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Abstract. This paper is concerned with a Cauchy problem for the three-dimensional (3D)
nonhomogeneous incompressible heat conducting magnetohydrodynamic (MHD) equations
in the whole space. First of all, we establish a weak Serrin-type blowup criterion for strong
solutions. It is shown that for the Cauchy problem of the 3D nonhomogeneous heat con-
ducting MHD equations, the strong solution exists globally if the velocity satisfies the weak
Serrin’s condition. In particular, this criterion is independent of the absolute temperature
and magnetic field. Then as an immediate application, we prove the global existence and
uniqueness of strong solution to the 3D nonhomogeneous heat conducting MHD equations
under a smallness condition on the initial data. In addition, the initial vacuum is allowed.
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1. Introduction and main results

The time evolution of a three-dimensional nonhomogeneous incompressible and

heat conducting magnetohydrodynamic (MHD for short) fluid is governed by the

following nonhomogeneous heat conducting MHD system:

(1.1)



































∂t̺+ div(̺u) = 0,

∂t(̺u) + div(̺u⊗ u)− div(2µD(u)) +∇P = (H · ∇)H ,

cv[∂t(̺θ) + div(̺uθ)]− κ∆θ = 2µ|D(u)|2 + ν|∇ ×H |2,
∂tH + (u · ∇)H − (H · ∇)u = ν∆H ,

divu = divH = 0,
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where t > 0 stands for the time and x ∈ R3 for the spatial coordinate. Moreover, ̺,

u = (u1, u2, u3), P, θ and H = (H1, H2, H3) denote the fluid density, velocity, pres-

sure, absolute temperature and magnetic field, respectively. The positive constants

µ, cv, κ and ν are the viscosity coefficient, heat capacity, heat conductivity coefficient

and magnetic diffusive coefficient, respectively.

D(u) =
1

2
[∇u + (∇u)⊤]

is the deformation tensor, where ∇u is the gradient matrix (∂ui/∂xj)ij and (∇u)⊤

is its transpose, and ∇×H is the curl of the magnetic field H .

In this paper, we will study the Cauchy problem of equation (1.1) with the initial

conditions

(1.2) (̺,u,H , θ)(x, 0) = (̺0,u0,H0, θ0)(x), x ∈ R3,

and the far field behavior conditions (in a weak sense)

(1.3) (̺,u,H , θ)(x, t) → (0,0,0, 0) as |x| → ∞.

Magnetohydrodynamics is the study of the interaction between magnetic field and

moving conducting fluids. It is one of the important macroscopic fluid models, usu-

ally arising in science and engineering with a wide range of applications. Examples

of such a magneto-fluids include hot ionised gases (plasmas), liquid metals or strong

electrolytes. Because of the physical description of magneto-fluids dynamics, the

nonhomogeneous incompressible MHD system (1.1) is a combination of the nonho-

mogeneous Navier-Stokes equations of fluid mechanics and the Maxwell equations of

electromagnetism. The concept behind MHD is that the magnetic field can induce

currents in a moving conducting fluid, which in turn polarizes the fluid and changes

the magnetic field itself. One of the important issues is to understand the nature of

this coupling between fluids and magnetic fields. We refer to [6] for more background

and applications of MHD.

The mathematical studies of the nonhomogeneous incompressible fluids attract

a lot of attention due to their physical importance, mathematical challenge and

widespread applications. Let us briefly give a short survey on the nonhomogeneous

fluids which are related to our results in this paper.

When we do not take account of equation (1.1)3 for temperature, (1.1) reduces

to the nonhomogeneous incompressible MHD equations. For this system, when the

initial density has a positive lower bound, Gerbeau, Le Bris [9] and Desjardins,

Le Bris [7] studied the global existence of weak solutions of finite energy in the
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whole space and in the torus, respectively. Chen et al. [3] proved the existence of

a global solution for the initial data belonging to critical Besov spaces. See also [1]

for related improvement. Besides, Chen et al. [2] showed global well-posedness to

the 3D Cauchy problem for discontinuous initial density. On the other hand, in the

presence of vacuum, Chen et al. [4] obtained the local existence of strong solutions

to the 3D Cauchy problem under a compatibility condition on the initial data. With

the help of a Sobolev inequality of logarithmic type, Huang and Wang [14] showed

the global existence of the strong solution for general initial data in dimension two.

When we study the motion in the absence of magnetic field, namely, H ≡ 0, (1.1)

reduces to the nonhomogeneous heat conducting Navier-Stokes equations. Under

compatibility conditions for the initial data, Zhong [22] showed a Serrin-type blow-

up criterion and proved global strong solutions with vacuum for small initial data,

which extended the local result obtained by Cho and Kim [5] to a global one. By

employing certain time-weighted a priori estimates, they showed that strong solutions

exist globally provided that a smallness condition holds true. Meanwhile, Wang et

al. [20] studied a three-dimensional initial boundary value problem with the general

external force and obtained global existence of strong solutions under the assumption

that the initial density is suitably small. Very recently, combining delicate energy

estimates and a logarithmic interpolation inequality, the author established the global

existence and uniqueness of strong solutions to the 2D Cauchy problem with large

initial data and non-vacuum density at infinity.

Let us go back to the heat conducting MHD system (1.1). The local existence

of a unique strong solution to system (1.1) with vacuum under some compatibility

conditions was proved by Wu [21]. For the 2D problem, Zhong [24], [25] used a log-

arithmic interpolation inequality to prove the global well-posedness to the Cauchy

problem and initial and boundary value problem for large initial data, respectively.

And he also proved the global existence of a strong solution of initial and boundary

problem with density-dependent viscosity in [26]. For 3D initial and boundary value

problem, Zhong [23] obtained a global solution under some smallness conditions on

the initial data, while Zhou [27] established a Serrin-type blowup criterion involving

only the velocity field. Later, Zhu and Ou [28] extended the corresponding result

in [23] to the case of density-temperature-dependent viscosity. However, the global

well-posedness of system (1.1) in the unbounded domains is still unknown. In fact,

this is the main purpose of this paper.

Before stating our main results, we first explain the notations and conventions

used throughout this paper. We denote

∫

· dx =

∫

R3

· dx.
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And for 1 6 r 6 ∞ and k ∈ N, the homogeneous and inhomogeneous Sobolev spaces
are defined in a standard way:











Lr = Lr(R3), W k,r = W k,r(R3), Hk = W k,2,

Dk,r = {f ∈ L1
loc : ‖∇kf‖Lr < ∞}, Dk = Dk,2,

D1
0 = {f ∈ L6(R3) : ‖∇u‖L2 < ∞}.

Now we give the definition of strong solutions to the Cauchy problem (1.1)–(1.3)

as follows.

Definition 1.1 (Strong solutions). A pair of functions (̺ > 0, u, H , θ > 0) is

called a strong solution to the Cauchy problem (1.1)–(1.3) in R3 × (0, T ) if for some

q0 ∈ (3,∞),

(1.4)











̺ ∈ C([0, T ];H1 ∩W 1,q0), ̺t ∈ C([0, T ];Lq0),

(u,H , θ) ∈ C([0, T ];D1
0 ∩D2) ∩ L2(0, T ;D2,q0),

(
√
̺ut,Ht,

√
̺θt) ∈ L∞(0, T ;L2), (ut,Ht, θt) ∈ L2(0, T ;D1

0),

and (̺,u,H , θ) satisfies (1.1) almost everywhere in R3 × (0, T ).

Our main results read as follows:

Theorem 1.2. For a constant q ∈ (3, 6], assume that the initial data (̺0 > 0, u0,

H0, θ0 > 0) satisfy

(1.5) ̺ ∈ L1 ∩H1 ∩W 1,q, (u0,H0, θ0) ∈ D1
0 ∩D2, divu0 = divH0 = 0,

and the compatibility conditions

(1.6) −µ∆u0 −H0 · ∇H0 +∇P0 =
√
̺0g1

and

(1.7) κ∆θ0 + 2µ|D(u0)|2 + ν|∇ ×H0|2 =
√
̺0g2

for some P0 ∈ D1, and g1,g2 ∈ L2. Let (̺,u,H , θ) be a strong solution in R3×(0, T ∗)

as described in Definition 1.1. If T ∗ < ∞ is the maximal existence time, then

(1.8) lim
T→T∗

‖u‖Ls(0,T ;Lr
ω) = ∞

for any r and s satisfying

(1.9)
2

s
+

3

r
6 1, 3 < r 6 ∞,

where Lr
ω denotes the weak-L

r space.
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R em a r k 1.3. The local existence of a unique strong solution to (1.1)–(1.3) with

the initial data described in Theorem 1.2 can be established in a similar way as [5]

(see also [21]). Hence, the maximal time T ∗ is well-defined.

