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Abstract. Many problems in operations research, management science, and engineering
fields lead to the solution of absolute value equations. In this study, we propose two new
iteration methods for solving absolute value equations Ax− |x| = b, where A ∈ R

n×n is an
M -matrix or strictly diagonally dominant matrix, b ∈ R

n and x ∈ R
n is an unknown solu-

tion vector. Furthermore, we discuss the convergence of the proposed two methods under
suitable assumptions. Numerical experiments are given to verify the feasibility, robustness
and effectiveness of our methods.
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1. Introduction

Consider the absolute value equation (AVE):

(1.1) Ax− |x| = b,

where the coefficient matrix A ∈ R
n×n is an M -matrix or strictly diagonally domi-

nant matrix, b ∈ R
n and |x| = (|x1|, |x2|, . . . , |xn|)

⊤. Another generalized AVE is in

the form of

(1.2) Ax +B|x| = b,

where B ∈ R
n×n, B 6= 0. When B = −I, where I stands for the identity matrix,

then the AVE (1.2) reduces to the special form (1.1).
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The AVEs are one of the important nonlinear and non-differentiable systems

which arise in optimization, such as the linear and quadratic programming, the jour-

nal bearings, the network prices, the linear complementarity problems (LCPs) and

the contact problems; see [27], [28], [3], [7], [31], [25], [23], [38] and the references

therein. Therefore, the research of efficient numerical algorithms and theories for

AVEs has significant theoretical importance, broad application prospects, and high

economic value.

Numerical methods for AVEs are concerned with the structure of solutions, math-

ematical theories, algebraic structures, and unique implementations of large-quality

preconditioners and high performance numerical algorithms. In recent years, nu-

merical methods of AVEs have gained a lot of concentration, and a large number of

papers have proposed numerous methods such as Salkuyeh [41] suggested the Picard-

HSS method for solving (1.1). Mangasarian [24] proposed an approximated gener-

alized Newton (GN) method for solving (1.1) and showed that this algorithm con-

verges linearly from any initial point to the unique solution under the condition that

‖A−1‖ < 1

4
. Cruz et al. [4] established an inexact semi-smooth Newton algorithm for

the AVE (1.1) and showed that the method is globally convergent under the condition

that ‖A−1‖ < 1

3
. Hu and Huang [17] reformulated the AVE system as a standard LCP

without any premise and provided some existence and convexity outcomes for the

solution of the AVE (1.1). Zhang et al. [46] introduced a new algorithm that relaxed

the AVE into a convex optimization problem. They discovered the sparsest solution

of the AVE through the minimum l∞-norm. Feng and Liu [12], [13] presented an im-

proved GN method and two-step iterative method for solving (1.1). Caccetta et al. [5]

studied a smoothing Newton method for solving (1.1) and proved that the method

is globally convergent with condition that ‖A−1‖ < 1. Haghani [15] suggested the

generalized Traub’s method, which is better than the Mangasarian’s method. Sa-

heya et al. [40] studied smoothing type algorithms for solving (1.1) and proved that

their algorithms have local and global quadratic convergence. Edalatpour et al. [11]

described the generalized Gauss-Seidel (GGS) method for solving (1.1). Ke and

Ma [19] suggested an SOR-like method to solve the AVE (1.1). Chen et al. [6] mod-

ified the idea of [19], and presented the SOR-like method with optimal parameters

for solving (1.1). Nguyen et al. [35] presented unified smoothing functions associated

with the second-order cone for solving (1.1). Gu et al. [14] suggested the nonlinear

CSCS-like method and the Picard-CSCS method for solving (1.1), which involves the

Toeplitz matrix. Hashemi and Ketabchi [16] introduced the numerical comparisons

of smoothing functions for AVE (1.1). Wu and Li [44] introduced the special shift

splitting iterative method to solve AVE (1.1) and proved the new convergence con-

ditions of the proposed iterative method. Moosaei et al. [34] showed that the AVE

(1.1) is equivalent to the bilinear programming problem. They solved AVE (1.1) by
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the principle of simulated annealing, and then found the AVE (1.1) solution with the

minimum norm, and others, see [1], [9], [10], [20], [30], [26], [32], [36], [37], [43], [45]

and the references therein.

