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WEAK SERRIN-TYPE FINITE TIME BLOWUP AND GLOBAL
STRONG SOLUTIONS FOR THREE-DIMENSIONAL
DENSITY-DEPENDENT HEAT CONDUCTING
MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM
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Abstract. This paper is concerned with a Cauchy problem for the three-dimensional (3D)
nonhomogeneous incompressible heat conducting magnetohydrodynamic (MHD) equations
in the whole space. First of all, we establish a weak Serrin-type blowup criterion for strong
solutions. It is shown that for the Cauchy problem of the 3D nonhomogeneous heat con-
ducting MHD equations, the strong solution exists globally if the velocity satisfies the weak
Serrin’s condition. In particular, this criterion is independent of the absolute temperature
and magnetic field. Then as an immediate application, we prove the global existence and
uniqueness of strong solution to the 3D nonhomogeneous heat conducting MHD equations
under a smallness condition on the initial data. In addition, the initial vacuum is allowed.

Keywords: heat conducting MHD; Cauchy problem; blowup criterion; global strong so-
lution; vacuum
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1. INTRODUCTION AND MAIN RESULTS

The time evolution of a three-dimensional nonhomogeneous incompressible and
heat conducting magnetohydrodynamic (MHD for short) fluid is governed by the
following nonhomogeneous heat conducting MHD system:

Oro + div(ou) =0,

O:(ou) + div(ou ® u) — div(2u®(u)) + VP = (H - V)H,
(1.1) c[0:(00) + div(oud)] — kAO = 2u|D(u)|? + v|V x H|?,
oH+ (v-V)H — (H -V)u =vAH,

divu =div H =0,
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where ¢ > 0 stands for the time and = € R? for the spatial coordinate. Moreover, o,
u = (ut,u? u?®), P,§ and H = (H', H?, H3) denote the fluid density, velocity, pres-
sure, absolute temperature and magnetic field, respectively. The positive constants
1, Cy, k and v are the viscosity coefficient, heat capacity, heat conductivity coefficient
and magnetic diffusive coefficient, respectively.

D(u) = 5[Vu + (Va)

is the deformation tensor, where Vu is the gradient matrix (9u’/dx;);; and (Vu)"
is its transpose, and V x H is the curl of the magnetic field H.

In this paper, we will study the Cauchy problem of equation (1.1) with the initial
conditions

(1.2) (0,u, H,0)(x,0) = (00, w0, Ho,0)(z), &R,
and the far field behavior conditions (in a weak sense)
(1.3) (0,u,H,0)(x,t) — (0,0,0,0) as |z| — occ.

Magnetohydrodynamics is the study of the interaction between magnetic field and
moving conducting fluids. It is one of the important macroscopic fluid models, usu-
ally arising in science and engineering with a wide range of applications. Examples
of such a magneto-fluids include hot ionised gases (plasmas), liquid metals or strong
electrolytes. Because of the physical description of magneto-fluids dynamics, the
nonhomogeneous incompressible MHD system (1.1) is a combination of the nonho-
mogeneous Navier-Stokes equations of fluid mechanics and the Maxwell equations of
electromagnetism. The concept behind MHD is that the magnetic field can induce
currents in a moving conducting fluid, which in turn polarizes the fluid and changes
the magnetic field itself. One of the important issues is to understand the nature of
this coupling between fluids and magnetic fields. We refer to [6] for more background
and applications of MHD.

The mathematical studies of the nonhomogeneous incompressible fluids attract
a lot of attention due to their physical importance, mathematical challenge and
widespread applications. Let us briefly give a short survey on the nonhomogeneous
fluids which are related to our results in this paper.

When we do not take account of equation (1.1), for temperature, (1.1) reduces
to the nonhomogeneous incompressible MHD equations. For this system, when the
initial density has a positive lower bound, Gerbeau, Le Bris [9] and Desjardins,
Le Bris [7] studied the global existence of weak solutions of finite energy in the
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whole space and in the torus, respectively. Chen et al. [3] proved the existence of
a global solution for the initial data belonging to critical Besov spaces. See also [1]
for related improvement. Besides, Chen et al. [2] showed global well-posedness to
the 3D Cauchy problem for discontinuous initial density. On the other hand, in the
presence of vacuum, Chen et al. [4] obtained the local existence of strong solutions
to the 3D Cauchy problem under a compatibility condition on the initial data. With
the help of a Sobolev inequality of logarithmic type, Huang and Wang [14] showed
the global existence of the strong solution for general initial data in dimension two.

When we study the motion in the absence of magnetic field, namely, H = 0, (1.1)
reduces to the nonhomogeneous heat conducting Navier-Stokes equations. Under
compatibility conditions for the initial data, Zhong [22] showed a Serrin-type blow-
up criterion and proved global strong solutions with vacuum for small initial data,
which extended the local result obtained by Cho and Kim [5] to a global one. By
employing certain time-weighted a priori estimates, they showed that strong solutions
exist globally provided that a smallness condition holds true. Meanwhile, Wang et
al. [20] studied a three-dimensional initial boundary value problem with the general
external force and obtained global existence of strong solutions under the assumption
that the initial density is suitably small. Very recently, combining delicate energy
estimates and a logarithmic interpolation inequality, the author established the global
existence and uniqueness of strong solutions to the 2D Cauchy problem with large
initial data and non-vacuum density at infinity.

Let us go back to the heat conducting MHD system (1.1). The local existence
of a unique strong solution to system (1.1) with vacuum under some compatibility
conditions was proved by Wu [21]. For the 2D problem, Zhong [24], [25] used a log-
arithmic interpolation inequality to prove the global well-posedness to the Cauchy
problem and initial and boundary value problem for large initial data, respectively.
And he also proved the global existence of a strong solution of initial and boundary
problem with density-dependent viscosity in [26]. For 3D initial and boundary value
problem, Zhong [23] obtained a global solution under some smallness conditions on
the initial data, while Zhou [27] established a Serrin-type blowup criterion involving
only the velocity field. Later, Zhu and Ou [28] extended the corresponding result
in [23] to the case of density-temperature-dependent viscosity. However, the global
well-posedness of system (1.1) in the unbounded domains is still unknown. In fact,
this is the main purpose of this paper.

