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Abstract. Through tropical normal idempotent matrices, we introduce isocanted alcoved
polytopes, computing their f-vectors and checking the validity of the following five conjec-
tures: Barany, unimodality, 3d, flag and cubical lower bound (CLBC). Isocanted alcoved
polytopes are centrally symmetric, almost simple cubical polytopes. They are zonotopes.
We show that, for each dimension, there is a unique combinatorial type. In dimension d,
an isocanted alcoved polytope has 20+l _ 9 vertices, its face lattice is the lattice of proper
subsets of [d + 1] and its diameter is d + 1. They are realizations of d-elementary cubical
polytopes. The f-vector of a d-dimensional isocanted alcoved polytope attains its maximum
at the integer |d/3].
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1. INTRODUCTION

This paper deals with f-vectors of isocanted alcoved polytopes. A polytope is the
convex hull of a finite set of points in R?. A polytope is a boz if its facets are only of
one sort: x; = const, i € [d]. A polytope is alcoved if its facets are only of two sorts:
x; = const and x; — x; = const, 4,j € [d], i # j. Every alcoved polytope can be
viewed as the perturbation of a box. In a box we distinguish two opposite vertices
and the perturbation consists on canting (i.e. beveling, meaning producing a flat
face upon something) some (perhaps all) of the (d — 2)-faces of the box not meeting
the distinguished vertices. When the perturbation happens for all such (d — 2)-faces
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and with the same positive magnitude, we obtain as a result an isocanted alcoved
polytope. The notion makes sense only for d > 2.

The f-vector of a d-polytope P is the tuple (fo, f1,..., fa—1), where f; is the
number of j-dimensional faces in P, for j = 0,1,2,...,d — 1. The f-vector can be
extended with f; = 1. It is well known that the f-vector of a d-box is

(d
(1.1) Bd’j _2dj<.)7 J=01,....d
J

The quest for f-vectors is unrelenting. As Ziegler writes in [40] “on some fundamental
problems embarrassingly little progress was made; one notable such problem concerns
the shapes of f-vectors” and “new polytopes with interesting f-vectors should be
produced” and also “it seems that overall, we are short of examples.”

The main result in this paper is that the f-vector of an isocanted d-alcoved poly-
tope is given by

. d+1
(12) Id,j—(2‘“”—2)( j ) j=0,1,...,d=1, Iga=1

The numbers Iy ; are even, for j < d — 1, because isocanted alcoved d-polytopes are
centrally symmetric. We verify several conjectures for f-vectors, namely, unimodal-
ity, Barany, Kalai 3¢ and flag conjectures as well as CLCB. Further properties are
proved, showing that isocanted alcoved polytopes are d-elementary cubical, almost
simple and zonotopes.

The paper is organized as follows. In Section 3 we give the definition and then,
in Theorem 3.4, we prove a crucial characterization: isocanted alcoved polytopes are
those alcoved polytopes having a unique vertex for each proper subset of [d + 1].
Concrete examples are given in Example 3.5. It follows from Theorem 3.4 that the
face lattice of an isocanted alcoved d-polytope is the lattice of proper subsets of
[d+ 1]. It is proved that isocanted alcoved polytopes are cubical and are zonotopes.
In Section 4 we explain in detail the cases of dimensions 3 and 4, providing figures
which help the reader visualize the many properties of these polytopes. We compute
two invariants of 4-isocanted alcoved polytopes: fatness and fys. In Section 5 we
prove that the five mentioned conjectures hold true for isocanted alcoved polytopes.
Log-concavity provides a short proof of the unimodality of Ig ;, for fixed d > 2. We
also prove that the maximum of I;; is attained at the integer |d/3|. We show that
the diameter is d + 1.

This paper encompasses tropical matrices and classical polytopes, in the sense
that tropical matrices are the means to describe certain polytopes. We use several
sorts of special matrices, operated with tropical addition & = max and tropical
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multiplication ® = 4+, such as: normal idempotent (with respect to @), visualized
normal idempotent matrices, symmetric normal idempotent matrices and, among
these, box matrices, cube matrices and isocanted matrices.

Tropical linear algebra and tropical algebraic geometry are fascinating, new, fast
growing areas of mathematics with new and important results. For our purposes we
recommend [8], [9], [10], [15], [24], [25], [26], [27], [33] among many others. Alcoved
polytopes have been first studied in [23], [37], then in [11], [13]. Cubical polytopes
have been addressed in [1], [2], [5], [6], [20]. General references for polytopes are [3],
[4], [16], [22], [29], [30], [39], [40]. Normal idempotent matrices have been used in
[13], [38]. Idempotent matrices, also called Kleene stars, have been used in [11], [31],
[36] in connection to polytopes.

2. BACKGROUND AND NOTATIONS

Well-known definitions and facts are presented here. The set {1,2,...,d+ 1} is
denoted [d + 1] and ([d';l]) denotes the family of subsets of [d 4 1] of cardinality j.
The origin in R¢ is denoted 0. Maximum and minimum are taken componentwise
in RY. A polyhedron in R? is the intersection of a finite number of halfspaces. It may
be unbounded. A bounded polyhedron is called a polytope and every polytope is the
convex hull of a finite set of points. A d-polyhedron is a polyhedron of dimension d.
A d-polyhedron P is alcoved if its facets are only of two types: x; = const and
x; —x; = const, 4,j € [d], i # j. A double index notation is useful here because, in
this way, we can gather the coefficients in a matrix over R U {£o0}: indeed, write

(2.1) jj < T = Tj S —0ji
and similarly,

(2.2) i d+1 S Ty < —0d41,i-

Then, setting a; ; = Foo if one facet x; — x; = const is not specified, and letting
(by convention) a;; = 0 for all ¢ € [d+ 1], we get a square matrix A = [a,;] €
Miy1(RU {£o0}) from P. We write P = p(A) to express the former relationship
between the polyhedron P and the matrix A. In addition to a;; = 0, ¢ € [d + 1], the
entries of the matrix A satisfy —oo < a;; < —a;,; < oo for all ¢, j € [d+ 1]. Different
matrices A may give rise to the same polyhedron.