Recently, Miao and Zhang [33], Li et al. [21], Mao et al. [29] and Dehghan and

Hajrian [8] presented different approaches using the fixed-point principle to solve the

LCPs. This research aims to extend this approach to AVEs using the fixed point

principle and formulate efficient iterative methods for solving AVE (1.1). The main

contributions of this paper are given as follows: we split matrix A into different

parts (diagonal, strictly upper and lower-triangular parts) and add two additional

parameters (ψ parameter for Method I, and λ parameter for Method II), which

can speed up the convergence of the suggested iteration methods. Furthermore, we

discuss the convergence of the proposed two methods.

This research is structured as follows. In Section 2, we discuss the proposed meth-

ods and their convergence for solving AVE (1.1). Numerical results and concluding

remarks are given in Sections 3 and 4, respectively.

2. Proposed methods

In this section, we organize the proposed iteration methods for solving (1.1). We

discuss some results that will be used in the following analysis.

Let A = (aij) ∈ R
n×n, we write A > 0 if aij > 0 holds for all 1 6 i, j 6 n.

We express the norm, spectral radius and absolute value of A as ‖ A ‖∞, ̺(A) and

|A| = (|aij |), respectively.

Definition 2.1. Let A ∈ R
n×n. It is called an

(1) Z-matrix if aij 6 0 for i 6= j, i, j = 1, 2, . . . , n,

(2) M -matrix if it is a nonsingular Z-matrix and with A−1 > 0.

Lemma 2.1 ([42]). Let z and x be the two points in Rn. Then ‖|z|−|x|‖ 6 ‖z−x‖.

To propose and analyze the algorithms, we split the A matrix as

(2.1) A = D̂A − L̂A − ÛA,

where D̂A, L̂A and ÛA are diagonal, strictly lower and upper-triangular parts of A,

respectively. The AVE (1.1) is equivalent to the fixed-point problem of solving

x = F (x)

such that

(2.2) F (x) = x− E[Ax− |x| − b],
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where E ∈ R
n×n is a positive diagonal matrix (then by choice of E = D̂−1

A , see

for more detail [2], [22]). Let K be either a strictly lower-triangular or a strictly

upper-triangular matrix. Using the splitting (2.1), we suggest the following methods

for solving the AVEs:

Method I.

Step 1: Select a parameter 0 < ψ < 2, an initial vector x0 ∈ R
n and set i = 0.

Step 2: Calculate

(2.3) xi+1 = xi − E[−ψKxi+1 + (ψ(2 − ψ)A+ ψK)xi − ψ(2 − ψ)(|xi|+ b)].

Step 3: If xi+1 = xi, then stop. Otherwise set i = i+ 1 and go back to Step 2.

Method II.

Step 1: Select a parameter 0 < λ 6 1, an initial vector x0 ∈ R
n and set i = 0.

Step 2: Calculate

(2.4) xi+1 = λ[xi − E((Axi − |xi| − b)−K(xi+1 − xi))] + (1 − λ)xi.

Step 3: If xi+1 = xi, then stop. Otherwise put i = i+ 1 and return to Step 2.

It is necessary to recall the following significant results for the convergence of the

proposed methods.

Theorem 2.1. If {xi+1} and {xi} are the sequences generated by Method I, then

|xi+1 − x⋆| 6 G−1J |xi − x⋆|,

where G = I−ψE|K| and J = ψ(2−ψ)E+ |I−E(ψ(2−ψ)A+ψK)|. Furthermore,

if ̺(G−1J) < 1, then the sequence {xi} converges to the unique solution x⋆ of

AVE (1.1).

P r o o f. Let x⋆ be a solution of (1.1). Then

(2.5) x⋆ = x⋆ − E[−ψKx⋆ + (ψ(2 − ψ)A+ ψK)x⋆ − ψ(2− ψ)(|x⋆|+ b)].

