the boundary of either Ω, Ωout or Ωin. Similarly, the outer normal derivative on

such boundaries will be denoted by ∂n(·).
For any integer l > 1, we denote the standard norm and semi-norm of {Wm,∞(Ω)}l

or {Cm(Ω)}l by ‖·‖m,∞ and |·|m,∞ for m > 0 and the standard norm of {L∞(Ω)}l or
C0(Ω) by ‖·‖∞. Let us further denote by (·, ·)D the inner product of {L2(D)}l if D
is a proper subset of Ω and by (·, ·) the inner product of {L2(Ω)}l, and also denote
by ‖·‖D and ‖·‖ the respective norms. Finally ‖·‖∞,D represents the standard norm

of {C0(D)}l or {L∞(D)}l.

2.3. Well-posedness of (2.1). The well-posedness of (2.1) strongly relies on the

following result:

Lemma 2.1. Let Vε be the subspace of V of those fields v satisfying ∇· (εv) = 0

in Ωin. Denoting the characteristic function of a subset D of Ω by χD, the problem

(2.3)

{
Given g ∈ {L2(Ω)}N find u ∈ Vε such that

∇×∇× u−∇∇ · uχΩout
= g in {H−1(Ω)}N

has a unique solution.

P r o o f. First we note that (2.3) can be recast in the following variational form:

(2.4)

{
Given g ∈ {L2(Ω)}N find u ∈ Vε such that

(∇× u,∇× v) + (∇ · u,∇ · v)Ωout
= (g,v) ∀v ∈ Vε.

The other way around, it is easy to see that any solution of (2.4) is also a solution

to (2.3), and hence both problems are perfectly equivalent. We may then examine

the well-posedness of (2.4), which we do next.

First we define the bilinear form aε : V ×V −→ ℜ by

(2.5) aε(u,v) := (∇× u,∇× v) + (∇ · {εu},∇ · {εv}).

EquippingV with the standard norm ofH1(Ω), aε is seen to be continuous, according

to the following argument:

(2.6)





aε(u,v) 6 ‖∇× u‖‖∇× v‖
+{‖ε∇ · u‖+ ‖∇ε · u‖}{‖ε∇ · v‖ + ‖∇ε · v‖} 6 ‖∇× u‖‖∇× v‖
+{‖ε‖∞,Ω‖∇ · u‖+ ‖∇ε‖∞,Ω‖u‖}{‖ε‖∞,Ω‖∇ · v‖+ ‖∇ε‖∞,Ω‖v‖}.

81



Setting cε =
√
2max{‖ε‖∞,Ω, ‖∇ε‖∞,Ω}, by straightforward calculations we obtain

(2.7) aε(u,v) 6 cε{‖u‖2 + ‖∇u‖2}1/2{‖v‖2 + ‖∇v‖2}1/2 ∀ (u;v) ∈ V ×V,

since ‖∇v‖2 = ‖∇·v‖2+‖∇×v‖2 for all v ∈ V. We can also establish that aε(u,v)

defines an inner product in the space V. Indeed, if aε(v,v) = 0 then ∇ × v = 0.

Since Ω is simply connected, there exists a function r ∈ H2(Ω) with zero normal

derivative on ∂Ω, such that v = ∇r. Noticing that ∇ · (εv) = 0, r solves the second

order elliptic equation∇·(ε∇r) = 0 with Neumann boundary conditions. Therefore r

must be constant and hence v = 0.

Actually, the space V equipped with such an inner product is a Hilbert space.

This assertion is the consequence of the following triple inequalities establishing the

equivalence of three norms, with constants c1, c2 and c3:

(2.8){
c1(‖v‖2 + ‖∇v‖2)1/2 6 (‖v‖2 + aε(v,v))

1/2 6 c2(‖v‖2 + ‖∇v‖2)1/2 ∀v ∈ V;

(‖v‖2 + ‖∇v‖2)1/2 6 c3{aε(v,v)}1/2 ∀v ∈ V.

Using again the identity ‖∇v‖2 = ‖∇ × v‖2 + ‖∇ · v‖2 for all v ∈ V, and the

assumed boundedness of both ε and its gradient, by straightforward calculations we

can establish the double inequality in (2.8). On the other hand, the third inequality

in (2.8) can be proved by using the same arguments as in classical proofs of Second

Korn’s inequality (see, e.g., [17], [36]).