Definition 2.1 (Alcoved polytope (AP)). A d-polytope P C R? is alcoved if
there exist constants a; ; € R such that x € P if and only if a;,44+1 < 2; < —ag+1,4
for all i € [d], and a; ; < z; — x; < —a;; for all i,j € [d + 1]. Letting A = [a, ;] €
Mg+1(R), we write P = p(A).
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Important particular cases provide special matrices as follows:

(1) 0 € p(4) if and only if A is normal (N) (meaning a;; =0, a; ; < 0 for all 4, j),
see [10], [38];

(2) If 0 € p(A), then A describes p(A) optimally (or tightly) if and only if A
is normal idempotent (NI) (meaning that in addition to normality we have
A ® A = A, which requires that a; ; + ajp < ai for all 4,75, k), see [11], [31],
[36];

(3) For each alcoved polytope P containing 0 there exist a unique NI matrix A such
that P = p(A), see Lemma 2.6 in [11] and [31], [36].

Combinatorial properties of polytopes are, by nature, translation invariant. Every
translate of an alcoved polytope is alcoved. For each general alcoved polytope P,
infinitely many translates P’ of P exist such that 0 € P’. We can choose any
such P’ to study P, and we know that P’ = p(A) for a unique NI matrix A. Often,
we choose P’ in two special locations with respect to 0, each location corresponding
to a subclass of NI matrices:

(1) 0 = maxp(A) if and only if A is visualized normal idempotent (VNI) (in addition
to NI, the entries of A satisfy aq+1,; = 0 for all 7), see [10], [11], [13];

(2) p(A) = —p(A) if and only if A is symmetric normal idempotent (SNI) (in
addition to NI, the entries of A satisfy a; ; = a;,; for all 4, j), see [13], [19].

From [13], we know that translation of an alcoved polyhedron p(A4) corresponds to
conjugation of its matrix A by a diagonal matrix (with null last diagonal entry).

Our aim is, after defining isocanted alcoved polytopes, to compute the f-vector of
those. But, what is already known about vertices of an alcoved polytope p(A) in R%?
First, the number of vertices of p(A) is bounded above by (2(;1) and this bound is
sharp (see [15], [33]). Which points are vertices of p(A)? In order to answer this
question we introduce (a) the auziliary matriz Ao and (b) the notion of tropical
linear subspace (by linear, we mean affine linear).

For A = [a; ;], the matrix Ay = [ ;] is defined by «; ; := a;; — aq41,; = ai; ©
(—ag+1,7)-2 The columns of Ay are scalar multiples (with respect to ®) of the
columns of A. The fact that diag(A) is zero implies that row(d + 1, Ap) is zero (and
conversely), so the columns of Ag belong to the hyperplane {z € R¥*!: z,,; = 0}
which is identified with R?.3 Besides, if A is NI, then A = Ay if and only if A is VNI.

! The family of normal idempotent matrices is a subclass of the family of Kleene star
matrices.

2 Notice that Ag might be not normal.

3 This way of going from R to [Rd, viewed as a hyperplane, is analogous to going from
projective to affine space, by intersecting with the hyperplane x4, = 1, in classical
geometry.
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Inequalities (2.2) are transformed into
(2.3) i1 <z <oy Vi€ d],
which yield the following facts:
(2.4) minp(A4) = col(d + 1, Ap), maxp(A) = diag(Ao).

Besides, p(A) is the family of all tropical affine combinations of columns of Ay (see
Theorem 2.1 [11], Proposition 12 [36])%:

(2.5) p(A)={zcR™: 24,1 =0, 2=X ©col(l,49) ®...®
>\d+1 ® COl(d-i— ].,Ao), )\j ER,0=MD...D >\d+1}~

Thus p(A) is a proper subset of the unique linear subspace determined by the columns
of Ap. In particular, the columns of Ay are some of the vertices of p(A). They are
called the generators of p(A). The rest of vertices of p(A) are tropical linear combi-
nations of the generators, and are thus called generated vertices of p(A4). In order to
explain this, we must first define tropical linear subspaces. A tropical linear subspace
is the tropicalization of a linear subspace of K%, where K := C{{t}} is the field of

Puiseuz series. If L C K% is a linear subspace and I(L) C K[z, 25", ... 23] is

the ideal of all Laurent polynomials vanishing on L, consider g € I(L), ¢ = > asx®,
ses

with x = (x1,2,...,24) variables, s = (s1,82,...,54) € S exponents, S C N¢

a finite set, a; € K and x°* = x7'25? ... x). Then, consider the tropicalization of ¢

(2.6) Trop(q) := @ —v(as) @ x181 © 282 ® ... O T4Sq
seS

= meaéc —v(as) + x181 + T282 + ... + Z4S4,
S

where tropical powers are transformed into products, v: K\ {0} — Q is the standard
valuation (i.e. the order of vanishing of a series). The corner locus of Trop(q) is,
by definition, the collection of points x € R?, where the maximum in Trop(q)(z)
is attained at least twice.® Finally, Trop(L) is, by definition, the closure of the
intersection of corner loci for all ¢ € I(L). Since the corner locus of Trop(q) is

piecewise linear, then tropical linear subspaces are polyhedral complexes.®

4 Here tropical geometry does not mimic classical geometry since affine combinations do
not produce the whole tropical linear subspace but only a bounded subset of it.

5 The translation to tropical mathematics of the expression “equal to zero” or “zero set”
is “the maximum is attained at least twice.”

6 Unlike classical geometry, it is not true that in d-dimensional space, the intersection of
a generic family of (d — k) tropical linear hyperplanes is a tropical linear subspace of
dimension k.
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Notice that a unique tropical linear subspace is determined by each subset of
generators (i.e. of columns of Ay). A convenient notation is L4 (W) for each W €
([d;.rl]) with 1 < j < d. We will write L(W) when A is understood. L(W) isa (j—1)-
dimensional tropical linear subspace and, being piecewise linear, the subspace L(W)
has a finite number of vertices (however, an upper bound on how many is not known
in all cases, see [33]). Returning to the question of which points are vertices of p(A4),
the answer is that the vertices of p(A) are all the vertices of all subspaces L(W) for
W e ([derl]). The case j = 1 gives the d + 1 generators of p(A).