After subtracting (2.5) from (2.3), we obtain

xi+1−x⋆ = (I−E(ψ(2−ψ)A+ψK))(xi−x⋆)+ψEK(xi+1−x⋆)+ψ(2−ψ)E(|xi|−|x⋆|).
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Taking absolute values on both sides and using Lemma 2.1, we have

|xi+1 − x⋆| 6 |I − E(ψ(2 − ψ)A+ ψK)||xi − x⋆|

+ ψE|K||xi+1 − x⋆|+ ψ(2− ψ)E||xi| − |x⋆||

6 |I − E(ψ(2 − ψ)A+ ψK)||xi − x⋆|

+ ψE|K||xi+1 − x⋆|+ ψ(2− ψ)E|xi − x⋆|,

|xi+1 − x⋆| − ψE|K||xi+1 − x⋆| 6 (ψ(2− ψ)E + |I − E(ψ(2− ψ)A+ ψK)|)|xi − x⋆|,

(I − ψE|K|)|xi+1 − x⋆| 6 (ψ(2− ψ)E + |I − E(ψ(2− ψ)A+ ψK)|)|xi − x⋆|.

Since K is a strictly lower or upper-triangular matrix, (I − ψE|K|) is invertible.

Thus, (I − ψE|K|)−1 exists and is non-negative, we have

|xi+1 − x⋆| 6 G−1J |xi − x⋆|.

Note that the matrix G−1J is non-negative. We know that in [2], Theorem 4.1,

if ̺(G−1J) < 1, then the sequence {xi} of Method I converges to the solution x⋆

of AVE.

For uniqueness of the solution, let z⋆ be another solution of AVE. From the equa-

tions

Ax⋆ − |x⋆| = b,

Az⋆ − |z⋆| = b,

written as

x⋆ = x⋆ − E[−ψKx⋆ + (ψ(2 − ψ)A+ ψK)x⋆ − ψ(2− ψ)(|x⋆|+ b)],

z⋆ = x⋆ − E[−ψKz⋆ + (ψ(2− ψ)A + ψK)z⋆ − ψ(2 − ψ)(|z⋆|+ b)],

we obtain

|x⋆ − z⋆| 6 G−1J |x⋆ − z⋆|,

where G = I − ψE|K| and J = ψ(2 − ψ)E + |I − E(ψ(2 − ψ)A + ψK)|. Since

̺(G−1J) < 1, we have

x⋆ = z⋆.

This completes the proof. �

Theorem 2.2. If {xi+1} and {xi} are the sequences generated by Method II,

then

|xi+1 − x⋆| 6 R
−1S|xi − x⋆|,

where R = I−λE|K| and S = λE+ |I−λE(A+K)|. Furthermore, if ̺(R−1S) < 1,

then the sequence {xi} converges to the unique solution x⋆ of AVE (1.1).
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P r o o f. Let x⋆ be a solution of (1.1). Then

(2.6) x⋆ = λ[x⋆ − E((Ax⋆ − |x⋆| − b)−K(x⋆ − x⋆))] + (1− λ)x⋆.

After subtracting (2.6) from (2.4), we obtain

xi+1 − x⋆ = (I − λE(A +K))(xi − x⋆) + λE(|xi| − |x⋆|) + λEK(xi+1 − x⋆).

By taking absolute values on both sides and using Lemma 2.1, we have

|xi+1 − x⋆| 6 |I − λE(A +K)||xi − x⋆|+ λE||xi| − |x⋆||+ λE|K||xi+1 − x⋆|

6 |I − λE(A+K)||xi − x⋆|+ λE|xi − x⋆|+ λE|K||xi+1 − x⋆|,

|xi+1 − x⋆| − λE|K||xi+1 − x⋆| 6 (λE + |I − λE(A+K)|)|xi − x⋆|,

(I − λE|K|)|xi+1 − x⋆| 6 (λE + |I − λE(A+K)|)|xi − x⋆|.

SinceK is a strictly lower or upper-triangular matrix, (I−λE|K|) is invertible. Thus,

(I − λE|K|)−1 exists and is non-negative, we have |xi+1 − x⋆| 6 R
−1S|xi − x⋆|.