R em a r k 1.4. It should be pointed out that the blowup criterion (1.8) is inde-

pendent of both the temperature and magnetic field, which is the same as the weak

Serrin-type blowup criterion of homogeneous Navier-Stokes equations (see the work

of Sohr [18]).

R em a r k 1.5. The approach can be adapted to deal with the case of bounded

domain in R3. And compared with [27] for bounded domain, some new difficulties

occur in our analysis. First, the Poincare’s inequality fails for 3D Cauchy problem,

which is key to estimate ‖θ‖L2. Furthermore, it implies the blowup criterion (1.8) is

stronger than that of [27] due to ‖u‖Ls(0,T ;Lr
ω) 6 ‖u‖Ls(0,T ;Lr).

The proof of Theorem 1.2 will be done by contradiction. In view of the local

existence result, to prove Theorem 1.2 it suffices to verify that (̺,u,H , θ) satisfy

(1.5)–(1.7) at the time T ∗ under the assumption that the left-hand side of (1.8) is

finite, then apply the local existence result to extend a local solution beyond the

maximal existence time T ∗, consequently leading to a contradiction.

Based on Theorem 1.2, we can establish the global existence of strong solutions

to (1.1)–(1.3) under a smallness condition on the initial data.

Theorem 1.6. Let the conditions in Theorem 1.2 hold. Then there exists a small

positive constant ε0 depending only on µ, ν, and ‖̺0‖L∞ such that if

(1.10) (‖√̺0u0‖2L2 + ‖H0‖2L2)(‖∇u0‖2L2 + ‖∇H0‖2L2) 6 ε0,

then the Cauchy problem of system (1.1)–(1.3) admits a unique global strong

solution.

We now comment on the analysis of this paper. The study of weak Serrin-type

blowup criterion (Theorem 1.2) is mainly motivated by a recent work of Wang [19],

which established a Serrin’s blowup criterion for nonhomogeneous heat conducting

Navier-Stokes equations in the whole space R3 using the weak Lebesgue spaces.

Compared to Navier-Stokes model in [19], the mathematical analysis of nonhomoge-

neous heat conducting MHD system will be more complicated on the account of the

coupling of the velocity and magnetic field (such as the term u · ∇H) and strong

nonlinearity (such as the term H · ∇H). To overcome these difficulties, one of the

key ideas is to derive an estimate of ‖H‖L∞(0,T ;Lq) for q > 2 which turns out to play

an important role in our analysis. It should be noted that our blowup criterion is
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independent of the temperature and magnetic field, which means the temperature

and magnetic field do not play a particular role when the singularity of solution

(̺,u,H , θ) forms in finite time.

As an immediate application of the blowup criterion obtained in Theorem 1.2, we

plan to extend the local strong solution to be a global one under a smallness condition

on the initial data. Noticing that the pair (s, r) = (4, 6) satisfies 2/s+ 3/r 6 1, we

conclude that the global existence of a unique strong solution can be verified if we

can obtain the uniformly time independent estimate on the L2(0, T ;L2)-norm of the

gradient of the velocity. To this end, we multiply the momentum equations by ut

and make good use of the smallness of initial data to obtain the desired estimate.

The remainder of this paper is arranged as follows. In Section 2, we give some

auxiliary lemmas which will be useful in our later analysis. The proof of Theorem 1.2

will be done by combining the contradiction argument with the estimates derived in

Section 3. Finally, we give the proof of Theorem 1.6 in Section 4.

2. Preliminaries

In this section, we will recall some known facts and analytic inequalities that will

be used in the later analysis.

We begin with the following local existence and uniqueness of strong solutions

when the initial data is allowed vacuum, which can be proved in a similar way as [5]

(see also [21]).

Lemma 2.1. Assume that the initial data (̺0,u0,H0, θ0) satisfy (1.5)–(1.7).

Then there exist positive time T1 and a unique strong solution to the Cauchy problem

(1.1)–(1.3) on R3 × (0, T1].

Next, we will introduce the well-known Gagliardo-Nirenberg inequality which will

be frequently used later. See [10], Chapter 6 for the proof and more details.

Lemma 2.2. For p ∈ [2, 6], q ∈ (1,∞) and r ∈ (3,∞), there exists a generic

constant C which may depend only on p, q and r, such that for f ∈ H1, g ∈ Lq∩D1,r,

the following inequalities hold:

‖f‖Lp 6 C‖f‖(6−p)/(2p)
L2 ‖∇f‖(3p−6)/(2p)

L2 ,(2.1)

‖g‖L∞ 6 C‖g‖Lq + C‖∇g‖Lr .(2.2)

Since our blowup criterion (1.8) involves a weak Lebesgue space, it is necessary

to give a short introduction and state related inequalities. Denote the Lorentz space
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and its norm by Lp,q and ‖·‖Lp,q , respectively, where 1 < p < ∞ and 1 6 q 6 ∞.
And we recall the weak-Lp space Lp

ω which is defined as follows:

Lp
ω := {f ∈ L1

loc : ‖f‖Lp
ω
= sup

λ>0
λ|{|f(x)| > λ}|1/p < ∞}.

It should be noted that

Lp $ Lp
ω, L∞

ω = L∞, Lp
ω = Lp,∞, Lp,p = Lp, ‖f‖Lp

ω
6 ‖f‖Lp.

For the details of Lorentz space, we refer to the monograph by Grafakos [11]. In

particular, we introduce the following Hölder’s inequality in Lorentz space, whose

proof can be found in [16].

Lemma 2.3. Let p1, p2 ∈ (0,∞), q1, q2 ∈ [1,∞] satisfying 1/p = 1/p1 + 1/p2 < 1

and q = min{q1, q2}. Then for f ∈ Lp1,q1 and g ∈ Lp2,q2 , there exists a positive

constant C depending on p1, p2, q1 and q2 such that f · g ∈ Lp,q satisfying

(2.3) ‖f · g‖Lp,q 6 C‖f‖Lp1,q1 ‖g‖Lp2,q2 .

Based on Lemma 2.3, we have the following result involving the weak Lebesgue

spaces, which will play an important role in the subsequent analysis.

Lemma 2.4. Assume g ∈ H1 and f ∈ Lr
ω with r ∈ (3,∞]. Then f · g ∈ L2.

Furthermore, for any ε > 0 we have

(2.4) ‖f · g‖2L2 6 ε‖∇g‖2L2 + C(ε)(‖f‖sLr
ω
+ 1)‖g‖2L2,

where C is a positive constant depending only on ε and r.

P r o o f. Modifying the proof in [15] for bounded domains slightly, it follows

from (2.3) and the interpolation inequality that

(2.5) ‖f · g‖2L2 = ‖f · g‖2L2,2 6 C‖f‖Lr,∞‖g‖L2r/(r−2),2

6 C‖f‖Lr
ω
‖g‖L2r1/(r1−2)‖g‖L2r2/(r2−2)

6 C‖f‖Lr
ω
‖g‖(r1−3)/r1

L2 ‖g‖3/r1L6 ‖g‖(r2−3)/r2
L2 ‖g‖3/r2L6

6 C‖f‖Lr
ω
‖g‖(2r−6)/r

L2 ‖g‖6/rL6

6 C‖f‖Lr
ω
‖g‖(2r−6)/r

L2 ‖∇g‖6/rL2

6 ε‖∇g‖2L2 + C(ε)(‖f‖sLr
ω
+ 1)‖g‖2L2,

where r1, r2 and r satisfy 3 < r1 < r < r2 < ∞, 2/r = 1/r1+1/r2 and 2/s+3/r 6 1.

This completes the proof of Lemma 2.4. �
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Finally, we give classical regularity results for the Stokes system in the whole

space R3, which have been proved in [12].

Lemma 2.5. For any r ∈ (1,∞), if F ∈ Lr, there exists a positive constant C

depending only on r such that the unique weak solution (u, P ) ∈ D1 × L2 to the

Stokes system

(2.6)











−∆u+∇P = F in R3,

divu = 0 in R3,

u(x) → 0 as |x| → ∞,

satisfies

(2.7) ‖∇2
u‖Lr + ‖∇P‖Lr 6 C‖F‖Lr .