The easiest alcoved polytopes are boxes and cubes, determined by equations z; =
const. We fix a convenient matrix notation for boxes with special matrices VNI
and SNI (see Items (1) and (2) on page 4). Recall that translation of an alcoved
polyhedron p(A) is achieved by conjugation of matrix A.

Notation 2.2 (Box matrices). Given real numbers l; > 0, i € [d], consider

(1) BN (d + 1510, 1o, ..., 1a) = [bij] € May1(R) with

) —l;, d+1#i# 3,

“ { 0, otherwise.
This matrix is VNI (easily checked) and called the VNI box matrix with edge-
lengths ;. In particular, we have the VNI cube matrix QVN(d + 1;1) :=
BYNY(d +151,...,1).

(2) The conjugate matrix D®BVN(d+1;1y,1a, . ..,1q)© D! is SNI (easily checked),
where D = diag(l1/2,12/2,...,14/2,0). It is denoted BSNY(d+ 111,12, ...,14) =
[ci;] and we have

-3l i=d+1,
Cij = . .

0, i =7,

1(=li—1;), otherwise.

Similarly we have the cube matrix QSN'(d + 1;1).

(3) A box matrix is any diagonal conjugate of the above, i.e. D' ® B® D’fl, where
D" = diag(d,, dy, .. .,d;,0) with d; € R and B = BYNd + 151,19, ..., 14). It
is NI (easily checked).

Definition 2.3 (from de la Puente [13]). Any non-positive real matrix E €
Ma11(R) with null diagonal, last row and column is called perturbation matriz. In
symbols, E = [e; ;] with e, ; = eq1,i = €;,4+1 = 0 and e; ; < 0 for all ¢, 5.
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In [13] it is proved that for any NI matrix A € M441(R) (not necessarily VNI or
SNI), there exists a unique decomposition A = B — E, where B is a NI box matrix
and FE is a perturbation matrix. The polytope p(B) is called the bounding boz of
the alcoved polytope p(4). It is also proved that E is invariant under conjugation
by diagonal matrices with zero last diagonal entry.

3. DEFINITION, CHARACTERIZATION AND f-VECTOR OF IAPs

Definition 3.1 (Isocanted alcoved polytope (IAP)). Let A € Mg11(R) be a NI
matrix with decomposition A = B — E. The alcoved polytope p(A) is isocanted if E
is a constant perturbation matriz, i.e. there exists a > 0 such that e; ; = —a for all
1,7 € [d], i # j. The number «a is called cant parameter of p(A). We write E = [—al,
by abuse of notation.

Remark 3.2. Every box in R? is centrally symmetric and, using translation, we
can place its center of symmetry at the origin of R%. An IAP is a perturbed box with
constant (whence symmetric) matrix E. Then every IAP is centrally symmetric, by
Item (2) on page 4.

Notation 3.3 (Special matrices for visualized IAPs and symmetric IAPs, with
cubic bounding boxes). Given real numbers a,l, consider the constant perturbation
matrix E = [—a] € My41(R) as above and the matrices (as in Notation 2.2)

(1) IVNY(d +1;1,a) := QVN(d + 1;1) — E,

(2) INY(d 4 1;1,a) := QN (d + 1;1) — E.
It is an easy computation to check that for these matrices to be NI, it is necessary
and sufficient that 0 < a < 1.7

The following is the crucial step of the paper. Its proof contains the only tropical
computations in what follows.

Theorem 3.4 (Characterization of IAPs). An alcoved d-polytope P = p(A) is
isocanted if and only if for each 1 < j < d and each W € ([d';l]), the tropical linear
subspace L4(W') has a unique vertex.

Proof. Without loss of generality, we can assume that the bounding box of P is
a cube (of edge-length [ > 0) since an affine bijection does not affect the result. We

7 The limit case a = [ provides a polytope of dimension less than d. The limit case a = 0
provides the d-cube. Matrices IVNI(d+ 1;11,12,...,1l4,a) and ISNI(d+ 1;11,12,...,1g,a)
may be similarly defined, for 0 < @ < minl;, but we will not use them.

J
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can also assume that P is located in d-space, so 0 = max P, because a translation
does not affect the result. Then P = p(C) with C = QVN(d + 1;1) — E for some
positive [, as in Notation 2.2 and Definition 2.3. For W C [d + 1] let C(W) denote
the (d 4 1) x j sized matrix whose columns are indexed by W and taken from C.

(=) Assume P is IAP. Then E = [—a] is constant and then C' = IVN(d+1;1,a) =
[¢i ], as in Item (1) of Notation 3.3. In symbols,

—I, 1#j=d+1,
cij =10, i=jori=d+1, withO<a<l.
—l+ a, otherwise.

Note that the tropical rank of C' is d+ 1 (meaning that the maximum in the tropical
permanent® of C is attained only once.”) In particular, rki, C(W) = j for each
proper subset W &€ ([d;.rl]).

For j =1, L(W) reduces to a point (a generator) and uniqueness is trivial. Con-
sider a point x € R4 with 74,1 = 0, and let C(W, ) be the matrix C(W) extended
with column z. It is well-known (see [27], [33], [34]) that z € L(W) if and only if
ki, C(W, 2) < j (meaning that the maximum in each order (j + 1) tropical minor*?
is attained at least twice). Besides, z is a vertex in L(W) if and only if the maximum
in each order (j + 1) tropical minor of C(W,z) is attained (j + 1) times. Indeed,
the vertices of L(W) are obtained by computing the corner locus of L(W), then the
corner locus of the corner locus, repeatedly. Each iteration reduces the dimension
of the computed set, because points where the maxima are attained one more time
than previously, are computed.

For each 2 < j < d and each index family 1 < ;3 < ip < ... < i; < d+1, let
My i, i; (O My 4y . i;(2)) denote the order j minor of C(W) (or C(W,z)) using
rows 41,12,...,%;. Two cases arise.

(1) If d +1 ¢ W, then it can be seen that m;, 4, .. = h(—l + a), where
h = [{i1,t2,...,4;} \ (WU {d + 1})|. In particular, m;, ;,
{il,iz,...,ij} cwu {d—|— 1}.