Evidently, if ̺(R−1S) < 1, the iteration sequence {xi} created by Method II is

convergent. �

The proof of the uniqueness is similar to the proof of Theorem 2.1 and is omitted

here.

3. Numerical experiments

In this section, we experimentally investigate the effectiveness of the novel methods

to solve the AVEs. All numerical tests were conducted on a personal computer with

1.80 GHz CPU (Intel (R) Core (TM) i5-3337U) and 4 GB memory using Matlab

2016a. Furthermore, we take the matrix K = L̂A, the zero vector is the initial

vector, the termination condition and formula about ERR are given by

RES := ‖b+ |xi| −Axi‖2 6 10−8 and ERR := ‖xi − x⋆‖2,

respectively, where x⋆ is the exact solution.

E x am p l e 3.1. Let

A= tridiag(−1, 8,−1) =




8 −1

−1 8 −1
. . . 8

. . .
. . .

. . . −1

−1 8




∈R
n×n, x⋆ =




−1

1

−1

1
...




∈ R
n
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and b = Ax⋆ − |x⋆| ∈ R
n. The results are discussed in Table 1. In Examples 3.1

and 3.2, we compare the proposed methods with the SOR-like approximate optimal

parameter (SORLaopt) method [6].

Methods n 1000 2000 3000 4000 5000

SORLaopt Iter 20 20 20 20 20

Time 2.7458 12.8679 34.8767 82.4866 137.9194

RES 4.13e− 09 5.84e− 09 7.15e− 09 8.26e− 09 9.23e− 09

ERR 6.11e− 10 8.64e− 10 1.05e− 09 1.22e− 09 1.36e− 09

Method I Iter 14 14 15 15 15

Time 1.4417 8.7177 21.1915 38.7743 82.3002

RES 6.42e− 09 9.09e− 09 1.82e− 09 2.11e− 09 2.36e− 09

ERR 8.82e− 10 1.25e− 09 3.01e− 10 3.46e− 10 3.87e− 10

Method II Iter 17 18 18 18 18

Time 2.1650 11.5989 27.9001 75.7294 98.9503

RES 9.76e− 09 3.60e− 09 5.10e− 09 3.75e− 09 5.70e− 09

ERR 1.66e− 09 6.16e− 10 7.54e− 10 8.71e− 10 9.74e− 10

Table 1. Numerical results of Example 3.1 with ψ = λ = 0.9.

In Table 1, we report the number of iterations (Iter), the CPU times in seconds

(Time), the 2-norm of residual vectors (RES), and the ERR of all methods. From

Table 1, we observe that the number of iterations and the Time of the proposed

methods are better than the SORLaopt method.
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Figure 1. Convergence curves of Example 3.1 with different methods.
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The convergence curves of Figure 1 show the effectiveness of the given methods.

Graphical representation illustrates that the convergences of the suggested methods

are better than the other known method.

E x am p l e 3.2. Let A =M + 4I ∈ R
n×n and b = Ax⋆ − |x⋆| ∈ R

n such that

M = tridiag(−I, S,−I) =




S −I

−I S −I
. . . S

. . .
. . .

. . . −I

−I S




∈R
n×n, x⋆ =




1

−1

1

−1
...




∈ R
n,

where S = tridiag(−1, 4,−1) ∈ R
v×v, I ∈ R

v×v is the identity matrix and n = v2.

The numerical results are reported in Table 2. For this example, we take n = 64

and n = 4096 (problem sizes) and compare all methods graphically. The graphical

results are represented in Figure 2.
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Figure 2. Convergence curves of Example 3.2 with different methods.

In Table 2, we present the numeric outcomes of the SORLaopt method, Method I,

and Method II, respectively. From these results, we can recognize that our suggested

methods are more effective than the SORLaopt method. Furthermore, we represent

the convergence curves of all methods using n = 64 and n = 4096 (problem sizes).