We also note that, as a closed subspace of V equipped with the norm ‖∇(·)‖ (or
with the norm {aε(·, ·)}1/2), Vε equipped with the inner product (∇{·},∇{·}) (or
yet with aε({·}, {·}) is also a Hilbert space.
Now we consider the problem

(2.9)





Find (ũ; p) ∈ V × L2(Ωin) such that

aε(ũ,v)− (p,∇ · {εv})Ωin
= (g,v) ∀v ∈ V,

(∇ · {εũ}, q)Ωin
= 0 ∀ q ∈ L2(Ωin).

It is easy to check that ũ solves problem (2.4). Thus, in case a solution to (2.9)

exists, (2.4) will have a unique solution. Indeed let ū be a solution of (2.4) for g ≡ 0.

Taking v = ū in (2.4), we infer that ∇× ū = 0 and ∇ · (εū) = 0 in Ω. Thus, here

again there exists a function r ∈ H2(Ω), which is such that ū = ∇r, r is constant

on ∂Ω and whose first-order normal derivative ∂nr vanishes on ∂Ω. It follows that r

solves the equation

(2.10)

{
∇ · (ε∇r) = 0 in Ω,

∂nr = 0 on ∂Ω.

Relations (2.10) only hold if r is equal to a constant in Ω and hence ū ≡ 0 as required.
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Now all that is left to do is establishing the existence and uniqueness of a solution

to problem (2.9). With this aim we first note that this is a classical saddle-point

problem, in which p plays the role of a Lagrange multiplier. Referring to [14], we

know that it has a unique solution if both conditions below are satisfied:

⊲ aε is coercive in Vε

⊲ The following inf-sup condition holds:

(2.11) ∃β > 0 such that ∀ q ∈ L2(Ωin) inf
v∈V\{0}

(q,∇ · {εv})Ωin

‖∇v‖ > β‖q‖Ωin
.

The coercivity of aε in Vε trivially follows from (2.8).

Let us then prove that (2.11) holds. First of all, we associate with a given

q ∈ L2(Ωin) the function q̃ ∈ L2(Ω), which equals a constant c in Ωout, coincides

with q in Ωin and fulfills
∫
Ω
q̃ = 0. It is clear that meas(Ωout)c+

∫
Ωin

q = 0. Therefore

c = −{meas(Ωout)}−1
∫
Ωin

q and we have

(2.12) ‖q̃‖2 =
{
∫
Ωin

q}2

meas(Ωout)
+

∫

Ωin

q2.

By the Cauchy-Schwarz inequality it trivially follows that

(2.13) ‖q̃‖ 6

{ meas(Ωin)

meas(Ωout)
+ 1

}1/2
‖q‖Ωin

.

Now we recall (see, e.g., [14]) that there exists a constant C̃ independent of q, and

a field w ∈ V such that

(2.14)

{
∇ ·w = q̃ ∈ Ω,

‖∇w‖ 6 C̃‖q̃‖.

Combining (2.14) and (2.13) we find that for C = C̃{meas(Ωin)/meas(Ωout) + 1}1/2
it holds that

(2.15)

{
∇ ·w = q ∈ Ωin,

‖∇w‖ 6 C‖q‖Ωin
.

Setting v = ε−1w, after straightforward calculations, v is seen to satisfy

(2.16)

{
‖∇w‖ > (Ĉ)−1‖∇v‖ with
Ĉ := ‖∇ε‖∞CFP + ‖ε‖∞,

where CFP is the constant of the Friedrichs-Poincaré inequality ‖v‖ 6 CFP ‖∇v‖ for
all v ∈ H1

0 (Ω).
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Finally, combining (2.15) and (2.16) we come up with

(2.17)

{
∇ · {εv} = q ∈ Ωin,

‖∇v‖ 6 ĈC‖q‖Ωin
,

which readily yields (2.11) with β = (ĈC)−1.