3. Proof of Theorem 1.2

This section is devoted to giving a proof of Theorem 1.2 using the contradiction

argument. To do this, let (̺,u,H , θ) be a strong solution to the Cauchy problem

(1.1)–(1.3) as described in Lemma 2.1, and T ∗ be the maximal existence time of the

strong solution. Suppose that (1.8) in Theorem 1.2 were false, that is to say, there

exists a positive constant M0 such that

(3.1) lim
T→T∗

‖u‖Ls(0,T ;Lr
ω)

6 M0 < ∞.

Under condition (3.1), we will extend the existence time of the strong solution be-

yond T ∗, which contradicts the definition of the maximum of T ∗.

Before proceeding, it is easy to rewrite system (1.1) in the following form if we

assume the solution (̺,u,H , θ) is regular enough:

(3.2)



































∂t̺+ u · ∇̺ = 0,

̺∂tu+ ̺u · ∇u− µ∆u+∇P = (H · ∇)H ,

cv(̺∂tθ + ̺u · ∇θ)− κ∆θ = 2µ|D(u)|2 + ν|∇ ×H |2,
∂tH + (u · ∇)H − (H · ∇)u = ν∆H ,

divu = divH = 0.

In this section, the symbol C denotes a generic constant which may depend on

M0, µ, ν, cv, κ, T
∗, and the initial data.

Now we establish some a priori estimates which will be used to prove Theorem 1.2

at the end of this section.
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3.1. Lower-order estimates. In this subsection, we will derive a series of key

lower-order estimates to (̺,u,H , θ)

First, it follows from the transport equation (3.2)1 for the density and incompress-

ibility condition divu = 0 that the following result holds.

Lemma 3.1. There exists a positive constant C satisfying

(3.3) sup
06t6T

‖̺‖L1∩L∞ 6 C, 0 6 T < T ∗.

Next, the standard energy estimates read as follows.

Lemma 3.2. It holds that for any 0 6 T < T ∗,

(3.4) sup
06t6T

(‖√̺u‖2L2 + ‖H‖2L2 + ‖̺θ‖L1) +

∫ T

0

(‖∇u‖2L2 + ‖∇H‖2L2) dt 6 C.

P r o o f. It follows from the standard maximum principle to (1.1)3 together with

θ0 > 0 that (see [8] for the proof)

inf
R3×[0,T ]

θ(x, t) > 0.

Moreover, multiplying (1.1)2 by u, (3.2)4 by H , and integrating the resulting

equations over R3, it follows from integrating by parts that

(3.5)
1

2

d

dt

∫

(̺|u|2 + |H |2) dx+

∫

(µ|∇u|2 + ν|∇H |2) dx = 0.

Integrating (1.1)3 with respect to the spatial variable over R
3 and performing inte-

gration by parts, we obtain that

(3.6) cv
d

dt

∫

̺θ dx =

∫

(2µ|D(u)|2 + ν|∇ ×H |2) dx.

By the definition of D(u) and integration by parts, we get

(3.7) 2µ

∫

|D(u)|2 dx =
µ

2

∫

(∂iu
j + ∂ju

i)2 dx

= µ

∫

|∂iuj |2 dx+ µ

∫

∂iu
j∂ju

i dx = µ

∫

|∇u|2 dx,

and it follows from −∆H = ∇× (∇×H) (since divH = 0) that

(3.8) ‖∇H‖2L2 = ‖∇×H‖2L2.
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Substituting (3.7) and (3.8) into (3.7) gives

(3.9) cv
d

dt

∫

̺θ dx =

∫

(µ|∇u|2 + ν|∇H |2) dx.

Therefore, adding (3.5) multiplied by 2 to (3.9), we have

(3.10)
d

dt

∫

(̺|u|2 + |H |2 + cv̺θ) dx+

∫

(µ|∇u|2 + ν|∇H |2) dx = 0.

Integrating (3.10) with respect to t over [0, T ] leads to the desired (3.4), which

completes the proof of Lemma 3.2. �

Before deriving the key estimates of ‖∇u‖L∞(0,T ;L2) and ‖∇H‖L∞(0,T ;L2), we

insert an important estimate on magnetic field H initiated by He and Xin [13],

which will be stated in the following lemma.

Lemma 3.3. Under condition (3.1), it holds that for q ∈ [2, 12] and 0 6 T < T ∗,

(3.11) sup
06t6T

‖H‖qLq +

∫ T

0

∫

|H |q−2|∇H |2 dxdt 6 C.

P r o o f. Multiplying (3.2)4 by q|H |q−2
H and integrating the resulting equation

over R3, it follows from (2.4) in Lemma 2.4 that

(3.12)
d

dt

∫

|H |q dx+ ν

∫

(q|H |q−2|∇H |2 + q(q − 2)|H |q−2|∇|H ||2) dx

= −
∫

q|H |q−2
(

H · ∇H · u− q − 1

2
u · ∇|H |2

)

dx

− q(q − 2)

2

∫

|H |q−4(H · ∇|H |2)(u ·H) dx

6
ν

2

∫

q|H |q−2|∇H |2 dx+ Cq2
∫

|u|2|H |q dx

=
ν

2

∫

q|H |q−2|∇H |2 dx+ Cq2‖|u||H |q/2‖2L2

6
ν

2

∫

q|H |q−2|∇H |2 dx+ ε‖∇|H |q/2‖2L2 + C(ε)(1 + ‖u‖sLr
ω
)‖H‖qLq .

Choosing ε suitably small in (3.12), we obtain the desired (3.11) after applying

Gronwall’s inequality and (3.1). Therefore, the proof of Lemma 3.3 is completed.

�

With the help of Lemma 3.3, we can now derive key time-independent estimates

on the L∞(0, T ;L2)-norm of the gradients of velocity and magnetic field.
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Lemma 3.4. Under assumption (3.1), it holds for all 0 6 T < T ∗ that

(3.13) sup
06t6T

(‖∇u‖2L2 + ‖∇H‖2L2)

+

∫ T

0

(‖√̺ut‖2L2 + ‖Ht‖2L2 + ‖∇2
u‖2L2 + ‖∇2

H‖2L2) dt 6 C.

P r o o f. Multiplying (3.2)2 by ut and integrating the resulting equation over R3

lead to

(3.14)
µ

2

d

dt

∫

|∇u|2 dx+

∫

̺|ut|2 dx = −
∫

̺u · ∇u · ut dx+

∫

H · ∇H · ut dx.

It follows from equation (3.2)4 that Ht − ν∆H = H · ∇u− u · ∇H . Then we have

(3.15)

∫

|Ht − ν∆H |2 dx =

∫

|u · ∇H −H · ∇u|2 dx.

For the LHS of (3.15), it is easy to get

(3.16)

∫

|Ht − ν∆H |2 dx =

∫

(|Ht|2 + ν2|∆H |2 − 2νHt ·∆H) dx

= ν
d

dt

∫

|∇H |2 dx+

∫

(|Ht|2 + ν2|∆H |2) dx.

Substituting (3.16) into the LHS of (3.15), we obtain that

(3.17) ν
d

dt

∫

|∇H |2 dx+

∫

(|Ht|2 + ν2|∆H |2) dx =

∫

|u · ∇H −H · ∇u|2 dx.

Notice that the standard L2-estimate of elliptic system gives

(3.18) ‖∇2
H‖2L2 6 K‖∆H‖2L2

with a positive constant K. Adding (3.14) to (3.17), we derive from the Cauchy-

Schwarz inequality and (3.18) that

(3.19)
d

dt

(µ

2
|∇u|2 + ν|∇H |2

)

dx+

∫

(̺|ut|2 + |Ht|2 +
ν2

K
|∇2

H |2) dx

6

∫

H · ∇H · ut dx−
∫

̺u · ∇u · ut dx+

∫

|u · ∇H −H · ∇u|2 dx

= − d

dt

∫

(H · ∇)u ·H dx+

∫

(Ht · ∇)u ·H dx+

∫

(H · ∇)u ·Ht dx

−
∫

̺u · ∇u · ut dx+

∫

|u · ∇H −H · ∇u|2 dx

6 − d

dt

∫

(H · ∇)u ·H dx+
1

2

∫

̺|ut|2 dx+
1

2

∫

|Ht|2 dx

+ C

∫

|√̺u · ∇u|2 dx+ C

∫

|u · ∇H |2 dx+ C

∫

|H · ∇u|2 dx.
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Thus, we obtain that

(3.20)
d

dt

∫

(µ|∇u|2 + 2ν|∇H |2 + 2(H · ∇)u ·H) dx

+

∫

(̺|ut|2 + |Ht|2 +
2ν2

K
|∇2

H |2) dx

6 C

∫

|√̺u · ∇u|2 dx+ C

∫

|u · ∇H |2 dx+ C

∫

|H · ∇u|2 dx.