Consequently, the convergence curves of Figure 2 illustrate that the recommended

methods are better than the SORLaopt method.
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Methods n 64 256 1024 4096

SORLaopt Iter 23 24 25 26

Time 0.4185 0.5135 4.1116 118.7930

RES 4.24e− 09 5.32e− 09 4.92e− 09 4.08e− 09

ERR 8.78e− 10 1.12e− 09 1.04e− 09 8.71e− 10

Method I Iter 18 19 20 21

Time 0.2797 0.3601 3.9667 102.5239

RES 4.98e− 09 9.25e− 09 8.04e− 09 5.89e− 09

ERR 1.07e− 09 2.26e− 09 2.03e− 09 1.50e− 09

Method II Iter 20 21 22 23

Time 0.2943 0.3860 4.0426 115.0780

RES 4.02e− 09 7.47e− 09 7.04e− 09 5.64e− 09

ERR 8.78e− 10 1.83e− 09 1.77e− 09 1.43e− 09

Table 2. Numerical results of Example 3.2 with ψ = λ = 0.95.

E x am p l e 3.3. Let the matrix A be given by

A =





1000 + i for j = i,

1 for

{
j = i+ 1, i = 1, 2, . . . , n− 1,

j = i− 1, i = 2, . . . , n,

0 otherwise.

Compute b = Ax⋆ − |x⋆| ∈ R
n with x⋆ = (x1, x2, x3, . . . , xn)

⊤ ∈ R
n such that

xi = (−1)i. In Examples 3.3 and 3.4, we compare the proposed methods with

the method presented in [18] (exposed by NM), the SORLaopt method [6] and the

method presented in [39] (indicated by Picard). The results are examined in Table 3.

In Table 3, we find that all methods can efficiently and precisely solve the problem.

From the numerical outcomes in Table 3, we observe that the ‘Iter’ and ‘Time’ of

Method II are better than NM and SORLaopt methods. Furthermore, the ‘Time’

of Method II is best compared to the Picard method. On the other hand, Method I

shows much higher computational performance than other known methods.

E x am p l e 3.4. Let A = I ⊗Q + P ⊗ I ∈ R
V×V , where I ∈ R

V×V stands for

the identity matrix, and ⊗ denotes the Kronecker product. Furthermore, Q and P

are n× n tridiagonal matrices given by





Q = tridiag
[
1

8
(2 + h), 8, 1

8
(2− h)

]
,

P = tridiag
[
1

4
(1 + h), 4, 1

4
(1− h)

]
,

h = 1/n; V = n2.

117



The right-hand side vector b = Ax⋆ − |x⋆| ∈ R
V , where x⋆ = ones(V, 1) ∈ R

V . The

results are reported in Table 4.

In Table 4, all methods examine the solution x⋆ for different values of V . From

the numerical outcomes in Table 4, we can recognize that our suggested methods are

more effective than NM, SORLaopt and Picard methods under certain conditions

from the point of view of the ‘Iter’ and ‘Time’. Consequently, we conclude that our

novel methods are effective and feasible for AVEs.

