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1. Introduction

In some problems of science and technology it is necessary to solve partial differ-

ential equations in time-dependent domains. Particularly, we can mention problems

of fluid-structure interaction (FSI), when the boundary of the domain occupied by

the moving fluid is deformed in dependence on time according to the deformation

of an elastic body adjacent to the fluid. There are several techniques how to solve

numerically initial-boundary value problems in time-dependent domains. We can

mention, e.g. the immersed boundary method or the fictitious domain method (see

[5], [34]). Another, rather popular technique is the arbitrary Lagrangian-Eulerian

(ALE) method (see [18]) based on an ALE mapping of a reference configuration onto

a current configuration.

In the present paper, compressible flow in a time-dependent domain coupled with

an elastic body is studied. The flow is described by the compressible Navier-Stokes

equations written in the ALE form using conservative variables. It is coupled with

the dynamic elasticity system describing the deformation of an elastic body, induced

by the aerodynamical force on the interface between the gas and the elastic body.

Both the flow and structural problems are discretized by the space-time discontin-

uous Galerkin method (STDGM). This means that the space as well as the time

discretization is realized by piecewise polynomial functions depending on the space

variables and on time.

In several works (see [9], [10], [25], [26], [29], [33]) we used the ALE method with

success for the numerical solution of the compressible Navier-Stokes equations in

the framework of FSI problems. The space discretization was carried out by the

discontinuous Galerkin method (DGM). For the time discretization we used either

the backward difference formula (BDF) or the DGM in time. In the latter case, we

get the STDGM.

The discontinuous Galerkin time discretization was introduced and analyzed,

e.g. in [19] for the solution of ordinary differential equations. In [1], [11], [20], [21],

[36] and [37] the solution of parabolic problems is carried out with the aid of con-

forming finite elements in space combined with the DG time discretization. See also

the monograph [38]. In [24], the STDGM was analyzed for a linear nonstationary

convection-diffusion-reaction problem. The paper [28] is devoted to the theory of

error estimates for the STDGM applied to a nonstationary convection-diffusion prob-

lem with a nonlinear convection and linear diffusion. In paper [8], the theory of the

STDGM was developed for the case with nonlinear convection as well as diffusion.

The paper [4] is a continuation of the works [28] and [8] by proving unconditional

stability of the STDGM. In all the above mentioned theoretical papers, the space

domain is independent of time.
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There are several papers devoted to the analysis of linear convection-diffusion

problems in time-dependent domains, formulated with the aid of the ALE method.

We can mention [31], [32], and [7]. The latter paper is concerned with the stability

analysis of the time DGM without space discretization. In [3] the stability of the

STDGM applied to the solution of a scalar nonlinear convection-diffusion problem

in a time-dependent domain was analyzed.

As follows from the above, the novelty of the presented work is the development

and application of the STDGM to the solution of the compressible Navier-Stokes

equations in the conservative ALE form in a time-dependent domain coupled with

the linear or nonlinear neo-Hookean elasticity. The developed method is applied to

the numerical simulation of air flow in a simplified model of human vocal tract and

flow induced vocal folds vibrations.

In Section 2, the flow problem, elasticity problem and their coupling are for-

mulated. Section 3 describes the STDGM discretization of the coupled problem,

including the iterative algorithm of the realization of the discrete problem. Section 4

is devoted to algorithmization and numerical realization of the coupled problem and

finally Section 5 presents numerical experiments showing the robustness of the de-

veloped method.

2. Formulation of the continuous problem

In what follows we describe nonstationary viscous compressible flow in time-

dependent domains, the equations of dynamic linear and nonlinear elasticity and

their coupling.

2.1. Compressible Navier-Stokes equations in a time-dependent do-

main.

We consider compressible flow in a bounded domain Ωt ⊂ R2 with Lipschitz

boundary depending on time t ∈ [0, T ].

The dependence of the domain Ωt on time is taken into account with the use of

the arbitrary Lagrangian-Eulerian (ALE) method, see e.g. [10] or [9]. It is based on

a regular one-to-one ALE mapping of the reference configuration Ω0 onto the current

configuration Ωt:

(2.1) At : Ω0 → Ωt, i.e., X ∈ Ω0 7→ x = x(X, t) = At(X) ∈ Ωt.