Recall that (u, P ) satisfies the following Stokes system:

(3.21)











−µ∆u+∇P = −̺ut − ̺u · ∇u+H · ∇H , x ∈ R3,

divu = 0, x ∈ R3,

u(x) → 0, |x| → ∞.

Applying Lemma 2.5 with F , −̺ut−̺u ·∇u+H ·∇H , we obtain from (2.7) that

(3.22) ‖∇2
u‖2L2 6 C(‖̺ut‖2L2 + ‖̺u · ∇u‖2L2 + ‖H · ∇H‖2L2)

6 L(‖√̺ut‖2L2 + ‖√̺u · ∇u‖2L2 + ‖H · ∇H‖2L2),

where L is a positive constant depending only on µ and ‖̺0‖L∞ .

Adding (3.22) multiplied by 1/(2L) to (3.20), we have

(3.23)
d

dt

∫

(µ|∇u|2 + 2ν|∇H |2 + 2(H · ∇)u ·H) dx

+

∫

(1

2
̺|ut|2 + |Ht|2 +

2ν2

K
|∇2

H |2 + 1

2L
‖∇2

u‖2L2

)

dx

6 C

∫

(|√̺u · ∇u|2 + |u · ∇H |2 + |H · ∇u|2 + |H · ∇H |2) dx

6 C‖̺‖L∞‖u · ∇u‖2L2 + C‖u · ∇H‖2L2 + C‖H‖2L6‖∇u‖L2‖∇u‖L6

+ C‖H‖2L6‖∇H‖L2‖∇H‖L6

6
ε

2
(‖∇2

u‖2L2 + ‖∇2
H‖2L2) + C(ε)(1 + ‖u‖sLr

ω
)(‖∇u‖2L2 + ‖∇H‖2L2)

+ C‖H‖2L6‖∇u‖L2‖∇2
u‖L2 + C‖H‖2L6‖∇H‖L2‖∇2

H‖L2

6 ε(‖∇2
u‖2L2 + ‖∇2

H‖2L2) + C(ε)(1 + ‖u‖sLr
ω
)(‖∇u‖2L2 + ‖∇H‖2L2),

due to Lemma 2.4, (3.11) and the Cauchy-Schwarz inequality.

Moreover, applying the Cauchy-Schwarz inequality and (3.11) gives rise to

(3.24) 2

∫

(H · ∇)u ·H dx 6 C‖H‖2L4‖∇u‖L2 6
µ

2
‖∇u‖2L2 + C‖H‖4L4

6
µ

2
‖∇u‖2L2 + C.
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Together with Gronwall’s inequality, (3.23) implies

(3.25) sup
06t6T

(‖∇u‖2L2 + ‖∇H‖2L2)

+

∫ T

0

(‖√̺ut‖2L2 + ‖Ht‖2L2 + ‖∇2
u‖2L2 + ‖∇2

H‖2L2) dt 6 C.

Therefore, the proof of Lemma 3.4 is completed. �

The following lemma concerns the higher regularity of the temperature θ.

Lemma 3.5. Under assumption (3.1), it holds that for 0 6 T < T ∗,

(3.26) sup
06t6T

‖√̺θ‖2L2 +

∫ T

0

‖∇θ‖2L2 dt 6 C.

P r o o f. Multiplying (3.2)3 by θ and integrating the resulting equation over R
3

implies that

(3.27) cv
d

dt

∫

̺θ2 dx+ 2κ

∫

|∇θ|2 dx 6 C

∫

|∇u|2θ dx+ C

∫

|∇H |2θ dx.

We estimate each term of the RHS of (3.27) as follows. Applying Hölder’s and the

Cauchy-Schwarz inequalities gives

(3.28)

∫

|∇u|2θ dx 6 C‖∇u‖2L12/5‖θ‖L6 6 C‖∇u‖3/2L2 ‖∇u‖1/2L6 ‖∇θ‖L2

6
κ

2
‖∇θ‖2L2 + C‖∇u‖3L2‖∇2

u‖L2 6
κ

2
‖∇θ‖2L2 + C‖∇2

u‖2L2 + C,

due to (3.13). And in a similar way, we have

(3.29)

∫

|∇H |2θ dx 6
κ

2
‖∇θ‖2L2 + C‖∇2

H‖2L2 + C.

Substituting (3.28) and (3.29) into (3.27), we obtain

(3.30) cv
d

dt

∫

̺θ2 dx+ κ

∫

|∇θ|2 dx 6 C‖∇2
u‖2L2 + C‖∇2

H‖2L2 + C.

Integrating inequality (3.30) with respect to the time variable over (0, t), we get from

(3.13) that

(3.31) sup
06t6T

‖√̺θ‖2L2 +

∫ T

0

‖∇θ‖2L2 dt 6 C.

Therefore, the proof of Lemma 3.5 is completed. �

605



At the end of this subsection, we give the following remark which will be used

later.

R em a r k 3.6. In view of Lemma 3.4, we deduce from classical L2-estimates for

elliptic and Stokes system that

‖∇2
u‖2L2 6 C(‖√̺ut‖2L2 + ‖u · ∇u‖2L2 + ‖H · ∇H‖2L2)(3.32)

6 C(‖√̺ut‖2L2 + ‖u‖2L6‖∇u‖2L3 + ‖H‖2L6‖∇H‖2L3)

6 C(‖√̺ut‖2L2 + ‖∇u‖3L2‖∇2
u‖L2 + ‖∇H‖3L2‖∇2

H‖L2)

6
1

4
(‖∇2

u‖2L2 + ‖∇2
H‖2L2) + C‖√̺ut‖2L2

+ C‖∇u‖6L2 + C‖∇H‖6L2,

and

‖∇2
H‖2L2 6 C(‖Ht‖2L2 + ‖u · ∇H‖2L2 + ‖H · ∇u‖2L2)(3.33)

6 C(‖Ht‖2L2 + ‖u‖2L6‖∇H‖2L3 + ‖H‖2L6‖∇u‖2L3)

6 C(‖Ht‖2L2 + ‖∇u‖2L2‖∇H‖L2‖∇2
H‖L2

+ ‖∇H‖2L2‖∇u‖L2‖∇2
u‖L2)

6
1

4
(‖∇2

u‖2L2 + ‖∇2
H‖2L2) + C‖Ht‖2L2

+ C‖∇u‖6L2 + C‖∇H‖6L2.

Adding (3.32) to (3.33), it follows from (3.13) that

(3.34) ‖∇2
u‖2L2 + ‖∇2

H‖2L2 6 C(‖√̺ut‖2L2 + ‖Ht‖2L2) + C.

3.2. Higher-order estimates. In this subsection, we will derive a series of

higher-order estimates of (̺,u,H , θ).

Firstly, we will estimate the L∞(0, T ;L2)-norm of
√
̺ut, Ht and ∇θ.

Lemma 3.7. Under assumption (3.1), it holds that for any 0 6 T < T ∗,

(3.35) sup
06t6T

(‖√̺ut‖2L2 + ‖Ht‖2L2 + ‖∇θ‖2L2)

+

∫ T

0

(‖∇ut‖2L2 + ‖∇Ht‖2L2 + ‖√̺θt‖2L2) dt 6 C.
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P r o o f. Differentiating (3.2)2 with respect to t yields

(3.36) ̺utt+̺u ·∇ut−µ∆ut = −∇Pt−̺tut−(̺u)t ·∇u+(Ht ·∇)H+(H ·∇)Ht.

Multiplying equality (3.36) by ut and integrating the resulting equation over R3, one

obtains

(3.37)
1

2

d

dt

∫

̺|ut|2 dx+ µ

∫

|∇ut|2 dx

= −
∫

̺t|ut|2 dx−
∫

(̺u)t · ∇u · ut dx

+

∫

(Ht · ∇)H · ut dx+

∫

(H · ∇)Ht · ut dx.