Before stating our main results, we first explain the notations and conventions
used throughout this paper. We denote

/~dx:/ -dx.
R3
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And for 1 < r < oo and k € N, the homogeneous and inhomogeneous Sobolev spaces
are defined in a standard way:

LT = LT(RB), Wk,r — Wk’r([R3), Hk — Wk’2,

DH* = {f € Ll [V*flr < o0}, Db = D2,

D{ ={f € L5(R?): ||Vu| 2 < oo}.

Now we give the definition of strong solutions to the Cauchy problem (1.1)—(1.3)
as follows.

Definition 1.1 (Strong solutions). A pair of functions (¢ > 0, u, H, § > 0) is
called a strong solution to the Cauchy problem (1.1)—(1.3) in R? x (0, 7T') if for some
qo € (Sa 00)7

0€ C(0,T; H' nWha), o, € C([0,T]; LP),
(1.4) (u, H,0) € C([0,T]; Dy 1 D) N L2(0,T; D>0),
(\/EuhHh \/Eet) S LOO(O7T7L2)5 (’U/t,Ht,et) S L2(05T7D(1))5

and (g, u, H,0) satisfies (1.1) almost everywhere in R3 x (0, 7).

Our main results read as follows:

Theorem 1.2. For a constant q € (3, 6], assume that the initial data (oo = 0, uo,
H,, 6y > 0) satisty

(1.5) o€ L' H* n W4, (ug, Hy,0y) € Dy N D?, divug = div Hy = 0,

and the compatibility conditions

(16) _/,LAUQ — HQ . VHO + VPO = \/Q_Ogl
and
(1.7) KAy + 2u|D (uo)|? + v|V x Hol* = /0082

for some Py € D', and g1, g2 € L?. Let (0, u, H, ) be a strong solution in R3x (0, T*)
as described in Definition 1.1. If T* < oo is the maximal existence time, then

(18) TILIITI* u| Ls(0,T;L1) = oo
for any r and s satisfying
2 3
(1.9) - +-<1, 3<r< o,
s T

where L}, denotes the weak-L" space.
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Remark 1.3. The local existence of a unique strong solution to (1.1)—(1.3) with
the initial data described in Theorem 1.2 can be established in a similar way as [5]
(see also [21]). Hence, the maximal time 7™ is well-defined.

Remark 1.4. It should be pointed out that the blowup criterion (1.8) is inde-
pendent of both the temperature and magnetic field, which is the same as the weak

Serrin-type blowup criterion of homogeneous Navier-Stokes equations (see the work
of Sohr [18]).

Remark 1.5. The approach can be adapted to deal with the case of bounded
domain in R3. And compared with [27] for bounded domain, some new difficulties
occur in our analysis. First, the Poincare’s inequality fails for 3D Cauchy problem,
which is key to estimate ||0|| 2. Furthermore, it implies the blowup criterion (1.8) is
stronger than that of [27] due to |u]

L(0,T5L7) S llwll £ 0, 757)-

The proof of Theorem 1.2 will be done by contradiction. In view of the local
existence result, to prove Theorem 1.2 it suffices to verify that (o, u, H,0) satisfy
(1.5)—(1.7) at the time 7™ under the assumption that the left-hand side of (1.8) is
finite, then apply the local existence result to extend a local solution beyond the
maximal existence time T, consequently leading to a contradiction.

Based on Theorem 1.2, we can establish the global existence of strong solutions
0 (1.1)—(1.3) under a smallness condition on the initial data.

Theorem 1.6. Let the conditions in Theorem 1.2 hold. Then there exists a small
positive constant €y depending only on u, v, and ||go||L~ such that if

(1.10) (IVeouol|Z> + [ HollZ2) (I Vol > + |V Holl72) < <o,

then the Cauchy problem of system (1.1)—=(1.3) admits a unique global strong
solution.

We now comment on the analysis of this paper. The study of weak Serrin-type
blowup criterion (Theorem 1.2) is mainly motivated by a recent work of Wang [19],
which established a Serrin’s blowup criterion for nonhomogeneous heat conducting
Navier-Stokes equations in the whole space R? using the weak Lebesgue spaces.
Compared to Navier-Stokes model in [19], the mathematical analysis of nonhomoge-
neous heat conducting MHD system will be more complicated on the account of the
coupling of the velocity and magnetic field (such as the term w - VH) and strong
nonlinearity (such as the term H - VH). To overcome these difficulties, one of the
key ideas is to derive an estimate of || H || (o, 7;z4) for ¢ > 2 which turns out to play
an important role in our analysis. It should be noted that our blowup criterion is
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independent of the temperature and magnetic field, which means the temperature
and magnetic field do not play a particular role when the singularity of solution
(0,u, H,0) forms in finite time.

As an immediate application of the blowup criterion obtained in Theorem 1.2, we
plan to extend the local strong solution to be a global one under a smallness condition
on the initial data. Noticing that the pair (s,r) = (4,6) satisfies 2/s 4+ 3/r < 1, we
conclude that the global existence of a unique strong solution can be verified if we
can obtain the uniformly time independent estimate on the L?(0,T; L?)-norm of the
gradient of the velocity. To this end, we multiply the momentum equations by wu;
and make good use of the smallness of initial data to obtain the desired estimate.

The remainder of this paper is arranged as follows. In Section 2, we give some
auxiliary lemmas which will be useful in our later analysis. The proof of Theorem 1.2
will be done by combining the contradiction argument with the estimates derived in
Section 3. Finally, we give the proof of Theorem 1.6 in Section 4.

2. PRELIMINARIES

In this section, we will recall some known facts and analytic inequalities that will
be used in the later analysis.

We begin with the following local existence and uniqueness of strong solutions
when the initial data is allowed vacuum, which can be proved in a similar way as [5]
(see also [21]).

Lemma 2.1. Assume that the initial data (oo, wo, Ho,0) satisfy (1.5)—(1.7).
Then there exist positive time T} and a unique strong solution to the Cauchy problem
(1.1)~(1.3) on R3 x (0, T].

Next, we will introduce the well-known Gagliardo-Nirenberg inequality which will
be frequently used later. See [10], Chapter 6 for the proof and more details.

Lemma 2.2. For p € [2,6], ¢ € (1,00) and r € (3,00), there exists a generic
constant C' which may depend only on p, q and r, such that for f € H', g € LIND"",
the following inequalities hold:

(2.1) fllze < CIAIS PP v ) =0 B,
(2.2) lgllz= < CligliLe + CI Vgl L.