Now, in order to complete the proof we still have to establish that (2.4), or yet (2.9),

implies (2.3). With this aim, we integrate by parts on the left-hand side of the

equality in (2.9). Using a self-explanatory notation we obtain

(2.18)

〈∇ ×∇u− ε∇∇ · (εu) + ε∇pχΩin
,v〉{H−1(Ω)}N−V

−
∮

Γ

εpv ·n dΓ = (g,v) ∀v ∈ V.

Next we take successively v = wχΩout
and v = wχΩin

, for w arbitrarily chosen in

{H1
0 (Ωout)}N and {H1

0 (Ωin)}N , respectively, and use the well-known identity −∆u =

∇×∇× u−∇∇ · u, to immediately obtain

(2.19)





−∆u = g in Ωout,

∇×∇× u+ ε∇p = g in Ωin,

∇ · (εu) = 0 in Ωin,

p = 0 on Γ,

u = 0 on ∂Ω.

The condition p = 0 on Γ results from (2.18) and the first two equations of (2.19).

Finally, applying the divergence operator to the second equation of (2.19), we

further obtain

(2.20)

{
∇ · (ε∇p) = 0 in Ωin,

p = 0 on Γ,

which implies that p ≡ 0. Therefore, (2.19) leads to (2.3). �

Theorem 2.1. Problem (2.1) has a unique solution.

P r o o f. Consider the same problem as (2.3), rewritten by dividing both sides of

the equation by ε. Such a problem is a vector elliptic equation, which has a unique

solution. Therefore, from well-known results (see, e.g., [16]), its linear second-order

hyperbolic counterpart assorted with proper initial conditions also has a unique solu-

tion. This is precisely the case of (2.1), whose well-posedness is thus guaranteed. �
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2.4. Variational formulation. In the previous section we avoided the explicit

enforcement of the constraint ∇ · (εe) = 0 in Ωin in the solution of the auxiliary

stationary problem (2.3) by using the symmetric bilinear form aε in its equivalent

variational formulation. In order to solve the time-dependent problem (2.1), we

resort to a similar equivalent variational form, in which the term (∇·{εu},∇·{εv})
is replaced by (∇ · {εu},∇ · v). The resulting formulation is (2.21), given below,
which will be dealt with throughout the remainder of this article. Actually, it can

be viewed as the augmented formulation of Maxwell’s equations exploited in [19].

R em a r k 2.1. We could have used the latter term in the variational formulation

of the auxiliary problem (2.3). The reason why we preferred the former (symmetric)

term is the fact that aε is coercive for any ε, while in the latter case coercivity would

only hold under the assumption that both ‖ε‖∞,Ω and ‖∇ε‖∞,Ω are sufficiently small.

The other way around, in the case of problem (2.1), the above augmented formulation

has some nice properties from the analytical and numerical points of view, which its

symmetric counterpart doesn’t (cf. [10]).

Now, requiring that ẽ|t=0 = e0 and {∂tẽ}|t=0 = e1, we wish to find ẽ in the

space V defined by (2.1), such that for all v ∈ V it holds

(2.21) (ε∂ttẽ,v)+ (∇ẽ,∇v)+ (∇ · {εẽ},∇ ·v)− (∇ · ẽ,∇ ·v) = (f ,v) ∀ t ∈ (0, T ).

Proposition 2.1. The following assertions hold:

(1) The solution to (2.1) is a solution to (2.21).

(2) Any solution to (2.21) is unique, and thus it is the solution to equation (2.1).

P r o o f. (1) First we use the well known operator identity ∇×∇× ≡ −∆+∇∇·
to rewrite the first equation of (2.1) as

(2.22) ε∂tte−∆e+∇∇ · e = f in Ωin × (0, T ).

We know that the solution of (2.1) satisfies ∇∇ · (εu) = 0 in Ωin. If we subtract the

above equation from (2.22), we note that the resulting equation also holds in Ωout,

since ε = 1 therein. Thus, taking an arbitrary v ∈ V and using integration by parts,

we readily obtain

(2.23) (ε∂tte,v)+ (∇e,∇v)− (∇ · e,∇ ·v)+ (∇ · {εe},∇ ·v) = (f ,v) ∀ t ∈ (0, T ),

which establishes that e solves (2.21).
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(2) In order to prove the uniqueness of a solution to (2.21) we resort to the following

energy estimate, with a constant E independent of f , e0 and e1:

(2.24) ‖∂tẽ‖2ε + ‖∇ẽ‖2 + ‖∇ · ẽ‖2ε−1

6 E
{∫ T

0

‖f(·, t)‖2 dt+ ‖e0‖2 + ‖∇e0‖2 + ‖∇ · e0‖2ε−1 + ‖e1‖2ε
}
.