Next, differentiating (3.2)4 with respect to t and multiplying the resulting equation

by Ht, we obtain from integration by parts that

(3.38)
1

2

d

dt

∫

|Ht|2 dx+ ν

∫

|∇Ht|2 dx

= −
∫

ut · ∇H ·Ht dx+

∫

(Ht · ∇)u ·Ht dx+

∫

(H · ∇)ut ·Ht dx.

Adding (3.38) into (3.37), we get

(3.39)
1

2

d

dt

∫

(̺|ut|2 + |Ht|2) dx+

∫

(µ|∇ut|2 + µ|∇Ht|2) dx

= −
∫

̺t|ut|2 dx−
∫

(̺u)t · ∇u · ut dx

+

∫

(Ht · ∇)H · ut dx−
∫

ut · ∇H ·Ht dx+

∫

(Ht · ∇)u ·Ht dx

, I1 + I2 + I3 + I4 + I5.

The terms I1–I5 are estimated as follows. Indeed, it follows from (2.1), (2.2), (3.13),

integrating by parts and Hölder’s inequality that

(3.40) I1 =

∫

div(̺u)|ut|2 dx = −
∫

̺u · ∇|ut|2 dx

6 2

∫

̺|u||ut||∇ut| dx 6 C‖̺‖1/2L∞‖u‖L6‖√̺ut‖L3‖∇ut‖L2

6 C‖∇u‖L2‖√̺ut‖1/2L2 ‖√̺ut‖1/2L6 ‖∇ut‖L2

6 C‖√̺ut‖1/2L2 ‖∇ut‖3/2L6 6
µ

8
‖∇ut‖2L2 + C‖√̺ut‖2L2 ,
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and

(3.41) I2 = −
∫

̺ut · ∇u · ut dx+

∫

div(̺u)u · ∇u · ut dx

6

∫

(̺|∇u||ut|2 + ̺|u||∇u|2|ut|+ ̺|u|2|∇2
u||ut|+ ̺|u|2|∇u||∇ut|) dx

6 C‖√̺ut‖2L4‖∇u‖L2 + C‖u‖L6‖∇u‖2L6‖√̺ut‖L2

+ C‖u‖2L6‖∇2
u‖L2‖ut‖L6 + C‖u‖2L6‖∇u‖L6‖∇ut‖L2

6 C‖√̺ut‖1/2L2 ‖∇ut‖3/2L2 + C‖∇u‖L2‖∇2
u‖2L2‖√̺ut‖L2

+ C‖∇u‖2L2‖∇2
u‖L2‖∇ut‖L2 + C‖∇u‖2L2‖∇2

u‖L2‖∇ut‖L2

6
µ

8
‖∇ut‖2L2 + C‖√̺ut‖4L2 + C‖Ht‖4L2 + C,

due to (3.34). Similarly,

(3.42)

I3 + I4 6 C‖∇H‖L2‖Ht‖L3‖ut‖L6 6 C‖Ht‖1/2L2 ‖Ht‖1/2L6 ‖∇ut‖L2

6
µ

8
‖∇ut‖2L2 + C‖Ht‖L2‖∇Ht‖L2 6

µ

8
‖∇ut‖2L2 +

ν

4
‖∇Ht‖2L2 + C‖Ht‖2L2,

and

(3.43) I5 6 ‖∇u‖L2‖Ht‖2L4 6 C‖Ht‖3/2L2 ‖Ht‖1/2L6

6 C‖Ht‖3/2L2 ‖∇Ht‖1/2L2 6
ν

4
‖∇Ht‖2L2 + C‖Ht‖2L2.

Substituting (3.40)–(3.43) into (3.39), one has

(3.44)
d

dt

∫

(̺|ut|2 + |Ht|2) dx+ (µ‖√̺ut‖2L2 + ν‖Ht‖2L2) 6 C(‖√̺ut‖4L2 + ‖Ht‖4L2) +C.

This together with Gronwall’s inequality and (3.13) yields

(3.45) sup
06t6T

(‖√̺ut(t)‖2L2 + ‖Ht(t)‖2L2) +

∫ T

0

(‖∇ut‖2L2 + ‖∇Ht‖2L2) dt 6 C.

We refer the readers to [5], Section 2.3 for the formulation of initial data of

‖√̺u(t)‖L2 in terms of compatibility condition (1.6).

Now we will prove the boundedness of ‖∇θ‖2L2(t). Indeed, multiplying (3.2)3 by θt
and integrating the resulting equation over R3, one has

(3.46)
κ

2

d

dt

∫

|∇θ|2 dx+ cv

∫

̺θ2t dx

= − cv

∫

̺u · ∇θ · θt dx+ 2µ

∫

|D(u)|2θt dx+ ν

∫

|∇ ×H |θt dx

, J1 + J2 + J3.
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In view of Hölder’s inequality, (3.13) and (3.45), we obtain

(3.47) J1 6 C‖u‖L∞‖√̺θt‖L2‖∇θ‖L2 6 C‖u‖W 1,6‖√̺θt‖L2‖∇θ‖L2

6 C‖∇u‖H1‖√̺θt‖L2‖∇θ‖L2 6
cv
2
‖√̺θt‖2L2 + C‖∇θ‖2L2 .

Furthermore, we get

(3.48) J2 = 2µ
d

dt

∫

|D(u)|2θ dx− 2µ

∫

(|D(u)|2)tθ dx

6 2µ
d

dt

∫

|D(u)|2θ dx+ C

∫

|∇u‖∇ut|θ dx

6 2µ
d

dt

∫

|D(u)|2θ dx+ C‖∇u‖L3‖∇ut‖L2‖θ‖L6

6 2µ
d

dt

∫

|D(u)|2θ dx+ C‖∇u‖1/2L2 ‖∇2
u‖1/2L2 ‖∇ut‖L2‖∇θ‖L2

6 2µ
d

dt

∫

|D(u)|2θ dx+ C‖∇ut‖2L2 + C‖∇θ‖2L2

and

(3.49) J3 = ν
d

dt

∫

|∇ ×H |2θ dx− ν

∫

(|∇ ×H |2)tθ dx

6 ν
d

dt

∫

|∇ ×H |2θ dx+ C

∫

|∇H‖∇Ht|θ dx

6 ν
d

dt

∫

|∇ ×H |2θ dx+ C‖∇H‖L3‖∇Ht‖L2‖θ‖L6

6 ν
d

dt

∫

|∇ ×H |2θ dx+ C‖∇H‖1/2L2 ‖∇2
H‖1/2L2 ‖∇Ht‖L2‖∇θ‖L2

6 ν
d

dt

∫

|∇ ×H |2θ dx+ C‖∇Ht‖2L2 + C‖∇θ‖2L2 .

Substituting (3.47)–(3.49) into (3.46), one has

(3.50)
d

dt

∫

(κ|∇θ|2 − 4µ|D(u)|2θ − 2ν|∇ ×H |2θ) dx+ cv

∫

̺θ2t dx

6 C(‖∇ut‖2L2 + ‖∇Ht‖2L2) + C‖∇θ‖2L2 ,

which together with the fact that

(3.51)

∫

(4µ|D(u)|2 + 2ν|∇ ×H |2)θ dx

6 C‖θ‖L6(‖∇u‖2L12/5 + ‖∇H‖2L12/5)

6 C‖∇θ‖L2(‖∇u‖3/2L2 ‖∇2
u‖1/2L2 + ‖∇H‖3/2L2 ‖∇2

H‖1/2L2 )

6
κ

2
‖∇θ‖2L2 + C
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and Gronwall’s inequality and (3.45) yields

(3.52) sup
06t6T

‖∇θ‖2L2 +

∫ T

0

‖√̺θt‖2L2 dt 6 C.

Hence, the desired (3.35) follows from (3.45) and (3.52). Therefore, the proof of

Lemma 3.7 is completed. �

R em a r k 3.8. We can obtain from the Sobolev inequality that

(3.53) ‖u‖L∞ 6 C‖u‖W 1,6 6 C‖∇u‖H1 6 C(‖∇u‖L2 + ‖∇2
u‖L2),

which implies that sup
06t6T

‖u‖L∞ 6 C due to (3.13), (3.34) and (3.35). And similarly,

we have

sup
06t6T

‖H‖L∞ 6 C.

Lemma 3.9. Under assumption (3.1), it holds that for any 0 6 T < T ∗,

(3.54) sup
06t6T

‖√̺θt‖2L2 +

∫ T

0

‖∇θt‖2L2 dt 6 C.