Since our blowup criterion (1.8) involves a weak Lebesgue space, it is necessary
to give a short introduction and state related inequalities. Denote the Lorentz space
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and its norm by LP¢ and ||-||zr.q, respectively, where 1 < p < oo and 1 € ¢ < oc.
And we recall the weak-L? space L? which is defined as follows:

Lt = {f € Lt 1fllz = sup Al{1F(@)] > A}7 < o).
>
It should be noted that

P CIp

SLE, Ly=L% Li=L7 LPP=1L" |fle <Iflze

For the details of Lorentz space, we refer to the monograph by Grafakos [11]. In
particular, we introduce the following Hélder’s inequality in Lorentz space, whose
proof can be found in [16].

Lemma 2.3. Let p1,p2 € (0,00), q1,¢2 € [1,00] satisfying 1/p=1/p1+1/p2 < 1
and ¢ = min{q1,q2}. Then for f € LP»% and g € LP>»%, there exists a positive
constant C' depending on p1, p2, q1 and qs such that f - g € LP9 satisfying

(2.3) 1f - gllLra < Cllfllrvar[lgll Loz

Based on Lemma 2.3, we have the following result involving the weak Lebesgue
spaces, which will play an important role in the subsequent analysis.

Lemma 2.4. Assume g € H' and f € L, with r € (3,00]. Then f-g € L2
Furthermore, for any € > 0 we have

(2.4) 1 - gllZ= < €l Vgll72 + C(e)(IIf]

: 2
L + Dllglze,
where C' is a positive constant depending only on ¢ and r.

Proof. Modifying the proof in [15] for bounded domains slightly, it follows
from (2.3) and the interpolation inequality that

25) N -gll2e =11 - gl2ee < CIf|reelgllporsc—.
ClFllz 9l p2rs /s - 19l p2rascra—2
-3 3 -3 3
e lgll D g 3 gl 2 g

2r—6)/r 6/r
Ol e gl =27 11gl1%

2r—6 6
CllF Nl gl &= (v g)lS

<
<
< /]
<
<
< el Vyli: + Ce)Ifig + Dlgllze,

where r1, 79 and r satisfy 3 <1 <r <1y <o00,2/r=1/r1+1/ro and 2/s+3/r < 1.
This completes the proof of Lemma 2.4. O
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Finally, we give classical regularity results for the Stokes system in the whole
space R3, which have been proved in [12].

Lemma 2.5. For any r € (1,00), if F € L", there exists a positive constant C
depending only on r such that the unique weak solution (u, P) € D' x L? to the
Stokes system

~Au+VP=F inR3,

(2.6) divu =0 in R3,

u(z) —» 0 as |z| — oo,
satisfies
(2.7) IV2ul|| - + |VP| .- < C|F| -

3. PrROOF OF THEOREM 1.2

This section is devoted to giving a proof of Theorem 1.2 using the contradiction
argument. To do this, let (o, u, H,#0) be a strong solution to the Cauchy problem
(1.1)-(1.3) as described in Lemma 2.1, and T* be the maximal existence time of the
strong solution. Suppose that (1.8) in Theorem 1.2 were false, that is to say, there
exists a positive constant My such that

1 li oy < M, .
(3.1) Al zeo,riny) < Mo < o0

Under condition (3.1), we will extend the existence time of the strong solution be-
yond T™*, which contradicts the definition of the maximum of T*.
Before proceeding, it is easy to rewrite system (1.1) in the following form if we
assume the solution (o, u, H, ) is regular enough:
do+u-Vo=0,
00w + ou - Vu — pAu+ VP = (H -V)H,
(3.2) (0010 + ou - VO) — kAO = 2u|D(u)|* + v|V x H|?,
OH+ (uw-V)H — (H -V)u =vAH,
divu =div H = 0.

In this section, the symbol C denotes a generic constant which may depend on
My, p, v, ¢y, &, T*, and the initial data.

Now we establish some a priori estimates which will be used to prove Theorem 1.2
at the end of this section.
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3.1. Lower-order estimates. In this subsection, we will derive a series of key
lower-order estimates to (o, u, H,0)

First, it follows from the transport equation (3.2), for the density and incompress-
ibility condition divu = 0 that the following result holds.

Lemma 3.1. There exists a positive constant C satisfying

(3.3) sup |lollpinre~ <C, 0T <T™.

Next, the standard energy estimates read as follows.

Lemma 3.2. It holds that for any 0 < T < T*,

T
(3.4)  sup ([VoulZ: + [ H[Z: +[lebllz:) +/O (IVulZ: + VH]Z:)dt < C.

St

Proof. It follows from the standard maximum principle to (1.1), together with
6o > 0 that (see [8] for the proof)

inf 6(z,t) > 0.
R3x[0,T]

Moreover, multiplying (1.1), by u, (3.2), by H, and integrating the resulting
equations over R3, it follows from integrating by parts that

1d

(35) S ol + [P+ /(u|Vu|2 L UVH) dz = 0.

Integrating (1.1), with respect to the spatial variable over R® and performing inte-
gration by parts, we obtain that

(3.6) cv%/QG dz = /(2u|®(u)|2 +v|V x H|?)d.
By the definition of ©(u) and integration by parts, we get
(3.7) 2u/|©(u)|2dx - g/(f)‘iuj + o) de
= u/ |0;u? |* do + u/@iujajui dz = u/ |Vu|? dz,
and it follows from —AH =V x (V x H) (since div H = 0) that
(3.8) IVH|Z: = IV x H|Z..
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Substituting (3.7) and (3.8) into (3.7) gives

(3.9) cv%/gédxz/(,u|Vu|2+1/|VH|2)dx

Therefore, adding (3.5) multiplied by 2 to (3.9), we have

d
(3.10) S [ olul + [HP + coo8) da + /(mwﬁ +U[VH]?)dz = 0.

Integrating (3.10) with respect to t over [0,7] leads to the desired (3.4), which
completes the proof of Lemma 3.2. O

Before deriving the key estimates of ||Vul|[ze(o,1;z2) and |VH || (0 7;12), We
insert an important estimate on magnetic field H initiated by He and Xin [13],
which will be stated in the following lemma.