The inequality (2.24) trivially derives from the energy estimate given in [6] for the

variational problem analogous to (2.21) in the case of homogeneous first-order absorb-

ing boundary conditions. The uniqueness follows from (2.24), owing to the linearity

of problem (2.21). �

2.5. Complementary remarks. Before going into the numerical scheme em-

ployed here to solve (2.21) (or yet (2.1)), some important remarks are in order,

namely,

(i) Throughout this paper we make the assumption that ε > 1 everywhere. How-

ever, strictly speaking, this was required only to derive the energy estimate (2.24)

in [6]. Otherwise stated, it is a sufficient condition for the uniqueness of a solution

to (2.1), while it is not necessary for its existence.

(ii) Besides the coincidence of traces γ0, a compatibility condition on the curl of

the solution e of (2.1) (i.e., (2.21)) can be proven to hold on Γ. Indeed, the first

equation of (2.1) implies that ∇ × e ∈ H(curl,Ω) for all t. Thus by a well-known

result (cf. [23]) n×∇× e is the same distribution in {H−1/2(Γ)}N from both sides
of Γ. Of course, if e ∈ {H2(Ω)}N then the tangential traces of ∇×e from both sides

of Γ coincide in the sense of {H1/2(Γ)}N for all t.
(iii) A more interesting property states that the divergence of e is a function in

L2(Ω) with no jumps across Γ. Indeed, first we note that ∇ · (εein) = 0 in Ωin

together with ε ≡ 1 on Γ imply that γ0(∇ · ein) is well defined and equals precisely
−γ0(∇ε · ein) ∈ H1/2(Γ). Since ∇ε ∈ C1(Ω) by assumption and ∇ε ≡ 0 in Ωout, it

follows that γ0(∇ · ein) ≡ 0.

Now let us take in (2.21) v = ∇w where w is any function in H2
0 (Ω) satisfying

γ0(w) ≡ 0. For all such w we trivially obtain, (ε∂tte,∇w)+(∇·e,∆w)Ωout
= (f ,∇w),

which yields for all such functions w,

(∇ · ε∂tte−∇ ·∆eχΩout
, w) −

∮

Γ

γ0(∇ · eout)∂nw dΓ = (∇ · f , w)

after integrations by parts and straightforward calculations1.

1 The term related to Γ is to be understood as a real integral, under the reasonable as-
sumption that for all t, e lies in {H1+µ(Ω)}N for some µ > 1/2. Otherwise this integral
has to be replaced by the duality product between H−1/2(Γ) and H1/2(Γ).
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Now, by the Trace Theorem, (γ0; γ1) is a surjection from H2
0 (Ω) onto H

3/2(Γ) ×
H1/2(Γ). Hence, taking the divergence of both sides of the wave equation in Ωout

and using the fact that both εe and f are solenoidal in Ωin, it follows that γ0(∇·eout)
also vanishes on Γ.

3. The numerical scheme

Henceforth, without loss of essential results, we restrict the presentation to the

case where Ω, Ωin and Ωout are polygonal domains.

3.1. Semi-discretization in space. Let Vh be the usual P1 FE-space of con-

tinuous functions related to a mesh Th consisting of triangles with maximum edge
length h, fitting both Ω and Ωin in the sense that the closure of both domains are

the union of the closure of elements in the mesh. We assume that Th belongs to
a quasi-uniform family of meshes (cf. [17], [26]).

Setting Vh := [Vh ∩ H1
0 (Ω)]

2 we define e0h (resp. e1h) to be the usual Vh-

interpolate of e0 (resp. e1). Then the semi-discretized problem in space that we

wish to solve reads:

Find eh ∈ Vh such that for all v ∈ Vh

(ε∂tteh,v) + (∇eh,∇v) + (∇ · [εeh],∇ · v) − (∇ · eh,∇ · v) = 0,(3.1)

eh(·, 0) = e0h(·) and ∂teh(·, 0) = e1h(·) in Ω.