(2) Ifd+1€ W, then my, 4,,...s; = h1(=1) + ha(=l + a), where
1, iiAd+1,
hy = { i7

i

= 0 when

yeeesly

0, otherwise,

8 The tropical permanent is the maximum of a collection of terms (the definition mimics
the classical one). Tropical permanent and tropical determinant mean the same, in this
paper. Tropical Laplace erpansions are one way to expand tropical determinants. For
tropical permanent and tropical rank issues, see [10], [14], [17].

® We have per;,. C' = 0, attained only at the identity permutation.

10 By tropical minor we mean the tropical permanent (or determinant) of a square subma-
trix. It is the maximum of a collection of terms.
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and ho = [{i1,2,...,4;-1} \ W|. In particular, m;, 4, .. i, =0 when
{i1,in, ... i;} CW.

The order (j + 1) minors in C(W, x), expanded by the last column by the tropical
Laplace rule, are

(3'1) mi17i2,---7i.7‘+1(x) = kgjafl]{xik + milw--vikfl77;k+17---7i.7'+1}
with 1 < 41 < i2 < ... < ij41 < d+ 1, and the requirement that the maximum

is attained (j + 1) times simply means that all the terms inside the maximum are
equal, i.e.

(32) Ly, + mil,...,ik,1,ik+1,...,’i]‘+1 = xik/ + mil7~~~7ik1_17'L'k/+17---7'ij+1 Vk7 k/ S [j + 1]

(1) Ifd+1 ¢ W, then 2, = =l +a = ¢ for all K ¢ W U {d+ 1} (because
rky, C(W, z) < j tells us that x is a tropical affine combination of the columns
in C(W)), and equalities (3.2) imply x; =0 for all k € W U {d + 1}.

(2) Ifd+ 1€ W, then zj, =z for all k, k' ¢ W (because rky, C(W, x) < j tells us
that « is a tropical affine combination of the columns in C'(W)), and equalities
(3.2) imply xy, = —aforalld+1#ke W,z =—lforallk ¢ W, 441 =0.

(<) We have P = p(C), where C = QVN(d + 1;1) — E is a NI matrix. Assume
that for each 1 < j < d and each W € ([d;rl]), the tropical linear subspace L(W)
has a unique vertex denoted zj;,. We write 2* whenever W is understood. We have
gy =0.

Since P is centrally symmetric, by Remark 3.2, the matrix E is symmetric. We
want to prove that F is constant. Fix w € [d] and take W = {w,d + 1}. Use that
for each order 3 minor of the matrix C(W, z*) (where z* depends on w) all terms in
the maximum are equal. Considering those minors involving three different indices
i, w, d+ 1, we get

M, ifi<w

(3.3) T; + Mydp1 = Ty + My dp1 = Tiyq + o =0-1
My, Otherwise

whence

(3.4) i +0=x, —l—ejw=—I,

and so ey; = €., = z,,. Letting ¢ € [d] vary in (3.4), we get that E = [z}] is
constant. (]
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Example 35. Let d =5. If j =5 and W = [5], then the tropical Laplace
expansion by the last column yields per,, C(W,z) = max{x1, 2, 3, x4, z5,0}. This

maximum is attained by all terms if and only if 2 = 0, all k& € [5], so the unique

vertex of L(WW) is the origin.
If j =3 and W = [3], then

0 ~l+a —l+a x17
—l+a 0 —l+a zo
-1 -1 0 :
cwa) = | 0 T "
—l4+a —l+a —-l+a z4
—l+a —-l4+a —l+a x5
L 0 0 0 0 |
Since x is a tropical affine combination of the columns of C(W), it follows that
T4 = 5 = —[ + a. Since the maximum
(3.5) miz34(z) = max{z1 + maz4, Tz + Mi34, T3 + Mi24, T4 + Mi23}

= max{z1 —l+a,z0 — 4+ a,23 — l +a,z4}

is attained by all terms, we get

(3.6) rn—l+a=x—l+a=z3—l+a=x4=—1+a,

whence 71 = 3 = x3 = 0. The unique vertex of L(W) is [0,0,0, —l +a,—I +a]".

If j =3 and W ={1,2,d+ 1}, then

0

—l+a

—l+a

—l+a

—l+a
0

Since z is a tropical affine combination

T3 = T4 = x5. Since the maximum

—l+a
0
—l+a
—l+a
—l+a
0

T
T2
3
T4
s

0

of the columns of C(W), it follows that

(3.7) mi236(x) = max{x, + mase, T2 + M136, T3 + M126,M123}

= max{z1 —l+a,z0 — | + a,x3, -1}

is attained by all terms, we get

(3.8) r—l+a=x0—1l+a=2x3=—I,

whence r1 = 290 = —a and 3 = x4 = x5 = —I.

[~a,—a—1,—1,—I]".
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Remark 3.6. We have zj;, = @ j whenever d +1¢ W.

JEW

Corollary 3.7 (Bijection on set of vertices of IAP). Given any isocanted alcoved
d-polytope P, the vertices of P are in bijection with the proper subsets W C [d+1].

Proof. As a set, a tropical line is a finite union of classical segments and
halflines.!! As a set, a tropical segment!? is a finite union of classical segments.
The tropical line strictly contains the tropical segment determined by two given
points, and the difference set is a finite union of halflines; see [15], [12], [27]. For
an alcoved polytope P, this implies that the skeleton'3 of P is contained in the 1-

dimensional complex  |J  L(W). For each W with |W| = 2, the set L(W)\ P is
we(la+1
a finite union of halﬂines.( Ezve)ry generated vertex of P is also a vertex of the complex
U L(W), and every edge of P is contained in an edge of |J  L(W). The
containment is strict exactly for those edges of P emanating from generators.

If P is IAP and 4, j are two generators (with 7, j € [d + 1],4 < j), the tropical line
determined by them has a unique vertex, which will be denoted ij. If 4, j, k € [d + 1]
with ¢ < j < k, the tropical plane determined by them has a unique vertex, which
will be denoted ijk. It can be checked that ijk is the unique vertex of the tropical
line determined by ij and k. Recursively, vertices of P are labeled in this fashion.
The stated bijection follows. O

Notation 3.8. The label of the vertex corresponding to W C [d + 1] is W (un-
derlined). The cardinality |W| is called length of W.