Lemma 3.3. Under condition (3.1), it holds that for q € [2,12] and 0 < T < T*,

(3.11) sup || H|4, / /|H|‘1 2VH|* drdt <

o<t<T

Proof. Multiplying (3.2), by ¢/H|? ?H and integrating the resulting equation
over R3, it follows from (2.4) in Lemma 2.4 that
d
G12) 5 [|HI a4y [GHPVHE + o - 2)|HI VI do

1
- —/q|H|q—2(H-VH.u— un~V|H|2) da

_ @/mw*‘*m-vml?)(uﬂ)dx

N

g/q|H|q’2|VH|2dx+Cq2/|u|2|H|qu

v _
=5 [aHI A THE do ok Ol HI

N

i)

5 [ BTV do | TIHP . + O H,

Choosing ¢ suitably small in (3.12), we obtain the desired (3.11) after applying
Gronwall’s inequality and (3.1). Therefore, the proof of Lemma 3.3 is completed.
O

With the help of Lemma 3.3, we can now derive key time-independent estimates
on the L>(0,T; L?)-norm of the gradients of velocity and magnetic field.
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Lemma 3.4. Under assumption (3.1), it holds for all 0 < T < T* that

(3.13) sup (|VaulZ: + | VH|Z:)

tx

T
+/0 (IVeuellZs + [ Hell 2> + [V2ullf + [VZH|7.) dt < C.

Proof. Multiplying (3.2), by u; and integrating the resulting equation over R?
lead to

(3.14) g%/|Vu|2dx+/g|ut|2dx:—/gu.Vu.utdx—f—/H.VH.utdx.
It follows from equation (3.2), that H; — vAH = H - Vu — u - VH. Then we have
(3.15) /|Ht—yAH|2dx:/|u-VH—H.vu|2dx.
For the LHS of (3.15), it is easy to get
(3.16) /|Ht —vAH]*dz = /(|Ht|2 +V?|AH? — 2vH, - AH) dz
= y%/|VH|2dx+/(|Ht|2 + V| AH|?) dx.

Substituting (3.16) into the LHS of (3.15), we obtain that
(3.17) u%/|VH|2da:+/(|Ht|2+y2|AH|2)da¢=/|u-VH—H-Vu|2da:.

Notice that the standard L2-estimate of elliptic system gives
(3.18) IV2H 7. < K| AH|[

with a positive constant K. Adding (3.14) to (3.17), we derive from the Cauchy-
Schwarz inequality and (3.18) that

(3.19) i(ﬁ|w|2+u|VH|2)dx+ (olu |2+|H|2+V—2|V2H|2)dx
‘ dt \2 ¢ UK

< /H.VH-utdx—/gu.Vu-utder/|u.VH—H-vu|2dx

= —%/(H'V)u-de—l—/(Ht~V)u~de+/(H'V)u'thx
—/gu'Vu'utdx—l—/|u~VH—H~Vu|2dx

d 1 ) 1 )
dt/(H-V)u-de+2/g|ut| dx+2/|Ht| dz

+C/|\/§u-Vu|2dx+C/|u-VH|2dx+C/|H-Vu|2dx.

N
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Thus, we obtain that

d
(3.20) v / (u|Vul* +2v|VH|? + 2(H - V)u - H) dx

2 2
+ [l + B+ VP HP) do
<c/|\/§u-vu|2dx+c/|u-VH|2dx+c/|H-Vu|2dx.

Recall that (u, P) satisfies the following Stokes system:
—puAu+VP =—pu; —ou-Vu+H-VH, z¢cR3
(3.21) divu =0, r € R3,

u(z) — 0, |z| = oo.
Applying Lemma 2.5 with F £ —ou; — pu-Vu+ H - VH, we obtain from (2.7) that

(3.22) IV2ull7: < ClloullZs + llow - VulZ. + || H - VH|:)

L(llVewd|Z> + |IVew - Vulljz + | H - VH|2),

NN

where L is a positive constant depending only on p and || gol| -
Adding (3.22) multiplied by 1/(2L) to (3.20), we have

d
(3.23) &/(u|Vu|2+21/|VH|2+2(H~V)u~H)dx
1 2 o 200 o 1 2,112
+ [ (Gelwl + P + 292 HE + 5[Vl do

< C/(|\/§u Vul? +|u-VH]? + |H -Vul* + |H - VH|*) dz
< Cllellzellw- VullZs + Cllu- VH| L. + ClH| Lol [Vul| 12| V] o
+CH| Lol VH | 2| VH]| o
€ S
< S(IVPullie + IV2HIZ:) + CE) (1 + [z, ) (1VulZe + [IVH|2)
+ CIH |26 V] 2| V2ul| 2 + Ol H|[ 76| VH | 2| V2 H| 2
<e(IV2ullz: + IV2H|Z:) + Ce) (A + [lully, ) (IVullZ- + [IVH]Z:),
due to Lemma 2.4, (3.11) and the Cauchy-Schwarz inequality.
Moreover, applying the Cauchy-Schwarz inequality and (3.11) gives rise to
G20 2 [(H Ve Hdo< ClH[Vul: < §I9ulf: + CIHIL,
< LIVulli: + .
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Together with Gronwall’s inequality, (3.23) implies

(3.25) sup ([[VulZ +[IVH]Z:)
otLT

St

T
+/O (IVeuellZz + [ HellZx + [V2ullf + [V2H|72) dt < C.

Therefore, the proof of Lemma 3.4 is completed. O

The following lemma concerns the higher regularity of the temperature 6.

Lemma 3.5. Under assumption (3.1), it holds that for 0 < T < T*,

T
(3.26) sup H\/EHII%H/ 1V6]12. dt < C.
<T 0

tx

Proof. Multiplying (3.2); by 0 and integrating the resulting equation over R3
implies that
d
321 s 992dx+2/€/|v9|2dm < C/|Vu|29dx+(]/|VH|29da:.

We estimate each term of the RHS of (3.27) as follows. Applying Holder’s and the
Cauchy-Schwarz inequalities gives

(3.28) / Vul?0dz < Cl[Vull} w/sll6] o < ClIVul 32 Vull V0|2
< S IVl + ClIVulf | V2ull: < S1V6]7: + CIVZull3 + C,
due to (3.13). And in a similar way, we have
(3.29) /|VH|29dx < gnwniz +C|V2H|2, + C.
Substituting (3.28) and (3.29) into (3.27), we obtain
(3.30) cv% / 00 d + n/ V62 dz < C|V2ul2e + C| V2 H|% + C.

Integrating inequality (3.30) with respect to the time variable over (0, t), we get from
(3.13) that

T
(3.31) sup [|v/20]% +/ 1V6]12. dt < C.
otLT 0
Therefore, the proof of Lemma 3.5 is completed. O
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At the end of this subsection, we give the following remark which will be used
later.