3.2. Full discretization. To begin with, we consider a natural centered time-

discretization scheme to solve (3.1), namely: Given a number M of time steps we

define the time increment τ := T/M . Then we approximate eh(kτ) by ekh ∈ Vh for

k = 1, 2, . . . ,M according to the following scheme for k = 1, 2, . . . ,M − 1:

(3.2)
(
ε
ek+1
h − 2ekh + ek−1

h

τ2
,v

)
+ (∇ekh,∇v)

+ (∇ · εekh,∇ · v) − (∇ · ekh,∇ · v) = 0 ∀v ∈ Vh,

e0h = e0h and e1h = e0h + τe1h in Ω.

Owing to its coupling with ekh and e
k−1
h on the left-hand side of (3.2), ek+1

h cannot

be determined explicitly by (3.2) at every time step. In order to enable an explicit

solution, we resort to the classical mass-lumping technique. We recall that for a con-

stant ε this consists of replacing on the left-hand side the inner product (εu,v) by a

discrete inner product (εu,v)h, using the trapezoidal rule to compute the integral of∫
K
εu|K · v|K dx for every element K in Th, where u stands for ek+1

h − 2ekh + ek−1
h .
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It is well known that in this case the matrix associated with (εek+1
h ,v)h for v ∈ Vh,

is a diagonal matrix. In our case ε is not constant, but the same property will hold

if we replace in each element K the integral of εu|K · v|K in a triangle K ∈ Th as
follows: ∫

K

εu|K · v|K dx ≈ ε(GK)area(K)
3∑

i=1

u(SK,i) · v(SK,i)

3
,

where SK,i are the vertexes of K, i = 1, 2, 3, GK is the centroid of K.

Before proceeding, we define the auxiliary function εh whose value in each K ∈ Th
is constant equal to ε(GK). Then, still denoting the approximation of eh(kτ) by e

k
h,

for k = 1, 2, . . . ,M we determine ek+1
h by

(3.3)
(
εh

ek+1
h − 2ekh + ek−1

h

τ2
,v

)
h
+ (∇ekh,∇v)

+ (∇ · εekh,∇ · v)− (∇ · ekh,∇ · v) = 0 ∀v ∈ Vh,

e0h = e0h and e1h = e0h + τe1h in Ω.

R em a r k 3.1. As long as the finite element subspaces are suitably adapted, our

methodology works as well, as applied to other boundary conditions for which the

wave equation in Ωout is equivalent to Maxwell’s equations with a constant dielectric

permittivity. In the case of zero tangential-component boundary conditions, exis-

tence of a solution to the resulting Maxwell’s equation in the whole Ω is guaranteed

(cf. [1]). On the other hand, uniqueness and equivalence can be established under

the supplementary (Neumann) condition, that the divergence of the electric field

vanishes on ∂Ω.

3.3. Stability and error estimates. Let us first set

(3.4) η := 2 + |ε|1,∞ + 2|ε|2,∞.

Next we recall the classical inverse inequality (cf. [17]) together with a result in [15]

according to which

(3.5) ‖∇v‖ 6 Cεh
−1‖(εh)1/2v‖h ∀ v ∈ Vh,

where Cε is a mesh-independent constant.

The explicit scheme (3.3) is stable in the same sense specified in [10], under the

assumption that τ satisfies the following CFL-condition:

(3.6) τ 6 min{h/ν, 1/(2η)} with ν = Cε(1 + 3‖ε− 1‖∞)1/2.

Next we further assume that the solution e to equation (2.1) belongs to

[H4{Ω× (0, T )}]2.
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Let us define a function eh in Ω× [0, T ] whose value at t = kτ equals ekh for k =

1, 2, . . . ,M and that varies linearly with t in each time interval ([k− 1]τ, kτ), in such

a way that ∂teh(x, t) = (ekh(x)− ek−1
h (x))/τ for every x ∈ Ω and t ∈ ([k − 1]τ, kτ).

We also define am+1/2(·) for any field a(·, t) to be a(·, [m+ 1/2]τ).