We define the domain velocity

(2.2) z̃(X, t) =
∂

∂t
At(X),

z(x, t) = z̃(A−1
t (x), t), t ∈ [0, T ], X ∈ Ω0, x ∈ Ωt,
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and the ALE derivative of the vector function w = w(x, t) defined for x ∈ Ωt and

t ∈ [0, T ]:

(2.3)
DA

Dt
w(x, t) =

∂w̃

∂t
(X, t),

where

(2.4) w̃(X, t) = w(At(X), t), X ∈ Ω0, x = At(X).

The system describing the compressible flow, consisting of the continuity equation,

the Navier-Stokes equations and the energy equation, can be written in the form

(2.5)
∂w

∂t
+

2∑

s=1

∂fs(w)

∂xs
=

2∑

s=1

∂Rs(w,∇w)

∂xs
.

Then, using the relations

(2.6)
DAwi

Dt
=
∂wi

∂t
+ div(zwi)− wi div z, i = 1, . . . , 4,

we can write system (2.5) in the ALE form

(2.7)
DAw

Dt
+

2∑

s=1

∂gs(w)

∂xs
+w div z =

2∑

s=1

∂Rs(w,∇w)

∂xs
,

see for example [9]. Here

w = (w1, . . . , w4)
⊤ = (̺, ̺v1, ̺v2, E)⊤ ∈ R

4,(2.8)

w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

gs(w) = fs(w)− zsw, s = 1, 2,

fs(w) = (fs1, . . . , fs4)
⊤ = (̺vs, ̺v1vs + δ1s p, ̺v2vs + δ2s p, (E + p)vs)

⊤,

Rs(w,∇w) = (Rs1, . . . , Rs4)
⊤ = (0, τVs1, τ

V
s2, τ

V
s1 v1 + τVs2 v2 + κ∂θ/∂xs)

⊤,

τVij = λdiv v δij + 2µ dij(v), dij(v) =
1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
.

We use the following notation: ̺—fluid density, p—pressure, E—total energy, v =

(v1, v2)—flow velocity, θ—absolute temperature, γ > 1—Poisson adiabatic constant,

cv > 0—specific heat at constant volume, µ > 0, λ = −2µ/3—fluid viscosity coeffi-

cients, κ—heat conduction, τVij—components of the viscous part of the aerodynam-

ical stress tensor. The above system is completed by the thermodynamical relations

(2.9) p = (γ − 1)
(
E −

1

2
̺|v|2

)
, θ =

1

cv

(E
̺
−

1

2
|v|2

)
.
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It is possible to show that

(2.10) fs(w) = As(w)w, Rs(w,∇w) =
2∑

k=1

Ks,k(w)
∂w

∂xk
, s = 1, 2,

where

As(w) =
Dfs(w)

Dw
, s = 1, 2,

are the Jacobi matrices of the mappings fs and Ks,k(w) ∈ R4×4 are matrices de-

pending nonlinearly on w (cf., e.g., [16]).

We assume that the boundary ∂Ωt of the domain Ωt is formed by disjoint parts

ΓI—inlet through which the fluid flows into the domain Ωt, ΓO—outlet through

which the fluid leaves Ωt, and ΓWt
—impermeable walls the parts of which can depend

on time t. We assume that ΓI and ΓO are fixed (see Figure 1).

The resulting system is equipped with the initial condition w(x, 0) = w0(x),

x ∈ Ω0, and the boundary conditions

(2.11)

a) ̺ = ̺D on ΓI ,

b) v = vD = (vD1, vD2)
⊤ on ΓI ,

c)

2∑

i,j=1

τVij nivj + k
∂θ

∂n
= 0 on ΓI ,

d) v = zD = velocity of a wall ΓWt
,

e)
∂θ

∂n
= 0 on ΓWt

,

f)

2∑

i=1

τVij ni = 0, j = 1, 2, on ΓO,

g)
∂θ

∂n
= 0 on ΓO,

with prescribed data ̺D, vD and zD. Here n = (n1, n2) denotes the outward unit

normal to ∂Ωt and ∂/∂n is the derivative in the direction n. On ΓO and ΓWt
only

three boundary conditions are specified. The missing condition is completed in the

discrete problem by extrapolation, see (3.9)–(3.11).