Remark 3.6. In view of Lemma 3.4, we deduce from classical L2-estimates for
elliptic and Stokes system that

(3.32)  [IV*ulZ> < C(lvoulis + [lw- VulZ. + | H - VH|:)
< Cllveowdie + lull ol VulZs + | H| o[ VH| Zs)
< Clvoulz + IVl V2l 2 + [ VHI[7 | V2H | 2)
i(IIVQUH%z + [ V2H|[72) + Cllv/ou -

+C|Vulg2 + C|VH|3:,
and

(3.33) IV2H|Z: < C(|HellZs + llu- VHI[Z: + | H - Vul|Z.)
S C(IH12> + ullfe | VHIZs + [ H |26 Vull7s)
< C([HlLe + |Vl 2 VH | 2 V2H || 2
+ IVH Lo Ve 22 [V ul| 2)
1
< 7 (IV?ulli: + [V2HIJL:) + C| HyllZ:

+C|Vullfe + CIVH|..
Adding (3.32) to (3.33), it follows from (3.13) that
(3.34) IV2ullZ + V2 HI[7 < (Vo7 + [ Hel|72) + C
3.2. Higher-order estimates. In this subsection, we will derive a series of

higher-order estimates of (o, u, H,0).
Firstly, we will estimate the L>°(0,7’; L?)-norm of /pu;, H; and V.

Lemma 3.7. Under assumption (3.1), it holds that for any 0 < T < T*,
(3.35) sup ([[veudl7z + [ HellZ= + [VO]72)

St

T
+ / (122 + [IVH |22 + /20 22) dt < C.
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Proof. Differentiating (3.2), with respect to ¢ yields
(336) QU + ou - V’U/t — MAU,: = —VPt — 0tUt — (Qu)t -Vu+ (Ht . V)H+ (H . V)Ht

Multiplying equality (3.36) by u; and integrating the resulting equation over R?, one
obtains

1d
(3.37) 3q g|ut|2dx+u/|Vut|2dx
= —/Qt|ut|2dx—/(Qu)t-Vu-utdx

Next, differentiating (3.2), with respect to ¢ and multiplying the resulting equation
by H;, we obtain from integration by parts that

1d
(3.38) ia/|Ht|2dgc+y/|VHt|201x

Adding (3.38) into (3.37), we get

d
(3.39) &/(g|ut|2+|Ht|2)da:+/(u|Vut|2+u|VHt|2)da:
= —/Qt|ut|2dx—/(gu)t-Vu-utdx

N =

Eh+ L+ I+ 1+ Is.

The terms I1—I5 are estimated as follows. Indeed, it follows from (2.1), (2.2), (3.13),
integrating by parts and Holder’s inequality that

(3.40) L= /div(gu)|ut|2dm _ —/Qu V]2 da
< 2/Q|U||ut||vut|d$ < Cllol 2 Null o llv/gwel o | Ve | 2

1/2 1/2
< O V|l /ouell 22 | /owell 6 [ Ve | 2
1/2 3/2 _ M
< ClVowl 2 19wl < K1Vl +Clly/awle,
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and
(341) I, = — / out - Vu - up da + /div(gu)u -Vu - upde

< / (0] V] ag]? + ol [V uae| + olual?| V2 [u| + oful?[Vau|[Vau,|) do
< Cllyoud2al|Va]| 2 + Cllul| o[ V| 26 | /Gue | 12
+ Cllull26 V2 12 e 1o + Cllaal|26 | Vel 1ol V| 2
< Cllvoud )2 1V |35 + Cl [V 2| V2 2. || /o 2
+ Ol Val|22 | V2 12| Ve | 12 + O Vaul| 22| V2 2 || Ve 12
< §lIVudlifa + Cllvaudlt + ClH32 +C.
due to (3.34). Similarly,

(3.42)
Is + Is < C||VH|| 2| Hy [ s el o < CHHtH1/2|\Ht||1/2|\Vut||L2

Y
g”vutHLz + C[[Hyl[2|[VH|[ 12 < HVUtHLz + Z”VHt”QL? + C|| Hy|7,
and

3/2 1/2
[Vl e | HellF < O ELIZE H
Ol HLlI* IVHL 2 < IV H |7 + Ol H 7.

(3.43) I <
<

Substituting (3.40)—(3.43) into (3.39), one has
(3.44)

3 [ (elwl® + [ L) do + (ullvow 7z + VI HL72) < C([Vowllz: + [ Hillz:) + C

This together with Gronwall’s inequality and (3.13) yields

T
(3.45)  sup (lvew(t Mz + IIHt(t)H%z)Jr/O (IVuel|ie + [IVH|Z2) dt < C.

\\

We refer the readers to [5], Section 2.3 for the formulation of initial data of
l/ou(t)| 12 in terms of compatibility condition (1.6).

Now we will prove the boundedness of || V||%, (t). Indeed, multiplying (3.2), by 6
and integrating the resulting equation over R, one has

2 2
(3.46) 2dﬁ/|V9| dx—i—cv/QQ dz
= —cv/gu.Vf)'Qtdx+2u/|©(u)|29tdx+l//|V><H|t9tdx
2+ Jy+ Js.
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In view of Holder’s inequality, (3.13) and (3.45), we obtain

(3.47) J1 < Cllullpe|lv/0bel| 2 [ VO L2 < Cllullwsllv/0bel 2 VO]l 2
Cy
< O Vul[ g [[v/00: | 12| VO L2 < 3||\/§9t||2L2 + O Vo7

Furthermore, we get
(348) o :2M%/|9(u)|2edx—2M/(|9(u)|2)tedx

< QM%/|’D(’u,)|29dx+C/|Vu||Vut|9da:

<2 [ 19 do + CTul | Tl 6]

2;@ / D (w)20 dz + || Vul| 122 [Vl 22 V| 2| VO 2

<2 [ 1D@POds +CVurls + VO[3
and
(349)  Jy— yi / IV x H20dz — u/(|v « HI2),0dz

< y—/|v X H|29dx+C/|VHHVHt|9dx

<ve / IV x H|20dz + C||VH | s || VHy| 12]16]] 1o

<vs [19x HPods + CIVH 212 2|V Hi 2] 6]