Theorem 3.1. Assume that Ω is convex. Provided the CFL condition (3.6)

is fulfilled, under the above regularity assumption on e, there exists a constant C
depending only on Ω, ε and T such that

(3.7) max
16m6M−1

‖[∂t(eh − e)]m+1/2‖+ max
26m6M

‖∇(emh − em)‖

6 C(τ + h+ h2/τ){‖e‖H4[Ω×(0,T )] + |e0|2 + |e1|2}.

The proof of Theorem 3.1 is nothing but a simplification of the proof of an iden-

tical error estimate given in [10] for the same problem as (2.21), except for the fact

that absorbing boundary conditions are prescribed instead of Dirichlet boundary

conditions.

In short, (3.7) means that, as long as τ varies linearly with h, the error of the

numerical solution generated by scheme (3.3) measured in the norms on the left-

hand side of (3.7) goes to zero roughly proportionally to either τ or h.

R em a r k 3.2. The regularity assumption on e of Theorem 3.1 is certainly too

strict. It is easy to see from the analysis given in [10] that it can be weakened by

replacing it with

e|Ωin
∈ [H4{Ωin × (0, T )}]2

and

e|Ωout
∈ [H4{Ωout × (0, T )}]2.

Actually, presumably this is still stringent, as suggested by the numerical experiments

reported in the next section.

R em a r k 3.3. The case of a nonconvex domain is not a real problem, because

the corner paradox does not come into play here. This is because we are dealing

with boundary conditions which do not couple the components of the electric field.

However, if the domain has re-entrant corners, the customary convergence-rate

downgrade from one to µ with 0 < µ < 1 is to be expected.

R em a r k 3.4. Another issue that is worth a comment is the practical calculation

of the term (∇·εekh,∇·v) in (3.3). Unless ε is a simple function such as a polynomial,
it is not possible to compute this term exactly. That is why we advocate the use of the
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trapezoidal rule do carry out these computations. At the price of small adjustments in

some terms involving norms of ε, the thus modified scheme remains stable in the same

sense as before. Moreover the qualitative convergence result (3.7) also holds, provided

we require a little more regularity from ε. We skip the details for the sake of brevity.

4. Numerical validation

In this section, we proceed to the validation of scheme (3.3). More precisely,

scheme (3.3) is used to solve (2.1) for T = 0.5, Ω = (0, 1)× (0, 1), with e = (e1, e2).

Similarly to [11], the source data f is chosen in such a way that the components

of the exact solution are given by

(4.1) e1 =
1

ε
2π sin2 πx cos πy sin πy

t2

2
,

e2 = − 1

ε
2π sin2 πy cos πx sin πx

t2

2
.

In (4.1) the function ε is defined to be

(4.2)

ε(x, y) =

{
1 + sinm π(2x− 0.5) · sinm π(2y − 0.5) in [0.25, 0.75]× [0.25, 0.75],

1 otherwise,

where m is an integer, m > 1. In Figure 2, ε is depicted for different values of m.

The solution given by (4.1) satisfies homogeneous initial conditions together with

homogeneous Dirichlet conditions on the boundary ∂Ω of the square Ω for every

time t. In our computations, we used the software package WavES [7] only for the

finite element method applied to the solution of (2.1). We note that this package

was also used in [6] to solve the same model problem by a domain decomposition

FEM/FDM method.

We discretized the computational domain Ω×(0, T ] using a partition of the spatial

domain Ω into triangles of sizes hl = 2−l, l = 1, . . . , 6. and a partition of the time

domain (0, T ] into intervals (tk−1, tk] of uniform length τl for a given number of time

intervals N , l = 1, . . . , 6. We choose the time step τl = 0.025 × 2−l, l = 1, . . . , 6,

which provides numerical stability for all meshes.

In [11] we performed numerical tests taking m = 2 and m = 7. Here we push

further these experiments by supplying results taking m = 3, 4, 5, 6, 8, 9 in (4.2). We

computed the maximum value over the time steps of the relative errors measured

in the L2-norm and the H
1-semi-norm and in the L2 norm for the time-derivative,
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Figure 2. Function ε(x, y) in the domain Ω = (0, 1)×(0, 1) for different values of m in (4.2).
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respectively represented by

e1l =

max
16k6N

‖ek − ekh‖

max
16k6N

‖ek‖ , e2l =

max
16k6N

‖∇(ek − ekh)‖

max
16k6N

‖∇ek‖ ,(4.3)

e3l =

max
16k6N−1

‖{∂t(e− eh)}k+1/2‖

max
16k6N−1

‖{∂te}k+1/2‖
.