P r o o f. Differentiating (3.2)3 with respect to t and direct computing gives

(3.55) cv(̺θtt + ̺u · ∇θt)− κ∆θt = − cv̺t(θt + u · ∇θt)− cv̺(ut · ∇)θ

+ 2µ(|D(u)|2)t + ν(|∇ ×H |2)t.

Multiplying (3.55) by θt and integrating the resulting equation over R3 yield

(3.56)
cv
2

d

dt

∫

̺θ2t dx+ κ

∫

|∇θt|2 dx

= cv

∫

div(̺u)θ2t dx+ cv

∫

div(̺u)(u · ∇θ)θt dx

− cv

∫

̺ut · ∇θθt dx+ 2µ

∫

(|D(u)|2)tθt dx

+ ν

∫

(|∇ ×H |2)tθt dx

,

5
∑

i=1

Ki.
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Next, we deal carefully with each term K1–K5 as follows:

K1 6 C

∫

̺|u||θt||∇θt| dx 6 C‖u‖L∞‖√̺θt‖L2‖∇θt‖L2(3.57)

6 C(‖u‖L6 + ‖∇u‖L6)‖√̺θt‖L2‖∇θt‖L2

6 C(‖∇u‖L2 + ‖∇2
u‖L2)‖√̺θt‖L2‖∇θt‖L2

6 C‖√̺θt‖2L2 +
κ

10
‖∇θt‖2L2 ,

K2 6 C

∫

(̺|u||∇u||∇θ||θt|+ ̺|u|2|∇2θ||θt|+ ̺|u|2|∇θ||∇θt|) dx(3.58)

6 C‖u‖L∞‖∇u‖L3‖∇θ‖L2‖θt‖L6 + C‖u‖2L6‖∇2θ‖L2‖θt‖L6

+ C‖u‖2L∞‖∇θ‖L2‖∇θt‖L2

6 C‖∇θt‖L2 + C‖∇2θ‖L2‖∇θt‖L2 6 C‖∇2θ‖2L2 +
κ

10
‖∇θt‖2L2 + C,

K3 6 C‖√̺ut‖L2‖∇θ‖L3‖θt‖L6 6 C‖∇θ‖1/2L2 ‖∇2θ‖1/2L2 ‖∇θt‖L2(3.59)

6 C‖∇2θ‖2L2 +
κ

10
‖∇θt‖2L2 + C,

K4 6 C

∫

|∇u||∇ut||θt| dx 6 C‖∇u‖L3‖∇ut‖L2‖θt‖L6(3.60)

6 C‖∇u‖L3‖∇ut‖L2‖∇θt‖L2 6 C‖∇ut‖2L2 +
κ

10
‖∇θt‖2L2 ,

and

K5 6 C

∫

|∇H ||∇Ht||θt| dx 6 C‖∇H‖L3‖∇Ht‖L2‖θt‖L6(3.61)

6 C‖∇H‖L3‖∇Ht‖L2‖∇θt‖L2 6 C‖∇Ht‖2L2 +
κ

10
‖∇θt‖2L2 .

Furthermore, in view of L2-estimate to equation (3.2)3, we have

(3.62) ‖∇2θ‖2L2 6 C(‖̺θt‖2L2 + ‖̺u · ∇θ‖2L2 + ‖|∇u|2‖2L2 + ‖|∇H |2‖2L2)

6 C‖√̺θt‖2L2 + ‖u‖2L∞‖∇θ‖2L2 + C‖∇u‖4L4 + C‖∇H‖4L4

6 C‖√̺θt‖2L2 + C‖∇u‖L2‖∇2
u‖3L2 + C‖∇H‖L2‖∇2

H‖3L2 + C

6 C‖√̺θt‖2L2 + C,

due to (2.1), (3.35).

Substituting (3.57)–(3.61) into (3.56), we obtain

(3.63) cv
d

dt

∫

̺θ2t dx+ κ

∫

|∇θt|2 dx

6 C‖∇ut‖2L2 + C‖∇Ht‖2L2 + C‖√̺θt‖2L2 + C,

which together with Gronwall’s inequality and (3.35) yields the desired (3.54). There-

fore, the proof of Lemma 3.9 is completed. �
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Lemma 3.10. For q̃ ∈ (3, 6], under assumption (3.1), it holds that for 0 6 T < T ∗,

(3.64) sup
06t6T

(‖̺‖H1∩W 1,q̃ + ‖∇2
u‖2L2 + ‖∇2

H‖2L2 + ‖∇2θ‖2L2)

+

∫ T

0

(‖∇2
u‖2Lq̃ + ‖∇2

H‖2
Lq̃

+ ‖∇2θ‖2Lq̃) dt 6 C.

P r o o f. Firstly, it follows from (3.34), (3.35), (3.54) and (3.62) that

(3.65) ‖∇2
u‖2L2 + ‖∇2

H‖2L2 + ‖∇2θ‖2L2 6 C.

Next, the first order spatial derivatives ∂i̺, i = 1, 2, 3, satisfy

∂t(∂i̺) + u · ∇(∂i̺) + (∂iu) · ∇̺ = 0.

Therefore, for any q ∈ (3, 6], the standard energy method gives

(3.66)
d

dt
‖∇̺‖Lq 6 C‖∇u‖L∞‖∇̺‖Lq 6 C‖∇u‖W 1,6‖∇̺‖Lq

6 C(‖∇u‖L6 + ‖∇2
u‖L6)‖∇̺‖Lq

6 C(1 + ‖̺ut‖L6 + ‖̺u · ∇u‖L6 + ‖H · ∇H‖L6)‖∇̺‖Lq

6 C(1 + ‖∇ut‖L2 + ‖u‖L∞‖∇u‖L6 + ‖H‖L∞‖∇H‖L6)‖∇̺‖Lq

6 C(1 + ‖∇ut‖L2 + ‖∇2
u‖L2 + ‖∇2

H‖L2)‖∇̺‖Lq

6 C(1 + ‖∇ut‖L2 + ‖∇2
u‖L2 + ‖∇2

H‖L2)‖∇̺‖Lq

6 C(1 + ‖∇ut‖2L2)‖∇̺‖Lq ,

due to (2.1), (2.2), (2.7), (3.13), (3.35), (3.65), Remark 3.8 and the interpolation

inequality.

Together with Gronwall’s inequality and taking q = 2, q̃ in (3.66), we have

(3.67) sup
06t6T

‖∇̺‖L2∩Lq̃ 6 C.

Next, in view of (2.1), (2.2), (2.7), (3.13), (3.35) and (3.65), we obtain

(3.68)

∫ T

0

‖∇2
u‖2Lq̃ dt

6 C

∫ T

0

(‖̺ut‖2Lq̃ + ‖̺u · ∇u‖2Lq̃ + ‖H · ∇H‖2Lq̃) dt

6 C

∫ T

0

(‖̺ut‖2L2 + ‖̺ut‖2L6 + ‖u‖2L∞‖∇u‖2Lq̃ + ‖H‖2L∞‖∇H‖2Lq̃) dt

6 C

∫ T

0

(1 + ‖∇ut‖2L2 + ‖∇u‖2L2 + ‖∇2
u‖2L2 + ‖∇H‖2L2 + ‖∇2

H‖2L2) dt

6 C.
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Similarly,

(3.69)

∫ T

0

‖∇2
H‖2Lq̃ dt

6 C

∫ T

0

(‖Ht‖2Lq̃ + ‖u · ∇H‖2Lq̃ + ‖H · ∇u‖2Lq̃) dt

6 C

∫ T

0

(‖Ht‖2L2 + ‖Ht‖2L6 + ‖u‖2L∞‖∇H‖2Lq̃ + ‖H‖2L∞‖∇u‖2Lq̃) dt

6 C

∫ T

0

(1 + ‖∇Ht‖2L2 + ‖∇H‖2L2 + ‖∇2
H‖2L2 + ‖∇u‖2L2 + ‖∇2

u‖2L2) dt

6 C.

Furthermore, using the standard Lp-estimate to elliptic equation (3.2)3, we obtain

(3.70)
∫ T

0

‖∇2θ‖2Lq̃ dt

6 C

∫ T

0

(‖̺θt‖2Lq̃ + ‖̺u · ∇θ‖2Lq̃ + ‖|∇u|2‖2Lq̃ + ‖|∇H |2‖2Lq̃) dt

6 C

∫ T

0

(‖̺θt‖2L2 + ‖̺θt‖2L6 + ‖u‖2L∞‖∇θ‖2Lq

+ ‖∇u‖2L∞‖∇u‖2Lq̃ + ‖∇H‖2L∞‖∇H‖2Lq̃) dt

6 C

∫ T

0

(1 + ‖∇θt‖2L2 + ‖∇2θ‖2L2 + (‖∇u‖2L6 + ‖∇2
u‖2L6)(‖∇u‖2L2 + ‖∇u‖2L6)

+ (‖∇H‖2L6 + ‖∇2
H‖2L6)(‖∇H‖2L2 + ‖∇H‖2L6)) dt

6 C

∫

(1 + ‖∇θt‖2L2 + ‖∇ut‖2L2 + ‖∇Ht‖2L2) dt

6 C.

Thus, in view of (3.65), (3.67)–(3.70), we complete the proof of Lemma 3.10. �

R em a r k 3.11. Define ḟ as the material derivative of function f with ḟ , ft +

u · ∇f. Then we can derive the regularity of the terms ̺u̇ and ̺θ̇ for later analysis.