- / IV x H20dz + C|VH,|2: + C|[ V6|2
Substituting (3.47)—(3.49) into (3.46), one has

d
(3.50) /(/<;|V(9|2 —4p|D(w)|*0 — 20|V x H*0)dx + ¢, / 00? dx

dt
O(IVue||22 + [ VHel[72) + C[VOI7-,

which together with the fact that

(3.51) /(4u|©(u)|2 + 2|V x H|?)0dz

< COll o (| Vull2 a5 + VH 2 125)
< CIVO| 2 (| Vul 35| V2|12 + [ VH |3 V2 H[)L)
< ZIvol3. +C
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and Gronwall’s inequality and (3.45) yields

T
(3.52) sup | V0|2, +/ /0043 dt < C.
otLT 0

Hence, the desired (3.35) follows from (3.45) and (3.52). Therefore, the proof of
Lemma 3.7 is completed. ([

Remark 3.8. We can obtain from the Sobolev inequality that
(3.53) |ullz= < Cllullwrs < ClIVulm < O([Vallzz + [V £2),

which implies that sup ||u||z~ < C due to (3.13), (3.34) and (3.35). And similarly,

NAS

we have
sup |[|[H||p~ < C.
0<t<T

Lemma 3.9. Under assumption (3.1), it holds that for any 0 < T < T*,

T
(3.54) sup |\\/§9t||i2+/ V8,3 dt < C.
0<t<T 0

Proof. Differentiating (3.2), with respect to t and direct computing gives

(355) CU(Qett + ou - V@t) — HAet = — CUQt(et +u- Vet) — CUQ(’U/t . V)H
+2u(|D(w)?)e + v(|V x H|?)..

Multiplying (3.55) by #; and integrating the resulting equation over R? yield

¢y d 9 9

(3.56) 5 q@ 00; dx+/<;/|V9t| dz

= cv/div(gu)@t2 dx—i—cv/div(gu)(u -V8)0, dx
—cv/gut-VGGt dx+2u/(|®(u)|2)t9t do

+ y/(w « HI2),0, dz

5
23 K.
i=1
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Next, we deal carefully with each term K;—Kj5 as follows:

(3.57)  Ki< C/QIUII@IIVt%Id:c < Cllufl= Vol L2 [ VOl 2

< CO(llullze + IVl Lo)llv/00ell L2 [ V02| L2
< C(IVaullzz + V2wl z2) Vo0 2| VO 2
<

K
Clvedilzz + 75 IVolze,
(3.58) K< C/(QIUIIVUIIWIIHtI + olul?|V20]10:| + olul?|V0||V6,]) dx

< Cllulle=[Vull L[ VO]l 210l 2o + Cllull7s [ V26| L2162 e
+ Cllullf< VO 22 V0|2
K
< CIVOiL2 + CIV0l| 2 [ VO] 12 < CIVOIT2 + 151IV0:72 + C,

(359) K3 < Clly/aull = VoIl o116 1o < CIVOIIL V201147 V0 12
< O|V26l32 + 15 V6132 + C,
(3.60) K4 < C/ [Vu||[Vue |0 de < C||Vu| 3| Ve || L2 |04 || L

< ClIVullos | Varll 2 [ V6l 22 < O VerlF2 + 1561,
and
(361) K5 <C / \VH||VH,||6:| dz < C||VH]| |V Hy | 2|64 o

< CIVH || s IV Hil| 12 V6 | 2 < CIVH 32 + 1SV 2.

Furthermore, in view of L?-estimate to equation (3.2)5, we have

(3.62)  [V?0ll7> < C(llebel7z + llow - VOIIZ2 + [[[Vul?[[7 + | VH]?|72)

< ClVebllie + luli<lIVOIZ: + ClIVulzs + CIVHI| 74

< ClVethlliz + ClIVal L2 V?ul} + C| VH|| 2| V2 H [} + C
< Cllvebilz +C,

due to (2.1), (3.35).
Substituting (3.57)—(3.61) into (3.56), we obtain

(3.63) CU%/QGf da:+/£/|V9t|2 dx
< C|VuelZe + CIIVH 7 + Cllvebe|7: + C,

which together with Gronwall’s inequality and (3.35) yields the desired (3.54). There-
fore, the proof of Lemma 3.9 is completed. O
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Lemma 3.10. For g € (3, 6], under assumption (3.1), it holds that for0 < T < T*,

(3.64) (lellmawa + [V2ullfe + [ V2HI[72 + [ V?0][72)

sup
0<t<T

T
+ [ vl + IV HIE + V02 ae < c.

Proof. Firstly, it follows from (3.34), (3.35), (3.54) and (3.62) that
(3.65) IV2ull3. + [V2H]|2. + [V26]2: < C.
Next, the first order spatial derivatives 0,0, i = 1,2, 3, satisfy
0:(9;0) + u - V(9;0) + (Oiu) - Vo = 0.

Therefore, for any ¢ € (3, 6], the standard energy method gives

(3.66) %HVQHLQ < Ol Vullp=[Vollze < C[Vulwrs|[VollLs

C(IValzs + | V2ull o) [ Vol o

C(L+ [loul|re + |low - Vul| Lo + [|[H - VH| )| Vel| s

C+ IVl Lz + llull< [Vl s + [ H | < [[VH]| o) [V ol £a
O+ Va2 + IV2ull 2 + IV H|2) [ Vol| s

O+ Va2 + IV2ull 2 + V2 H|2) [ Vol s

C(L+ [V 72) Vel e,

2.7), (3.13), (3.35), (3.65), Remark 3.8 and the interpolation

INCINCININ NN

due to (2.1), (2.2), (
inequality.
Together with Gronwall’s inequality and taking ¢ = 2, ¢ in (3.66), we have

(3.67) sup IVollrznrs < C.

Next, in view of (2.1), (2.2), (2.7), (3.13), (3.35) and (3.65), we obtain
T
(3.68) / V2|2, dt
0 T
<C [ Ulowla +llou- Vullts + |7 - VH|3) d
OT
< C/O (w2 + llowd|Zo + wlF < IVullZs + | H| < VHI7) dt
T
< C/O (L4 Vel 72 + [[VulFz + [VPul: + [VH|7: + |V2H|72) dt
<C.
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Similarly,
T
69) [ IV dr
0
T
<C [ (R + w VHIE + |H - uls) de
0
T
<O [ (UHZ: + 1 Ho 20+l 3 [V H I + | H 2] Vul2) dt
S A tllr2 tllps T [[W|| Lo Li L[| VU[[Lq

T
< C/ L+ IVH L + IVH| L + [V H[Z: + [Val|Z: + [[VZul7.) dt
0
<C.