Here, eh is the computed solution, while N = T/τl.

In Tables 1–2 convergence in these three senses can be observed, taking m = 3, 6

in (4.2). Similar results were obtained for m = 2, 4, 5, 7, 8, 9. The acronyms nel and

nno stand for number of elements and number of nodes therein. Figure 3 shows

convergence rates of our numerical scheme based on a P1 space discretization, taking

the function ε defined by (4.2) with m = 2 (on the left) and m = 3 (on the right)

for ε(x). Roughly the same convergence rates are observed in Figures 4 and 5 taking

m = 6, 7, 8, 9 in (4.2).

l nel nno e1l e1l−1/e
1
l e2l e2l−1/e

2
l e3l e3l−1/e

3
l

1 8 9 0.043394 0.2784 1.0869

2 32 25 0.011451 3.789538 0.1098 2.5355 0.5305 2.0488

3 128 81 0.003343 3.425366 0.06 1.83 0.2586 2.0514

4 512 289 0.000781 4.385873 0.0248 2.4194 0.1306 1.9801

5 2048 1089 0.000202 3.866337 0.0119 2.0840 0.0654 1.9969

6 8192 4225 0.000052 3.884615 0.0059 2.0169 0.0327 2

Table 1. Maximum over the time steps of relative errors in the L2-norm, in the H1-
seminorm and in the L2-norm of the time-derivative for mesh sizes hl = 2

−l, l =
1, . . . , 6 taking m = 3 in (4.2).

l nel nno e1l e1l−1/e
1
l e2l e2l−1/e

2
l e3l e3l−1/e

3
l

1 8 9 0.054228 0.2837 1.1120

2 32 25 0.012241 4.430030 0.0906 3.1313 0.4937 2.2524

3 128 81 0.002973 4.117389 0.0408 2.2206 0.2665 1.8525

4 512 289 0.000590 5.038983 0.0150 2.7200 0.1335 1.9963

5 2048 1089 0.000163 3.619631 0.0079 1.8987 0.0667 2.0015

6 8192 4225 0.000043 3.790698 0.0040 1.9750 0.0334 1.9970

Table 2. Maximum over the time steps of relative errors in the L2-norm, in the H1-
seminorm and in the L2-norm of the time-derivative for mesh sizes hl = 2

−l, l =
1, . . . , 6 taking m = 6 in (4.2).
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Figure 3. Maximum in time of relative errors for m = 2 (left) and m = 3 (right).
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Figure 4. Maximum in time of relative errors for m = 6 (left) and m = 7 (right).

These tables and figures clearly indicate that our scheme behaves like a first

order method in the (semi-)norm of L∞[(0, T );H1(Ω)] for e and in the norm of

L∞[(0, T );L2(Ω)] for ∂te for all the chosen values of m. As far as the values of

m greater or equal to 6 are concerned this perfectly conforms to the a priori error

estimates (3.7). However, those tables and figures also show that such theoretical

predictions extend to estimates not included in our analysis, such as m = 2 and

m = 3, in which the regularity of the exact solution is lower than assumed. In view

of this, it turns out that some of our assumptions seem to be of academic interest

only and a lower regularity of the solution such as H2[Ω× (0, T )] should be sufficient

to attain optimal first-order convergence in both senses. On the other hand, second-

order convergence can be expected from our scheme in L∞[(0, T );L2(Ω)], according

to Tables 1–2 and Figures 2–4, even though we did not establish error estimates in

the norm of this space.
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Figure 5. Maximum in time of relative errors for m = 8 (left) and m = 9 (right).

5. Conclusions and final remarks

In this section we draw the main conclusions from the results presented in the

Sections 2, 3 and 4, followed by a few important remarks.