Notation 3.9 (Parent and child). Assume P is an isocanted alcoved d-polytope.
Two vertices in P are joined by an edge in P if and only if they are labeled W and
W' cld+1] with) # W C W and |W|+ 1 = |W’|. We say that W is a parent
of W' and W' is a child of W. A 2-face of P is determined by four vertices with
labels jW, jkW, jrW, jkrW, with W C [d+ 1]\ {j, k, 7} for j, k,r € [d+ 1] pairwise
different.'*

Theorem 3.10 (f-vector for IAP). I, ; = (24177 — 2) (derl), 0<j<d-1.

11 A balance condition at each point of each tropical algebraic variety is satisfied, but we
do not use it in this paper.

12 A tropical segment is the family of all tropical affine combinations of two points.

13 The skeleton is the 1-dimensional subcomplex of the border complex OP. It is a graph,
whose diameter is computed in Corollary 5.11.

14 W is an abbreviation for {j} U W.
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Proof. First,

(5

=1

Iao

is the number of proper subsets of [d + 1].

Second, the number of facets is Iq 4—1 = (d+1)d by (2.1) and (2.2). Another proof
is this: as we mentioned on page 1, an alcoved polytope is obtained from a box, where
we may cant only the (d — 2)-faces not meeting two distinguished opposite vertices;
thus, we may cant half of the (d — 2)-faces of the box. In an IAP we do cant every
cantable (d — 2)-face, therefore Iy q—1 = Bg,gq—1 + Ba,a—2/2 = (d + 1)d.

For 1< < d, the number of vertices of length j is (‘“.'1) by Theorem 3.4.

Assume 2 < j < d. A vertex of length j has j parents, by Notation 3.9. The total
number of edges is

Z<d—;1> d+1zd:< _1> d+1dz:1<> (d+1)(24 - 2) = I,

Jj=2 Jj=

d
(where we have used the equalities (dj.'l)j =(d+ 1)(jf1) and 2¢ = 3" (4)).

Assume 3 < j < d. A vertex of length j has (;) grandparents (i.e. parent of
parent). The total number of 2-faces is

()6 -(3)507)

CEC) (e

k=1

(where we have used the equality (dH) (2) = (dgl) (?:;))

Similarly, the total number of r-faces is
d ) d
Z <d+1><j) <d—|—1> Z <d+1—r>
J=r+1 J r J=r+1 J=r
d—r
<d+1> <d+1_r>=(d+1)(2d+1""—2)=1d7,«
r
k=1

(where we have used the equality (d'H) (7) = (d'H) (d".rl_’“)). O

r j—r
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Remark 3.11. A d-IAP is a canted box where all cantable (d — 2)-faces are
canted. On the contrary, alcoved polytopes exist where some cantable (d — 2)-faces
of the bounding box remain uncanted. Among alcoved polytopes, IAPs are maximal
in facets because in an IAP we cant every possible cantable (d — 2)-face. Notice that
TAPs are neither simplicial nor simple and far from being neighborly.

Remark 3.12. Notice the coincidence of /4 ; with the triangular sequence OEIS
A259569 (collecting the number of j-dimensional faces on the polytope that is the
convex hull of all permutations of the list (0,1, ..., 1,2), where there are d — 1 ones).
Also notice the coincidence of I ; with the absolute values of the triangular sequence
OEIS A138106 (collecting the coeflicients of the Taylor expansion around the origin
of the function of two variables p(z,t) = e(®*=2)t — 2¢(==Dt Functions of similar
appearance are called Morse potentials); see [32].

The study of cubical polytopes began in the late 1990’s in [5], [6]. Zonohedra were
first considered by the crystallographer Fedorov, by the end of the XIX century. In
the rest of this section, we prove that IAPs are cubical polytopes and zonohedra.

A d-cuboid is a polytope combinatorially equivalent to a d-cube. A d-cuboid is
denoted C%. A polytope is cubical if every face in it is a cuboid (equivalently, if
every facet in it is a cuboid). A d-polytope is almost simple if the valence of each
vertex is d or d + 1. A d-polytope P is liftable (to a (d + 1)-cuboid) if its boundary
complex P is combinatorially equivalent to a subcomplex of the complex 9C%+1.

Take any vertex V in a cuboid C4*! and consider the subcomplex F& of 9C4+!
determined by the facets of C?*! meeting V. Consider the subcomplex C¢ of F¢ de-
termined by the outer faces of F¢ (the underlying set of C¢ is OF%). A polytope P is
d-elementary if the complex 9P is combinatorially equivalent to the subcomplex C‘d,.
We call F¢ (cuboid) cask at V.

It is clear that d-elementary is more specific than liftable. Saying that P is
d-elementary means that P is (combinatorially equivalent to) the pasting of d + 1
d-cuboids all having a vertex V in common. More generally, k-elementariness de-
scribes the property of P being combinatorially equivalent to the pasting of k + 1
d-cuboids, all sharing a (d — k)-face. In particular, a d-cuboid is 0-elementary. A k-
elementary d-polytope is obtained from a (k — 1)-elementary polytope by pasting
(combinatorially) a d-cuboid to it. A k-elementary d-polytope is denoted C,‘j.

The main theorem in [5] states that if d > 4 and P is a cubical d-polytope, then P
is k-elementary, for some k with 0 < k& < d. It is also proved that both Cg_l and
Cfii have 2411 — 2 vertices, while Cg has fewer than 241 — 2 vertices for other values
of k. Corollary 1 in [6] states that for d > 4, a d-polytope is liftable if and only if it
is cubical, almost simple and has at most 291 vertices.
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Corollary 3.13. For each d > 2,

(1) the face lattice of a d-IAP is the lattice of proper subsets of [d + 1],

(2) on the set of vertices of a d-IAP, the mapping W to [d + 1] \ W is an involution,
(3) there exists a unique combinatorial type of d-IAP,

(4)

4) every IAP is cubical and almost simple.