Furthermore, using the standard LP-estimate to elliptic equation (3.2),, we obtain
(3.70)

T
/ Iv26]12, dt
0
T
<c / (10Be20 + llow- V6|2, + [[Vul?|2, + [[VHI2|2,) dt

T
<C [ (el + ot + ul <9013,
IVl VullZs + IV [V H2,) dt
<cf L I8 + 197610 + (Va3 + [V%l20) (I Va2 + [Vulle)
T (IVH20 + IV2HIZ)(IVH 2 + [VH 20)) dt
<C [+ V0 + [ Vuils + [ V) de
<C.

Thus, in view of (3.65), (3.67)—(3.70), we complete the proof of Lemma 3.10. O

Remark 3.11. Define f as the material derivative of function f with f 2 f+
w - Vf. Then we can derive the regularity of the terms ot and o8 for later analysis.
Indeed, one can deduce from (2.7), (3.13), (3.35) and (3.64) that

(3.71)
lou|7: = [lo(us +u - Vu)|7.
< OllowelZ + llow - Vulz) < Cllloue|Zs + |Vullz2 ] V2ullr2) < C
and
(3.72)

101172 = llo(B: +w - VO)] 7
< Cll08el1> + ulli<lIVOlZ2) < ClllebelZe + [IVul7n [VO]Z2) < C.
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Proof of Theorem 1.2. With the aid of the a priori estimates that are listed in
Lemmas 3.1-3.10, we can now prove Theorem 1.2 as follows.

On the one hand, the functions (¢, uw, H,0)(z,T*) = tl_if%*(g’ u, H,0)(x,t) satisfy
the regularity condition on the initial data at time ¢ = 7. Furthermore, standard
arguments yield (o, 99) € C([0,T*]; L?), which implies

(o, 00)(z,T*) = lim (0w, 00)(z,t) € L2
t—T*

Hence,
(—=div(2u®(u)) + VP — H - VH)|i—1+ = \/o(z, T*)g1 (),
(KAG + 2u|D(w)|? + V|V x H|?)|j=r- = Volz, T*)ga(x),
where
~ . 0 2(x, T*) (o) (z, T*) for x € {x; o(x,T*) > 0},
&i(z) = {0 for x € {x; o(x,T*) = 0},
and

~ . cvg_l/Q(m,T*)(gé)(x,T*) for x € {x; o(z, T*) > 0},

&2(o) = {O for z € {x; o(x,T*) = 0},
satisfying g1, g2 € L2 Thus, (0, w, H,0)(x, T*) satisfies the compatibility condition.
Therefore, we can take (9, u, H,0)(z,T*) as the initial data and apply Lemma 2.1
again to extend the local strong solutions beyond 7™, which contradicts the as-
sumption that 7™ is the maximal existence time of strong solutions. Therefore, we
complete the proof of Theorem 1.2. O

4. PROOF OF THEOREM 1.6
Throughout this section, we denote

Co £ ||v/eouol|72 + | Holl7--

Firstly, applying [17], Theorem 2.1 and integrating (3.5) with respect to ¢, we have
the following results.

Lemma 4.1. Let (p,u, H,0) be a strong solution to system (1.1)—(1.3) on (0,T).
Then for any t € (0,T), it holds that

(4.1) o)l = lleoll =
and
t
(4.2) IVeou(t)|17= + | H (1|72 + 2/0 (ulVul7z + v|[VH|72)ds < Co.
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Lemma 4.2. Let (p,u, H,0) be a strong solution to system (1.1)—(1.3) on (0,T).
Then for any t € (0,T), it holds that

(4.3) sup (ul|Val|Zs + v VH|Z:) < 2(u]| Vo> + v VHoll72)

<s<t

+ C+/Cy sup HVHHLz

0<s<t

+CCo sup ([Vul|7. + [|VH]:),
0<s<t

where (and in what follows) C' denotes a generic positive constant depending only
on p,v and ||go|| e

Proof. Multiplying (3.2), by us, (3.2), by H;, and integrating the resulting
equality over R3, we obtain from the Cauchy-Schwarz inequality that

1d
(4.4) 23 /(,u|Vu|2 + 1/|VH|2) dz + /(Q|ut|2 + |Ht|2) dx

= /H'VH-utdx—/gu-Vu-utdx—i—/(H'Vu—u'VH)'thx

—%/H-Vu-de—i—/Ht-Vu-de—i—/H-Vu-thx
—/g’u,-Vu-'u,thH-/(H-Vu—u-VH)-thx

d 1
_ &/H-Vu-Hda:—i— 5/(g|ut|2’ + | H[?) dz

N

+ C’/(g|u|2|Vu|2 +HPVul? + [ul2|VH]) d
which implies that

(4.5) (uIVul? + v[VH] + 2H - V- H) de + |y /ow3» + | Hi[13

d
dt
< C/(@IuIQIVUI2 +HPVul® + [u’| VH[?) do

Integrating (4.5) with respect to the time variable over (0,t) gives rise to

t
(4.6)  sup (ullVuli. +v|VH]L:) + /(llx/Euslli2+HHsHiz)ds

<s<t

< (ulVuolZ> + v[[VHo|Z2) +4 sup /|H| Vu| dz

0<s<t

+ C/ /(Q|u|2|Vu|2 + |H)?|Vul? + [u|*/VH|?) dz ds.
0
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Recall that (u, P) satisfies the following Stokes system:
—puAu+VP =—pu; —ou-Vu+H-VH, z¢cR3

(4.7) divu =0, r € R3,
u(zr) — 0, |z| = oo.

We thus obtain from (2.7) that

(4.8) IV2ull7 < Clloudlz: + llow: VulZ. + | H - VH|:)

Clllveurlze + Ilvou - VulL: + ||H - VH]:).