2.2. Dynamic elasticity system. We assume that the elastic body is repre-

sented by a bounded polygonal domain Ωb ⊂ R2 with boundary ∂Ωb = Γb
D ∪ Γb

N ,

where Γb
D ∩ Γb

N = ∅. On Γb
D and Γb

N we prescribe the Dirichlet and the Neumann

boundary condition, respectively. The deformation of the body is described by the

displacement u : Ωb × [0, T ] → R2 and the deformation mapping

(2.12) ψ(X, t) =X + u(X, t), X ∈ Ωb, t ∈ [0, T ].
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Further, we introduce the deformation gradient, the Jacobian and the cofactor Cof F

of the matrix F :

(2.13) F = ∇ψ, J = detF > 0, Cof F = J(F−⊤).

Here F−⊤ = (F−1)−⊤. Further, we introduce the first Piola-Kirchhoff stress ten-

sor P . Its form depends on the chosen elasticity model (cf. [13]).

The general dynamic elasticity problem is formulated in the following way: Find

a displacement function u : Ωb × [0, T ] → R2 such that

̺b
∂2u

∂t2
+ cM̺

b ∂u

∂t
− divP (F ) = f in Ωb × [0, T ],(2.14)

u = uD in Γb
D × [0, T ],(2.15)

P (F )n = gN in Γb
N × [0, T ],(2.16)

u(·, 0) = u0,
∂u

∂t
(·, 0) = y0 in Ωb,(2.17)

where f : Ωb×[0, T ] → R2 is the density of the acting volume force, gN : Γb
N×[0, T ] →

R2 is the surface traction, uD : Γb
D × [0, T ] → R2 is the prescribed displacement,

u0 : Ωb → R2 is the initial displacement, y0 : Ωb → R2 is the initial deformation

velocity, ̺b > 0 is the material density, and cM > 0 is the damping coefficient.

In the stationary case (static problem) we seek u : Ωb → R2 such that

− divP (F ) = f in Ωb,(2.18)

u = uD on Γb
D, P (F )n = gN on Γb

N .(2.19)

2.2.1. Linear elasticity. In case of linear elasticity the stress tensor P (F ) is

denoted as σ(u), which depends linearly on the strain tensor e(u) = (∇u+∇u⊤)/2

according to the relation

(2.20) P (F ) := σ(u) = λb tr(e(u))I+ 2µbe(u).

Here λb and µb are the Lamé parameters that can be expressed with the aid of the

Young modulus Eb and the Poisson ratio νb:

(2.21) λb =
Ebνb

(1 + νb)(1 − 2νb)
, µb =

Eb

2(1 + νb)
.

2.2.2. Nonlinear elasticity. In the nonlinear case we consider the model of

neo-Hookean material with the stress tensor

(2.22) P (F ) = µb(F − F−⊤) + λb log(detF )F−⊤.
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For a detailed description we can refer the reader to monographs [13] and [6].

2.3. Fluid-structure coupling. In the FSI problem the coupling of the discrete

flow problem and the structural problem is realized via the transmission conditions

representing the continuity of the velocity and the normal stress on the common

boundary Γ̃Wt
between fluid and structure. We assume that

(2.23) Γ̃Wt
= {x ∈ R

2 ; x =X + u(X, t), X ∈ Γb
N} ⊂ ΓWt

.

Then we use the following transmission conditions:

a) For linear elasticity we assume that

(2.24) σ(u(X, t))n(X) = τ f (x, t)n(X), v(x, t) =
∂u(X, t)

∂t
.

b) For nonlinear elasticity we use the conditions

(2.25) P (F (X, t))n(X) = τ f (x, t)Cof(F (X, t))n(X), v(x, t) =
∂u(X, t)

∂t
.

In the above relations, x = X + u(X, t), X ∈ Γb
N , x ∈ Γ̃Wt, the expression

τ f = {τfij}
2
i,j=1 = {−pδij + τVij }

2
i,j=1 represents the aerodynamical stress tensor and

n(X) is the unit outward normal to ∂Ωb on Γb
N (by δij we denote the Kronecker

symbol).

2.4. Determination of the ALE mapping. The ALE mapping At is deter-

mined with the aid of an artificial stationary linear elasticity problem proposed

in [40]. We seek d = (d1, d2) defined in Ω0 as a solution of the elastic static system

(2.26)

2∑

j=1

∂τaij(d)

∂Xj
= 0 in Ω0, i = 1, 2,

where τaij are the components of the artificial stress tensor

τaij = δijλ
a div d+ 2µaeaij(d), eaij(d) =

1

2

( ∂di
∂Xj

+
∂dj
∂Xi

)
, i = 1, 2.