5.1. Conclusions. In this work we validated the extension of the reliability analy-

sis conducted in [10] for a numerical scheme to solve Maxwell’s equations in terms of

the sole electric field to a Maxwell-wave equation coupling problem (2.1), for a com-

bination of an explicit finite-difference time discretization with a lumped-mass P1

finite-element space discretization. The scheme is effective in the case where the

dielectric permittivity is not constant in a sub-domain completely surrounded by an

outer layer, in which the wave equation holds. The problem’s well-posedness and

equivalence with a suitable variational form are addressed, in the particular case

where Dirichlet boundary conditions are prescribed for the unknown field. We con-

jecture that our qualitative results apply as well to the case of Neumann boundary

conditions, and eventually to the case of zero boundary conditions for both the di-

vergence and the tangential components of the unknown field. Notice that in the

latter case the coupling problem reduces to Maxwell’s equation in the whole domain.

A detailed description of the numerical scheme in [10] adapted to (2.1) was given,

together with underlying a priori error estimates, under suitable regularity assump-

tions. Then we showed that such convergence results are confirmed in practice by

means of numerical experiments performed for a test-problem in two-dimension space

with known exact solution. Furthermore we presented convincing evidence that our

theoretical predictions extend to solutions with much lower regularity than the one

assumed in our analysis. Similarly, optimal second-order convergence is observed
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in a norm other than those in which convergence is formally established. In short,

we undoubtedly indicated that the Maxwell-wave equation coupling problem can be

efficiently solved with classical conforming P1 finite elements in relevant particular

cases, among which lies the model problem (2.1). As a by-product, this conclusion

extends to the case where Maxwell’s equations hold in the whole problem definition

domain, as long as the the dielectric permittivity is constant in an outer domain.

5.2. Final remarks. (1) The methodology and the results addressed in Sections 3

and 4 can be easily adapted to the case of polyhedral domains of the same kind.

In this respect the authors refer to their paper [10], which focuses on the three-

dimensional case.

(2) It is also noteworthy that the qualitative results given in Section 4 extend to

the case of curved domains, at the price of customary minor modifications. Roughly

speaking, if Ω is convex, it suffices to replace the norm ‖·‖ by the norm of L2(Ωh),

where Ωh is the union of the elements in Th. If Ω is not convex, the same conclusion
holds, as long as the exact solution is suitably extended to Ωh \ Ω.
(3) An interesting feature of problem (2.1) is the fact that it suggests the use

of a simple solution method in Ωout and a more sophisticated one in Ωin. This

is particularly handy in the case where ε varies abruptly in Ωin, which is often

the case of coefficient inverse problems governed by Maxwell’s equations (see, e.g.,

[9], [8], [29], [34], [35] and [28], [27]). Referring to [2], [3], assume for instance

that Ω is a rectangular domain, and that Ωin is also rectangular (cf. Figure 1 (b)).

In this case, a straightforward solution of the wave equation in Ωout by the finite

difference method on a structured grid can be achieved, as long as conveniently ap-

proximated values of e on Γ are available. On the other hand, if such values are

known, Maxwell’s equations in Ωin can be solved by a more elaborate procedure,

in order to capture sharp gradients of the solution, owing to a “wild” behavior of

the function ε therein. It is well known that one of the best ways to handle such

a situation is to use the adaptive finite element method. This actually suggests

that we first compute an approximate solution in the whole Ω, by using the fi-

nite difference method on a structured grid in Ωin as well. To simplify things, the

latter grid could have the same grid points on the interface frame Γ as the grid

constructed for Ωout. Such an initial solution can be interpolated at the nodes of

an underlying triangular or tetrahedral mesh, whose nodes coincide with the grid

points in Ωin. From this point a classical adaptive finite element procedure can start

in Ωin for solving Maxwell’s equations, by prescribing the solution values on Γ to

be those computed at the initial step. We refer to [9], [8], [29] and [28], [27] for

more details.
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(4) An issue strongly connected to the previous remark is the time discretization.

Indeed, we have chosen a fully explicit scheme for time integration, precisely because

otherwise the adaptive solution would become too costly. Furthermore, in the frame-

work of the iterative solution of the underlying coefficient inverse problem, the fact

that ε changes at every iteration advises against the use of implicit time integrations

schemes, since in this case a linear system of algebraic equations with a new matrix

has to be solved at every iteration.
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