Indeed, one can deduce from (2.7), (3.13), (3.35) and (3.64) that

(3.71)

‖̺u̇‖2L2 = ‖̺(ut + u · ∇u)‖2L2

6 C(‖̺ut‖2L2 + ‖̺u · ∇u‖2L2) 6 C(‖̺ut‖2L2 + ‖∇u‖3L2‖∇2
u‖L2) 6 C

and

(3.72)

‖̺θ̇‖2L2 = ‖̺(θt + u · ∇θ)‖2L2

6 C(‖̺θt‖2L2 + ‖u‖2L∞‖∇θ‖2L2) 6 C(‖̺θt‖2L2 + ‖∇u‖2H1‖∇θ‖2L2) 6 C.
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P r o o f of Theorem 1.2. With the aid of the a priori estimates that are listed in

Lemmas 3.1–3.10, we can now prove Theorem 1.2 as follows.

On the one hand, the functions (̺,u,H , θ)(x, T ∗) = lim
t→T∗

(̺,u,H , θ)(x, t) satisfy

the regularity condition on the initial data at time t = T ∗. Furthermore, standard

arguments yield (̺u̇, ̺θ̇) ∈ C([0, T ∗];L2), which implies

(̺u̇, ̺θ̇)(x, T ∗) = lim
t→T∗

(̺u̇, ̺θ̇)(x, t) ∈ L2.

Hence,

(−div(2µD(u)) +∇P −H · ∇H)|t=T∗ =
√
̺(x, T ∗)g̃1(x),

(κ∆θ + 2µ|D(u)|2 + ν|∇ ×H |2)|t=T∗ =
√
̺(x, T ∗)g̃2(x),

where

g̃1(x) ,

{

̺−1/2(x, T ∗)(̺u̇)(x, T ∗) for x ∈ {x ; ̺(x, T ∗) > 0},
0 for x ∈ {x ; ̺(x, T ∗) = 0},

and

g̃2(x) ,

{

cv̺
−1/2(x, T ∗)(̺θ̇)(x, T ∗) for x ∈ {x ; ̺(x, T ∗) > 0},

0 for x ∈ {x ; ̺(x, T ∗) = 0},
satisfying g̃1, g̃2 ∈ L2. Thus, (̺,u,H , θ)(x, T ∗) satisfies the compatibility condition.

Therefore, we can take (̺,u,H , θ)(x, T ∗) as the initial data and apply Lemma 2.1

again to extend the local strong solutions beyond T ∗, which contradicts the as-

sumption that T ∗ is the maximal existence time of strong solutions. Therefore, we

complete the proof of Theorem 1.2. �

4. Proof of Theorem 1.6

Throughout this section, we denote

C0 , ‖√̺0u0‖2L2 + ‖H0‖2L2 .

Firstly, applying [17], Theorem 2.1 and integrating (3.5) with respect to t, we have

the following results.

Lemma 4.1. Let (̺,u,H , θ) be a strong solution to system (1.1)–(1.3) on (0, T ).

Then for any t ∈ (0, T ), it holds that

(4.1) ‖̺(t)‖L∞ = ‖̺0‖L∞

and

(4.2) ‖√̺u(t)‖2L2 + ‖H(t)‖2L2 + 2

∫ t

0

(µ‖∇u‖2L2 + ν‖∇H‖2L2) ds 6 C0.
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Lemma 4.2. Let (̺,u,H , θ) be a strong solution to system (1.1)–(1.3) on (0, T ).

Then for any t ∈ (0, T ), it holds that

(4.3) sup
06s6t

(µ‖∇u‖2L2 + ν‖∇H‖2L2) 6 2(µ‖∇u0‖2L2 + ν‖∇H0‖2L2)

+ C
√

C0 sup
06s6t

‖∇H‖3L2

+ CC0 sup
06s6t

(‖∇u‖4L2 + ‖∇H‖4L2),

where (and in what follows) C denotes a generic positive constant depending only

on µ, ν and ‖̺0‖L∞ .

P r o o f. Multiplying (3.2)2 by ut, (3.2)4 by Ht, and integrating the resulting

equality over R3, we obtain from the Cauchy-Schwarz inequality that

(4.4)
1

2

d

dt

∫

(µ|∇u|2 + ν|∇H |2) dx+

∫

(̺|ut|2 + |Ht|2) dx

=

∫

H · ∇H · ut dx−
∫

̺u · ∇u · ut dx+

∫

(H · ∇u− u · ∇H) ·Ht dx

= − d

dt

∫

H · ∇u ·H dx+

∫

Ht · ∇u ·H dx+

∫

H · ∇u ·Ht dx

−
∫

̺u · ∇u · ut dx+

∫

(H · ∇u− u · ∇H) ·Ht dx

6 − d

dt

∫

H · ∇u ·H dx+
1

2

∫

(̺|ut|2 + |Ht|2) dx

+ C

∫

(̺|u|2|∇u|2 + |H |2|∇u|2 + |u|2|∇H |2) dx,

which implies that

(4.5)
d

dt

∫

(µ|∇u|2 + ν|∇H |2 + 2H · ∇u ·H) dx+ ‖√̺ut‖2L2 + ‖Ht‖2L2

6 C

∫

(̺|u|2|∇u|2 + |H |2|∇u|2 + |u|2|∇H |2) dx.

Integrating (4.5) with respect to the time variable over (0, t) gives rise to

(4.6) sup
06s6t

(µ‖∇u‖2L2 + ν‖∇H‖2L2) +

∫ t

0

(‖√̺us‖2L2 + ‖Hs‖2L2) ds

6 (µ‖∇u0‖2L2 + ν‖∇H0‖2L2) + 4 sup
06s6t

∫

|H |2|∇u| dx

+ C

∫ t

0

∫

(̺|u|2|∇u|2 + |H |2|∇u|2 + |u|2|∇H |2) dxds.
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Recall that (u, P ) satisfies the following Stokes system:

(4.7)











−µ∆u+∇P = −̺ut − ̺u · ∇u+H · ∇H , x ∈ R3,

divu = 0, x ∈ R3,

u(x) → 0, |x| → ∞.

We thus obtain from (2.7) that

(4.8) ‖∇2
u‖2L2 6 C(‖̺ut‖2L2 + ‖̺u · ∇u‖2L2 + ‖H · ∇H‖2L2)

6 C(‖√̺ut‖2L2 + ‖√̺u · ∇u‖2L2 + ‖H · ∇H‖2L2).

Applying the classical L2-estimates for elliptic system on H gives

(4.9) ‖∇2
H‖2L2 6 C(‖Ht‖2L2 + ‖u · ∇H‖2L2 + ‖H · ∇u‖2L2),

which together with (4.8) leads to

(4.10) ‖∇2
u‖2L2 + ‖∇2

H‖2L2 6 L(‖√̺ut‖2L2 + ‖Ht‖2L2)

+ C(‖√̺u · ∇u‖2L2 + ‖H · ∇H‖2L2

+ ‖u · ∇H‖2L2 + ‖H · ∇u‖2L2)

for a positive constant L depending only on µ, ν and ‖̺‖L∞. Integrating (4.10) mul-

tiplied by 1/(2L) with respect to time variable over (0, t) and adding the resulting

inequality to (4.6), we have

(4.11)

sup
06s6t

(µ‖∇u‖2L2 + ν‖∇H‖2L2)

+
1

2L

∫ t

0

(‖∇2
u‖2L2 + ‖∇2

H‖2L2) ds+
1

2

∫ t

0

(‖√̺us‖2L2 + ‖Hs‖2L2) ds

6 (µ‖∇u0‖2L2 + ν‖∇H0‖2L2) + 4 sup
06s6t

∫

|H |2|∇u| dx

+ L̄

∫ t

0

∫

(̺|u|2|∇u|2 + |H |2|∇u|2 + |u|2|∇H |2 + |H |2|∇H |2) dxds.