NN

Applying the classical L?-estimates for elliptic system on H gives
(4.9) IV H|[7> < O(|Hel|Z2 + |lu- VH|Z: + | H - Vaul|72),
which together with (4.8) leads to

(4.10) IV2u|Z2 + [V2H||72 < L(|lv/ow:|72 + || Hell72)
+C(vou- Vulz: + | H - VH|[7-
+llu- VH|Z: + | H - Vul7.)
for a positive constant L depending only on p, v and ||g|| <. Integrating (4.10) mul-
tiplied by 1/(2L) with respect to time variable over (0,t) and adding the resulting
inequality to (4.6), we have
(4.11)
sup (u]| Ve + v||VH|Z2)

SERS

t 1 t
+ ﬁ (IV2u][Z: + [ V2H[72) ds + 5/0 (IVeus|[7> + | H|[72) ds

< (I Vuofs + v VHalE) + 4 sup [ HPIValdo
0<s<t

t
+E/ /(Q|u|2|VU|2+|H|2|VU|2+ |ul?|VH* + |H|*|VH|?) dz ds.
0

By Holder’s inequality, the Sobolev inequality and (4.2), we have
(4.12)

1/2 3/2
/ |H 2|Vl dz < | H| 24|Vl 2 < | HI|[V2VH |22 Val| 2
H H
< gIVullis + CILH| 2| VHI3: < Sl Vulf. + OVl V],

which gives rise to

(4.13) 4 sup /|H| |Vu|dr <= sup ||Vu|?. +Cy/Co sup IVH3..

0<s<t

<s<t 0<s<t
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In a similar way, we have

(4.14) i/(g|u|2|w|2 + | HPVul? + [ul2[VH] + |HP|VH]?) dz

< Lol oo llwl 2oVl 2 Vull 1o + LI H |76l V]| 2| V]| o
+ Ll 2ol VHI| 2 VH | o + LIH |76 | VH | 12V H | o

< C|Vul[po IV 2 + CIIVH Lo Vae] 22 [V ul 2
+C||Vullf2 | VH|| 2| V2H | 2 + C| VH|[72 | VH]| o

1
17 (IV?ullZe + IV H7:)
+O(IVuli: + [VH|Z:) (I Vulz2 + [ VH]L2).

Integrating inequality (4.14) with respect to time variable over (0,t) gives
(4.15)

t
L[ [tV + |HP VP + [ VHP + [HF[VHP) dods
0

1

<o <Hv2u|\Lz + | V2H3:) ds

t
+C sup (|Vulg + IIVH||L2)/ (IVulZ: +[VH|Z:)ds

0<s<t

1

<o (HVQuHLz + | V2H3:) ds

t
+C sup (|[Vaulz: + ||VH||L2)/ (el VulZ: +v|VHIZ)ds

<s<t

1

ST (HVQU’HLZ +[|V2H|7) ds + CCo sup (|[Vaul|z: + [VH]:),

<s<t

due to (4.2). Substituting (4.13) and (4.15) into (4.11) implies the desired (4.3) and
therefore the proof of Lemma 4.2 is completed. O

Lemma 4.3. Let (p,u, H,0) be a strong solution to system (1.1)—(1.3) on (0,T).
Then there exists a positive constant €y depending only on p,v and | go|| L such
that for any t € (0,T') it holds that

(4.16) sup (]| Vul[fz +v2(|VH|72) < 8(ul[Vauoll72 + v[|VHo|Z»)

A

provided that

(4.17) (IVeouollZ + | HollZ2)( Vuol|72 + [V Ho|72) < <o-
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Proof. Define function E(t) as

E(t) = sup (u|[Vull?s +v|VH]Z:).

IS

In view of the regularity of w and H as described in Lemma 2.1, it is easy to check
that E(t) is a continuous function on [0,T]. By (4.3), there is a positive constant M
depending only on p, v and ||gg|| e such that

(418)  E(t) < 2(u||Vuo|2s + v||[VHy|2:) + VM\/CoEY?(t) + MCoE?(t).

Now suppose that

1

4.1 M e Holli:) < garv o)
(4.19) Co([[Vuo||72 + IVHo |7 2) TESR

which implies

(4.20)  MCo(ul|Vuol7 + VI[VHo|Z2) < MCo(p + v)([VuolZ> + [V HolZ:)

< 1 x (u+v) 1
< — V)= —.
64(pn+v) . 64

Set
(4.21) T, 2 max{t€[0,T]: E(s) < 16(u||Vuo||2s + v||VHy|32),Vs € (0,t)}.

We claim that
T.=1T.

Otherwise, we have T, € (0,T'). By the continuity of E(t), it follows from (4.18) and
(4.20) that

E(T.) < 2(ul| Vol 32 + V]|V Hol|22) + /DM Co - \/16(u]| Vol 32 + V]|V Hol|2) E(T:)
+ MCo - 16(ul|Vuo |22 + V[V H |[32) E(T..)
= 2(u]| Vo |32 + v VHo|32) + /16M Copl| V|32 + |V Ho[2) E(T.)
+ 16MCo(ul| Vo[22 + V||V Holl32) E(T.)

3
< 2(pll Vol + VIIVHO|Z2) + 12T,

and thus
E(T.) < 8(ullVuol7= + vI[VHol|7:),

which contradicts (4.21).
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Choosing €9 = 1/(64M (1 + v)), by virtue of the claim we have showed in the
above, we derive that

B(t) < 8(ul[Vuoll7z + v VHo[Z:), 0<t<T,

provided that (4.17) holds true. This gives the desired (4.16), which consequently
completes the proof of Lemma 4.3. (]

Now we are ready to give a proof of Theorem 1.6.

Proof of Theorem 1.6. Let £g be the constant stated in Lemma 4.3 and suppose
the initial data (oo, ug, Ho,00) satisfy (1.5), (1.6), (1.7), and

(4.22) (IVeouol|Z> + [ HollZ2) (I Vol > + ||V Holl72) < o.

According to Lemma 2.1, there is a unique strong solution (g, u, H, ) to system
(1.1)-(1.3). Let T* be the maximal existence time to that solution. We will show
that T = oco. Supposing, by contradiction, that T* < oo, then by (1.8), we deduce
that for any (s,r) with 2/s 4 3/r < 1,7 > 3 it holds that

N
/ Jully, dt = oo,
0

which combined with the inequality H'u,||‘ig < lullfs < C||Vul|]. leads to

-

(4.23) / V|72 dt = cc.
0

By Lemma 4.3, for any 0 < T < T™ we find that

sup ||Vaul|7: < 8(u|[Vuol|7: + v VHo|72).
0t<T

This together with (4.2) gives rise to

T T
/ IVullizdt < ( sup ||Vu||2L2)/ V|22 dt
0 0

0<t<T™
< 8(ul| Vo3 + |V Holl32) (20) ™ Clo < oo,

which contradicts (4.23). This contradiction implies that 7% = oo, and thus we
obtain global strong solution. Therefore the proof of Theorem 1.6 is completed.
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