Proof. (1) This is a direct consequence of Corollary 3.7.

(2) This is due to the lattice order-reversing isomorphism W — [d + 1] \ W.

(3) This is immediate from Item (1).

(4) Let P be an IAP and B be the bounding box of P (defined on page 2). The
(d — 2)-faces meeting the two distinguished vertices of B are not cantable and so,
those two points are vertices of both P and B, and they have the same valence in P
and B (the valence is d in B). In P one of these vertices is the generator d + 1 and

the other one has label 12...d. All generators (or d-generated vertices) of P have the
same valence. Generators do not have parents and vertices of length d do not have
children. Now, for 2 < j < d — 1, the valence of a vertex of P of length j is the sum
of the number of parents and number of children, namely, j+ (d+1—7j) =d+1. O

For d = 2, an IAP is a hexagon (with slopes 0, 1, co) and every vertex in it has
valence 2. For d = 3, an IAP is combinatorially equivalent to a rhombic dodecahedron
whose f-vector is (14,24, 12).

Notation 3.14. Since the combinatorial type is unique, we can fix a notation for
a d-IAP: it is denoted I¢ in what follows.

Corollary 3.15. Z¢ is d-elementary for d > 2.

Proof. For d > 4, k-elementariness follows from the main theorem in [5], and
fo(C_)) = fo(C4) = fo(T?) tells us that k = d — 1 or d. The generator d + 1 (also
the vertex 12...d) plays the role of vertex V in the definition above on page 3, so
k = d follows.

2-elementariness is easy for d = 2: Z? is a hexagon, and it is combinatorially
equivalent to C%, which is the border complex of a cube cask F3 at a vertex V of
the cube. For d = 3, extended explanations are given in Section 4. O

The f-vector of a cask F& clearly is

4), j=0,1,...,d—2.

(3.9) Caj = (2979 1) (j

Since Z¢ is d-elementary, (3.9) and (1.2) satisfy the relation
(3.10) Id’j = QCd,j + Idfl,jflv
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which has the practical application that, in order to understand 9Z¢, it is enough
that we look a two cube casks and one belt joining them. See Section 4 for details
in dimensions 3 and 4.

Recall that a zonotope is a (Minkowski) sum of segments. A known characteri-
zation of zonotope is that it is a polytope all whose 2-faces are centrally symmetric
(see [18]), and this is satisfied by IAPs. A direct proof is given below.

Corollary 3.16. Every IAP is a zonotope.

Proof. IT? is obtained from a d-box B = B(ly,ls,...,lq) C R? with max B at
the origin, edge-lengths /; > 0 and cant parameter a with 0 < a < minl;, and
J

T% = B+ 0, avg41] holds true, where (v1,vs,...,vq) is the standard basis in R? and
Vd+1 =01 + U2+ ...+ 4. O

4. CASESd=3 AND d =4

In this section we describe IAPs in small dimensions for better understanding
of results proved in the previous section. In addition, for d = 4 we compute two
well-known invariants (fatness and fo3).

Fix d > 2. Two opposite vertices in Z¢ are distinguished: A := maxZ¢ called the
North Pole, and S := min Z¢ called the South Pole of Z¢.1> The label of N is 12...d,
and the label of S is d+ 1 (S is a generator). The cask F§, C 9Z¢ introduced on
page 3 (or F2) is called North Polar Cask (or South Polar Cask) of Z¢. Vertices
included in the North (or South) Polar Cask are exactly those omitting (or including)
digit d + 1 in their label. The Equatorial Belt is, by definition, the subcomplex of
O0Z¢ determined by all faces of Z¢ not meeting the poles. The Equatorial Belt is
the complex of all facets of Z¢ containing edges in the direction of vector vgy; =
(1,1,...,1)T. These are the edges joining vertices W and Wd + 1 for proper subsets
W C [d]. The complex §Z¢ is the union of the Polar Casks and the Equatorial Belt.

A Polar Cask is homeomorphic to a closed (d — 1)-disk. The Equatorial Belt is
homeomorphic to a closed (d— 1)-cylinder, i.e. 972 x [~1,1] (the Cartesian product

of a (d — 2)-sphere and a closed interval).
Case d = 3: we have N' = 123 and the North Cask is homeomorphic to
a 2-disk with one interior point labeled 123, points in the circumference labeled

15 This idea, which goes back to Kepler, has been developed for alcoved polytopes in [13].
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edges joining 14,24, 34 to 4 (see Figure 4). The Equatorial Belt is homeomorphic
to a cylindrical surface (see Figure 4). Identification of borders of polar casks with
border components of the cylinder is easily done by using vertex labels. The f-vector
of a 2-polar cask is the sum of the f-vector of the circumference complex (6, 6) and of
the internal subdivision (1, 3), yielding (7,9), which agrees with (C3 ¢, Cs,1) in (3.9).

Case d = 4: the North Cask is homeomorphic to a solid 3-sphere with one interior
point labeled A/ = 1234, points on the surface labeled 3, ij and ijk, with i, j, k € [4],
pairwise different. Edges join parent and child (see Notation 3.9). Combinatori-
ally, the cask is equivalent to a solid rhombic dodecahedron with an interior point
labeled 1234 and six quadrangular inner 2-faces given by ij, ijk, ijr, 1234, with
{i,4,k,r} = [4] (see Figure 4).

The South Cask is homeomorphic to a solid 3-sphere with one interior point labeled
S = 5, points on the surface labeled i5, ij5 and ijk5, with i, j, k € [4], pairwise differ-
ent. Edges are determined by Notation 3.9. Combinatorially, the cask is equivalent
to a solid rhombic dodecahedron with an interior point labeled 5 and six quadrangu-
lar inner 2-faces given by i5, 455, ik5, ijk5, with i, j, k € [4], pairwise different (see
Figure 4). The f-vector of a rhombic dodecahedron is (14,24,12) and the internal
subdivision adds (1,4, 6), so the sum (15,28,18) is the f-vector of a 3-polar cask,
which agrees with (C4,0,C4,1,C4,2) in (3.9). The Equatorial Belt is homeomorphic
to a 3-cylinder S? x [—1,1]. Identification of borders of polar casks with border
components of cylinder is easily done by using vertex labels.