Methods n 1000 2000 3000 4000 5000

NM Iter 17 18 18 18 18

Time 1.9831 10.5160 28.6587 63.6419 117.3205

RES 7.38e− 09 2.60e− 09 3.19e− 09 3.68e− 09 4.11e− 09

ERR 5.21e− 12 1.50e− 12 1.59e− 12 1.64e− 12 1.68e− 12

SORLaopt Iter 15 15 15 15 15

Time 1.9281 9.1987 25.5426 56.0288 102.4080

RES 1.99e− 09 3.62e− 09 7.58e− 09 3.68e− 09 9.88e− 09

ERR 1.33e− 12 1.79e− 12 2.14e− 12 2.43e− 12 2.69e− 12

Picard Iter 5 5 5 5 5

Time 0.7741 3.1126 8.5872 17.8581 32.0921

RES 1.34e− 11 1.68e− 11 2.38e− 11 3.73e− 11 3.13e− 11

ERR 1.12e− 14 1.18e− 14 1.25e− 14 1.31e− 14 1.37e− 04

Method I Iter 4 4 4 4 4

Time 0.3736 2.9140 6.6380 15.3359 28.7372

RES 6.67e− 11 6.69e− 11 6.70e− 11 6.78e− 11 6.85e− 11

ERR 5.90e− 14 5.91e− 14 5.91e− 14 5.91e− 14 5.91e− 14

Method II Iter 5 5 5 5 5

Time 0.3391 2.8898 7.0875 16.1323 30.3901

RES 6.70e− 11 6.72e− 11 6.73e− 11 6.98e− 11 6.73e− 11

ERR 5.91e− 14 5.92e− 14 5.92e− 14 5.92e− 14 5.93e− 14

Table 3. Numerical results of Example 3.3 with ψ = λ = 0.98.

4. Conclusion

We have presented two new iteration methods for solving the AVE in (1.1) and

showed that the proposed methods converge to the AVE solution in (1.1) under

suitable choices of the involved parameters. Lastly, numerical tests were also imple-

mented so as to check the effectiveness of the proposed methods. The theoretical

analysis and numerical tests have shown that the two algorithms seem promising for

solving the AVEs.
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Methods V 256 1296 2401 4096

NM Iter 13 13 13 14

Time 1.6492 3.1458 14.5518 82.6151

RES 2.51e− 09 5.75e− 09 7.86e− 09 1.58e− 09

ERR 2.10e− 10 4.80e− 10 6.56e− 10 1.32e− 10

SORLaopt Iter 17 18 18 18

Time 0.3707 4.5734 22.7075 117.6810

RES 6.80e− 09 3.73e− 09 5.07e− 09 6.61e− 09

ERR 5.70e− 10 3.12e− 10 4.23e− 10 5.52e− 10

Picard Iter 10 10 10 10

Time 0.3862 2.5027 11.3991 58.7786

RES 1.46e− 09 3.20e− 09 4.33e− 09 5.64e− 09

ERR 1.23e− 10 2.68e− 10 3.62e− 10 4.71e− 10

Method I Iter 9 9 9 9

Time 0.2378 1.2979 11.0035 55.6473

RES 9.41e− 09 1.26e− 09 1.38e− 09 1.49e− 09

ERR 8.79e− 10 1.19e− 10 1.29e− 10 1.40e− 10

Method II Iter 9 9 9 9

Time 0.2569 2.2081 11.9317 57.3148

RES 4.50e− 09 5.74e− 09 6.31e− 09 6.87e− 09

ERR 4.23e− 10 5.38e− 10 5.89e− 10 6.40e− 10

Table 4. Numerical results of Example 3.4 with ψ = 0.9 and λ = 1.

This paper successfully examined the two new iteration methods for solving AVE

when the coefficient matrix is an M -matrix or strictly diagonally dominant matrix.

The cases for more general coefficient matrices are the next issue to be considered.

Appendix

In this appendix, we explain how to implement the proposed methods.

Method I.

xi+1 = xi − E[−ψKxi+1 + (ψ(2− ψ)A+ ψK)xi − ψ(2− ψ)(|xi|+ b)].

Method II.

xi+1 = λ[xi − E((Axi − |xi| − b)−K(xi+1 − xi))] + (1 − λ)xi.

In both methods, the right-hand side also contains xi+1, which is the unknown.

From Ax− |x| = b we have

x = A−1(|x|+ b).

119



Thus, we can approximate xi+1 as

xi+1 ≈ A−1(|xi|+ b).

The above method is called the Picard iteration method [39]. Now, we discuss the

algorithm of Method I,

Algorithm for Method I.

yi = xi+1 = A−1(|xi|+ b),

xi+1 = xi − E[−ψKyi + (ψ(2− ψ)A+ ψK)xi − ψ(2− ψ)(|xi|+ b)].

Similarly for Method II.

In addition, Mao et al. [29] and Dehgan and Hajrian [8] used parameter ψ for

LCPs in this way. In this article, we apply this idea to AVEs and speed up the

convergence of the proposed iteration method by using ψ in this way.
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