The Lamé coefficients λa and µa are related to the artificial Young modulus Ea and

the artificial Poisson number σa similarly to Section 2.2. The boundary conditions

for d are prescribed by

(2.27) d|ΓI∪ΓO
= 0, d|ΓW0

\Γb
N
= 0, d(X, t) = u(X, t), X ∈ Γb

N .
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The solution of the problem (2.26)–(2.27) gives us the ALE mapping of Ω0 onto

Ωt in the form

(2.28) At(X) =X + d(X, t), X ∈ Ω0,

for each time instant t.

3. Discrete problem

The next section is devoted to the description of the STDGM discretization of the

flow and structural problems.

3.1. Discretization of the flow problem (2.7)–(2.11). We describe the dis-

cretization as it is carried out in the program system used in our practical computa-

tions. We assume that Ωt is a polygonal domain for every t ∈ [0, T ]. We denote by

Tht a partition of the closure Ωt into a finite number of closed triangles with disjoint

interiors satisfying standard properties (see [12]). We suppose that Tht is an image

of Th0 under the regular mapping “t → At”. Moreover, we assume that the ALE

mapping At is continuous and affine in Ω0.

By Fht we denote the system of all faces of all elements K ∈ Tht. Further, we

introduce the set of boundary faces FB
ht = {Γ ∈ Fht ; Γ ⊂ ∂Ωt}, the set of “Dirichlet”

boundary faces FD
ht = {Γ ∈ FB

ht a Dirichlet condition is prescribed on Γ} and the set

of inner faces FI
ht = Fht \FB

ht. Each Γ ∈ Fht is associated with a unit normal vector

nΓ to Γ. For Γ ∈ FB
ht the normal nΓ has the same orientation as the outer normal

to ∂Ωt. We assume

For each Γ ∈ FI
ht there exist two neighbouring elements K

(L)
Γ ,K

(R)
Γ ∈ Tht such

that Γ ⊂ ∂K
(R)
Γ ∩∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction of nΓ

and K
(L)
Γ lies in the opposite direction to nΓ. If Γ ∈ FB

ht, then the element adjacent

to Γ will be denoted by K
(L)
Γ .

Now we introduce the space of piecewise polynomial functions

(3.1) Sr
ht = [Sr

ht]
4, with Sr

ht = {v ; v|K ∈ Pr(K) ∀K ∈ Tht},

where r > 0 is an integer and Pr(K) denotes the space of all polynomials on K of

degree 6 r. It is possible to see that Sr
ht = {v ; v = At(v̂), v̂ ∈ Sr

h0}. A function

ϕ ∈ Sr
ht is, in general, discontinuous on interfaces Γ ∈ FI

ht. If ϕ is a function defined

on K
(L)
Γ ∪K

(R)
Γ , then by ϕ

(L)
Γ and ϕ

(R)
Γ we denote the values of ϕ on Γ considered

from the interior of K
(L)
Γ and K

(R)
Γ , respectively (if these values make sense), and

set 〈ϕ〉Γ = (ϕ
(L)
Γ +ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ −ϕ

(R)
Γ .
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The discrete problem is derived in the following way: We multiply system (2.7) by

a test function ϕh ∈ Sr
ht, integrate overK ∈ Tht, apply Green’s theorem, sum over all

elements K ∈ Tht, use the concept of the numerical flux and introduce suitable terms

mutually vanishing for a regular exact solution and linearize the resulting forms on

the basis of properties (2.10) of the functions fs and Rs. In this way we get the fol-

lowing forms (followed by the explanation of symbols appearing in their definitions):

âh(wh,wh,ϕh, t) =
∑

K∈Tht

∫

K

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
·
∂ϕh

∂xs
dx(3.2)

−
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈 2∑

k=1

Ks,k(wh)
∂wh

∂xk

〉
(nΓ)s · [ϕh] dS

−
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

Ks,k(wh)
∂wh

∂xk
(nΓ)s · ϕh dS

−Θ
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈 2∑

k=1

K
⊤
k,s(wh)

∂ϕh

∂xk

〉
(nΓ)s · [wh] dS

−Θ
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

K
⊤
k,s(wh)

∂ϕh

∂xk
(nΓ)s ·wh dS,

dh(wh,ϕh, t) =
∑

K∈Tht

∫

K

(wh · ϕh) div z dx,(3.3)