Researchers are deeply interested in 4-polytopes, due to the peculiar properties
they show (from the classification of the regular ones obtained by Schléfli in the
XIX century, to the Richter-Gebert’s Universality Theorem of 1996, which roughly
says that the realization space of a 4-polytope can be “arbitrarily wild or ugly”,
see [18]). Fatness is a convenient function to study the family F4 C N* of f-vectors
of 4-polytopes. The set F, is not well understood. The fatness of a 4-polytope P is
defined as F(P) = (f1 + f2 — 20)/(fo + f3 — 10). It is known that F(P) € [5,3) for
all simplicial and all simple P. It is also known that F'(P) < 5 for all 4-zonotopes P
(see [40]). According to Ziegler, “the existence/construction of 4-polytopes of high
fatness” (greater than or equal to 9) “is a key problem.”

f-vectors have been generalized in a number of ways. Generalizations considered
in this paper are: to count vertez-facet incidences (denoted fos below), to count
flags (see Corollary 5.9) and the cubical g-vector (see Proposition 5.10).

Remark 4.1. We have I, = (30,70, 60,20) and

(1) fatness of % is (f1 + f2 — 20)/(fo + f3 — 10) = %,
(2) in Z% we have fo3 = 160 (since there are Iy 3 = (d + 1)d = 20 3-cubes (with 8
vertices each) and no other 3-faces).
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So fatness of IAPs will not surprise Ziegler!

Key to colors: blue dots are generators, yellow dots are vertices of length 2, ma-
genta dots are vertices of length 3, green dots are vertices of length 4.

Do

(S

12

Y

1
Figure 1. North Polar Cask for d = 3.

34 T— 134

Figure 2. South Polar Cask for d = 3.
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134

Figure 3. Ecuatorial Belt for d = 3.
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24
Figure 4. North Polar Cask for d = 4.

2345

Figure 5. South Polar Cask for d = 4.

5. FIVE CONJECTURES PROVED FOR IAPS

Consider the set M of lower triangular infinite matrices with both entries and
indices in Z>(. Examples of matrices in M are the 2-power matriz, denoted T,
defined by

20=k 0 <k <d,
Tar = {

0, otherwise,
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and the Pascal matriz, denoted P, defined by

(), 0<k<d,

Py = .
0, otherwise.

With the Hadamard or entry-wise product, multiply the former matrices, obtaining
B:=ToP = PoT &€ M and notice that the d-th row of B shows the f-vector
of a d-box (padded with zeros), for d € Z>, see (1.1). We call B the f-vector box
matriz. Next, consider the matrix H € M defined by

@ =1(), 0<k<d-1,

1
(5.1) Hip = 3 k=d,

0 otherwise.

For fixed d > 2, we study the growth!6 of the sequence H, ) with 0 < k < k+1<
d—1.

Proposition 5.1. For each d > 0 we have Hy 41 < Hg with equality only for
d=0,1,2.

Proof. The inequality (d + 1)d/2 < 2% — 1 is easily proved by induction on d
(degree 2 polynomials grow slower than 2-powers.) O

Recall that a sequence ay, is log-concave if af , > arary2 for all k, see [7], [35].

Proposition 5.2. For d > 2, the sequence {Hg: 0 < k < d — 1} is log-concave.

Proof. For fixed d, the sequence Ty — 1 = 297% — 1 is log-concave, because
(Td’kJ’,l — ].)2 — (Td,k — 1)(Td,k+2 — 1) =2¢"k=2 5 9 5 0 for 0 <k<d-3 Itis
easy to check that any row of Pascal’s triangle is a log-concave sequence. Since the
termwise product of two log-concave sequences (with the same number of terms) is
log-concave, the result follows for Hg . O

Notice 14 = 2Hg, for 0 < k<d.

Corollary 5.3 (Unimodality holds for isocanted). For each d > 2, the sequence
{Igk: 0 <k < d-—1} is unimodal.

' Hg 1, is an expression involving 2-powers and binomial coefficients. Precisely, Hy =
(Tq, — 1)Pg41, is the product of two factors. For sufficiently small k, the first factor
dominates (meaning, is larger than the other factor), as in the cases Hyg = 2¢ — 1,
Hgy = (2771 —1)(d + 1) and Hyo = (2772 — 1)(d + 1)d/2. However, for sufficiently
large k, the second factor dominates, as in the cases Hg g3 = 7(d+1)d(d—1)(d —2)/24,
Hd,d—2 = (d+ 1)d(d — 1)/2 and Hd,d—l = (d+ 1)d/2.
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Proof. It is easy to show that every log-concave sequence is unimodal (but not
conversely). The sequence Hgj, is unimodal and so is its double. ([

Proposition 5.4. For fixed d > 2, the maximum in the sequence I, }, is attained
at the integer |d/3].

Proof. Cases d = 2, 3 and 4 are checked directly (the f-vectors are (6,6),
(14,24,12) and (30,70,60,20)). Assume d > 5 and 0 < k < d — 2. Define the
quotient

Id,k—i—l (Zd_k_l — 1)(d —k+ 1)

52 = =

(5:2) Qo= 2 F —1)(k+1)

and the terms

(5.3) Lags1:=2"7"Yd -3k —1), Rgps1:=d—2k.