By Hölder’s inequality, the Sobolev inequality and (4.2), we have

(4.12)
∫

|H |2|∇u| dx 6 ‖H‖2L4‖∇u‖L2 6 ‖H‖1/2L2 ‖∇H‖3/2L2 ‖∇u‖L2

6
µ

8
‖∇u‖2L2 + C‖H‖L2‖∇H‖3L2 6

µ

8
‖∇u‖2L2 + C

√

C0‖∇H‖3L2,

which gives rise to

(4.13) 4 sup
06s6t

∫

|H |2|∇u| dx 6
µ

2
sup

06s6t
‖∇u‖2L2 + C

√

C0 sup
06s6t

‖∇H‖3L2.
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In a similar way, we have

(4.14) L̄

∫

(̺|u|2|∇u|2 + |H |2|∇u|2 + |u|2|∇H |2 + |H |2|∇H |2) dx

6 L̄‖̺‖L∞‖u‖2L6‖∇u‖L2‖∇u‖L6 + L̄‖H‖2L6‖∇u‖L2‖∇u‖L6

+ L̄‖u‖2L6‖∇H‖L2‖∇H‖L6 + L̄‖H‖2L6‖∇H‖L2‖∇H‖L6

6 C‖∇u‖3L2‖∇2
u‖L2 + C‖∇H‖2L2‖∇u‖L2‖∇2

u‖L2

+ C‖∇u‖2L2‖∇H‖L2‖∇2
H‖L2 + C‖∇H‖3L2‖∇H‖L6

6
1

4L
(‖∇2

u‖2L2 + ‖∇2
H‖2L2)

+ C(‖∇u‖2L2 + ‖∇H‖2L2)(‖∇u‖4L2 + ‖∇H‖4L2).

Integrating inequality (4.14) with respect to time variable over (0, t) gives

(4.15)

L̄

∫ t

0

∫

(̺|u|2|∇u|2 + |H |2|∇u|2 + |u|2|∇H |2 + |H |2|∇H |2) dxds

6
1

4L

∫ t

0

(‖∇2
u‖2L2 + ‖∇2

H‖2L2) ds

+ C sup
06s6t

(‖∇u‖4L2 + ‖∇H‖4L2)

∫ t

0

(‖∇u‖2L2 + ‖∇H‖2L2) ds

6
1

4L

∫ t

0

(‖∇2
u‖2L2 + ‖∇2

H‖2L2) ds

+ C sup
06s6t

(‖∇u‖4L2 + ‖∇H‖4L2)

∫ t

0

(µ‖∇u‖2L2 + ν‖∇H‖2L2) ds

6
1

4L

∫ t

0

(‖∇2
u‖2L2 + ‖∇2

H‖2L2) ds+ CC0 sup
06s6t

(‖∇u‖4L2 + ‖∇H‖4L2),

due to (4.2). Substituting (4.13) and (4.15) into (4.11) implies the desired (4.3) and

therefore the proof of Lemma 4.2 is completed. �

Lemma 4.3. Let (̺,u,H , θ) be a strong solution to system (1.1)–(1.3) on (0, T ).

Then there exists a positive constant ε0 depending only on µ, ν and ‖̺0‖L∞ such

that for any t ∈ (0, T ) it holds that

(4.16) sup
06t6T

(µ‖∇u‖2L2 + ν2‖∇H‖2L2) 6 8(µ‖∇u0‖2L2 + ν‖∇H0‖2L2)

provided that

(4.17) (‖√̺0u0‖2L2 + ‖H0‖2L2)(‖∇u0‖2L2 + ‖∇H0‖2L2) 6 ε0.
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P r o o f. Define function E(t) as

E(t) , sup
06s6t

(µ‖∇u‖2L2 + ν‖∇H‖2L2).

In view of the regularity of u and H as described in Lemma 2.1, it is easy to check

that E(t) is a continuous function on [0, T ]. By (4.3), there is a positive constant M

depending only on µ, ν and ‖̺0‖L∞ such that

(4.18) E(t) 6 2(µ‖∇u0‖2L2 + ν‖∇H0‖2L2) +
√
M

√

C0E
3/2(t) +MC0E

2(t).

Now suppose that

(4.19) MC0(‖∇u0‖2L2 + ‖∇H0‖2L2) 6
1

64(µ+ ν)
,

which implies

(4.20) MC0(µ‖∇u0‖2L2 + ν‖∇H0‖2L2) 6 MC0(µ+ ν)(‖∇u0‖2L2 + ‖∇H0‖2L2)

6
1

64(µ+ ν)
× (µ+ ν) =

1

64
.

Set

(4.21) T∗ , max{t ∈ [0, T ] : E(s) 6 16(µ‖∇u0‖2L2 + ν‖∇H0‖2L2), ∀s ∈ (0, t)}.

We claim that

T∗ = T.

Otherwise, we have T∗ ∈ (0, T ). By the continuity of E(t), it follows from (4.18) and

(4.20) that

E(T∗) 6 2(µ‖∇u0‖2L2 + ν‖∇H0‖2L2) +
√

MC0 ·
√

16(µ‖∇u0‖2L2 + ν‖∇H0‖2L2)E(T∗)

+MC0 · 16(µ‖∇u0‖2L2 + ν‖∇H0‖2L2)E(T∗)

= 2(µ‖∇u0‖2L2 + ν‖∇H0‖2L2) +
√

16MC0(µ‖∇u0‖2L2 + ν‖∇H0‖2L2)E(T∗)

+ 16MC0(µ‖∇u0‖2L2 + ν‖∇H0‖2L2)E(T∗)

6 2(µ‖∇u0‖2L2 + ν‖∇H0‖2L2) +
3

4
E(T∗),

and thus

E(T∗) 6 8(µ‖∇u0‖2L2 + ν‖∇H0‖2L2),

which contradicts (4.21).
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Choosing ε0 = 1/(64M(µ+ ν)), by virtue of the claim we have showed in the

above, we derive that

E(t) 6 8(µ‖∇u0‖2L2 + ν‖∇H0‖2L2), 0 < t < T,

provided that (4.17) holds true. This gives the desired (4.16), which consequently

completes the proof of Lemma 4.3. �

Now we are ready to give a proof of Theorem 1.6.

P r o o f of Theorem 1.6. Let ε0 be the constant stated in Lemma 4.3 and suppose

the initial data (̺0,u0,H0, θ0) satisfy (1.5), (1.6), (1.7), and

(4.22) (‖√̺0u0‖2L2 + ‖H0‖2L2)(‖∇u0‖2L2 + ‖∇H0‖2L2) 6 ε0.

According to Lemma 2.1, there is a unique strong solution (̺,u,H , θ) to system

(1.1)–(1.3). Let T ∗ be the maximal existence time to that solution. We will show

that T ∗ = ∞. Supposing, by contradiction, that T ∗ < ∞, then by (1.8), we deduce

that for any (s, r) with 2/s+ 3/r 6 1, r > 3 it holds that

∫ T∗

0

‖u‖sLr
ω
dt = ∞,

which combined with the inequality ‖u‖4L6
ω
6 ‖u‖4L6 6 C‖∇u‖4L2 leads to

(4.23)

∫ T∗

0

‖∇u‖4L2 dt = ∞.

By Lemma 4.3, for any 0 < T < T ∗ we find that

sup
06t6T

‖∇u‖2L2 6 8(µ‖∇u0‖2L2 + ν‖∇H0‖2L2).

This together with (4.2) gives rise to

∫ T∗

0

‖∇u‖4L2 dt 6
(

sup
06t6T∗

‖∇u‖2L2

)

∫ T∗

0

‖∇u‖2L2 dt

6 8(µ‖∇u0‖2L2 + ν‖∇H0‖2L2)(2µ)−1C0 < ∞,

which contradicts (4.23). This contradiction implies that T ∗ = ∞, and thus we

obtain global strong solution. Therefore the proof of Theorem 1.6 is completed.
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