We have Ig 11 = gy if and only if Qg1 > 1 if and only if Lgr+1 = Rak+1,
because we have cleared the positive denominator in (5.2) and grouped terms. The
exponent d—k—1 appearing in Lg ;41 is at least 1. The sign of the factor (d—3k—1)
in Ly k41 is not constant. We have d/3 < (2d — 5)/3 since d > 5. We prove:

(1) if kK < (d —2)/4, then L yy1 2 Ry gy,

(2) if (d - 2)/4 < k < (d - 2)/3, then Ld,k+1 2 Rd’kJ’»l,

(3) if d/3 < k < (2d - 5)/3, then Ld,k+1 < Rd’kJ’»l,

(4) if (2d — 5)/3 < k, then L1 < Ry k41,

and the result follows. Indeed,

(1) the factor in Lq ;41 is positive and so Lg g+1 = 2(d — 3k — 1) > Rg ky1,

(2) the factor in Lg 1 is at least 1, the exponent d — k — 1 in Lg 41 is at least
(d+2)/3 and (d +2)/2 > Rg i1, o we have Lg i1 = 20472/3(d — 3k — 1) >
20H+2/3 > (d+2)/2 > Ry,

(3) the factor in Lg 41 is no more than —1, the exponent d —k — 1 in Lg 41 is at
least (d+ 2)/3 and Rg 11 > (—d+10)/3, so we get Ry pt1 = (—d+10)/3 >
_9(d+2)/3 > 2(d+2)/3(d — 3k — 1) > Ld,k-}-l,

(4) the factor in Lg 41 is non-positive and so Rgy1 > d —3k — 12> Lgpy1.

It follows that the change in the monotonicity of the sequence I;; occurs in the
interval Z N [(d —2)/3,d/3]. For fixed d > 2, we have found the maximum in I

attained at d
=, d =0 mod 3,
3
d d—1
k_bJ_ S, d=1mod3,
-2
dT, d = 2 mod 3.
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Corollary 5.5 (Barany conjecture holds for isocanted). If d > 2 and 0 < k <
k+1<d-—1, then Id,k > min{Idyo,Id’d,l} = Id’dfl = (d+ 1)d

Proof. Use unimodality and Proposition 5.1. O

The 3% conjecture and the flag conjecture were posed by Kalai in 1989, for centrally
symmetric polytopes.

d
Corollary 5.6 (3¢ conjecture holds for isocanted). For d > 2 it holds Y I =
k=0
39+l _ 24+2 1 9 and this is larger than 3¢.

d
Proof. The binomial theorem (z + )¢ = Y alyd—7 (;j) with # = 1 yields 2¢ =
7=0

d d
S (%) and 3¢ = 352979 (%). Then

d+1 d+1
(54) 3d+1 —_ 2% 2d+1 — 22d+17‘j (d+ ]-) . 22 <d+ 1>

=0 J i=o ~ 7
d+1 d—1
; d+1
= Z(2d+1_7 - 2)( j ) = ZLM + two summands.
=0 =0

Summand for j = d is zero and for j = d + 1 is —1, whence using I;4 = 1, we
get the claimed equality. Proof of the inequality: We have 23 = 8 = 32 — 1 and
24=2 < 39=2 Multiply termwise and get 29+ < 3972(32 — 1) =39 - 392 < 39 4 1,
whence 2(24F1 — 1) < 2 x 3¢ = 34+1 — 34, O

Remark 5.7. Recall that Stirling number of the second kind is the number of
ways to partition [d] into k non-empty subsets, and it is denoted S(d, k). We have
341 2442 4+ 92 = 25(d+2,3) + 1 (see Wikipedia and OEIS A101052, OEIS A028243
and OEIS A000392 in [32]).

Remark 5.8. Recall that a Hanner polytope is obtained from closed intervals
by using two operations any finite number of times: Cartesian product and polar.
They were studied by Hanner in 1956. Is Z¢ a Hanner polytope? Conversely, is some
Hanner polytope an IAP? Since Hanner polytopes satisfy the 3¢ conjecture and they
attain the minimal conjectured value (see [28]), then the answer is NO in both cases.

Recall that a complete flag in a polytope P is a maximal chain of faces of P
with increasing dimensions. Next, we count complete flags (and call them flags, for
short). The number of flags in a d-box is 2%d! because there are 2¢ vertices and,
at each one, there are d! flags. The flag conjecture yields that boxes minimize flags
among centrally symmetric polytopes, see [21], [28], [30].
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Corollary 5.9 (Flag conjecture holds for isocanted). The number of flags in T¢
is (d + 1)(d — 1)1(24*! — 4) and it is larger than 2%d! for d > 2.

Proof. In Z¢ there are 2(d + 1) vertices of valence d, and the remaining
2(2¢ — d — 2) vertices have valence d + 1. Indeed, the vertices of length 1 or d
have valence d. A vertex of length 2 < t < d — 1 has valence d + 1, because
it has t parents and d + 1 — ¢ children. Reasoning as in boxes, we find d! flags
beginning at a vertex of valence d. Using Item (1) in Corollary 3.13, we find
(d + 1)(d — 1)! flags beginning at a vertex V of valence d + 1, because Z¢ is
cubical and there are d + 1 (d — 1)-cuboids meeting at V. Thus, adding up,
2(d+ 1) xd!+2(2¢ —=d—2) x (d+1)(d—1)! = (d+1)(d — 1)!(2¢F! — 4) is the total
number of flags. Further, we have (2471 — 1)(d + 1) > 2¢72d for d > 2, whence the
claimed inequality. O

The cubical lower bound conjecture (CLBC) was posed by Jockusch in 1993 and
rephrased, in terms of the cubical g-vector g°, by Adin et al. in 2019 as follows: Is
g2 = 07 See [2], [20].

Proposition 5.10 (CLBC holds for isocanted). 94 = 0 holds true for 74, for
d=>2.

Proof. We have computed the sequence gg , for IAPs, obtaining 6, 20, 50, 112,
238, ...; see OEIS A052515 in [32]. O

Recall that the distance between two vertices of a polytope is the minimum number
of edges in a path joining them. The diameter of a polytope is the greatest distance
between two vertices of the polytope.

Corollary 5.11 (Diameter of isocanted). The diameter of T% is d + 1.

Proof. Consider different proper subsets W, W’ C [d + 1] and assume
Wnw|=i [Wi=it+w, |W| =i+,

with 7, w,w’ > 0 and i + w+w' < d+ 1. To go from vertex W to vertex W’ one
must drop (one at a time) w digits in W \ W’ and one must gain (one at a time)
w’ digits in W’ \ W, whence d(W,W’) = w + w’. In the particular case that W’ is
complementary to W, we get the greatest distance d(W,W') =d + 1. O

In future, we would like to compute the f-vector of a general alcoved polytope.

Acknowledgments. We thank the referee for careful revision.
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