Jh(wh,ϕh, t) =
∑

Γ∈FI
ht

∫

Γ

µCW

hΓ
[wh] · [ϕh] dS +

∑

Γ∈FD
ht

∫

Γ

µCW

hΓ
wh · ϕh dS,(3.4)

lh(wh,wB,ϕh, t) =
∑

Γ∈FD
ht

∫

Γ

µCW

hΓ
wB · ϕh dS(3.5)

−Θ
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

K
T
k,s(wh)

∂ϕh

∂xk
(nΓ)s ·wB dS,

b̂h(wh,wh,ϕh, t)(3.6)

= −
∑

K∈Thtk+1

∫

K

2∑

s=1

((As(wh(x)) − zs(x)I)wh(x))·
∂ϕh(x)

∂xs
dx

+
∑

Γ∈FI
ht

∫

Γ

(P+
g (〈wh〉Γ,nΓ)w

(L)
h + P

−
g

(〈
wh〉Γ,nΓ

)
w

(R)
h )· [ϕh] dS

+
∑

Γ∈FB
ht

∫

Γ

(P+
g

(〈
wh

〉
Γ
,nΓ

)
w

(L)
h + P

−
g (〈wh〉Γ,nΓ)w

(R)
h )·ϕh dS.
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We set Θ = 1, Θ = 0 or Θ = −1 and get the so-called symmetric (SIPG), incom-

plete (IIPG) or nonsymmetric (NIPG) version, respectively, of the discretization of

viscous terms. In (3.4) and (3.5), CW denotes a positive sufficiently large constant.

In the form (3.6), symbols P+
g (w,n) and P−

g (w,n) denote the “positive” and

“negative” parts of the matrix Pg(w,n) =
2∑

s=1
(As(w)−zsI)ns defined in the following

way. By [23], this matrix is diagonalizable. It means that there exists a nonsingular

matrix T = T(w,n) such that

(3.7) Pg = T�T
−1, � = diag(λ1, . . . , λ4),

where λi = λi(w,n) are eigenvalues of the matrix Pg. Now we define the “positive”

and “negative” parts of the matrix Pg by

(3.8) P
±
g = T�

±
T
−1, �

± = diag(λ±1 , . . . , λ
±
4 ),

where λ+ = max(λ, 0), λ− = min(λ, 0).

The boundary statewB is defined on the basis of the Dirichlet boundary conditions

(2.11), a), b), d) and extrapolation:

wB = (̺D, ̺DvD1, ̺DvD2, cv̺Dθ
(L)
Γ + 1

2̺D|vD|2) on ΓI ,(3.9)

wB = w
(L)
Γ on ΓO,(3.10)

wB = (̺
(L)
Γ , ̺

(L)
Γ zD1, ̺

(L)
Γ zD2, cv̺

(L)
Γ θ

(L)
Γ + 1

2̺
(L)
Γ |zD|2) on ΓWt.(3.11)

For Γ ∈ FB we set 〈wh〉Γ = (w
(L)
Γ +w

(R)
Γ )/2 and the boundary state w

(R)
Γ is defined

with the aid of the solution of the 1D linearized initial-boundary Riemann problem

as in [22].

In order to avoid spurious oscillations in the approximate solution in the vicinity

of discontinuities or steep gradients, we apply artificial viscosity forms. They are

based on the discontinuity indicator

(3.12) gt(K) =
1

hK |K|3/4

∫

∂K

[̺h]
2 dS, K ∈ Tht,

introduced in [17]. By [̺h] we denote the jump of the function ̺h on the boundary ∂K

and |K| denotes the area of the element K. Then we define the discrete discontinuity

indicator Gt(K) = 0 if gt(K) < 1, Gt(K) = 1 if gt(K) > 1, and the artificial viscosity

748



forms (see [27])

(3.13) β̂h(wh,wh,ϕh, t) = ν1
∑

K∈Tht

hKGt(K)

∫

K

∇wh· ∇ϕh dx,

Ĵh(wh,wh,ϕh, t) = ν2
∑

Γ∈FI
h

1

2
(Gt(K

(L)
Γ ) +Gt(K

(R)
Γ ))

∫

Γ

[wh]· [ϕh] dS,

with parameters ν1, ν2 = O(1).

Because of the time discretization we consider a partition 0 = t0 < t1 < . . . <

tM = T of the time interval [0, T ] and denote Im = (tm−1, tm), τm = tm − tm−1 for

m = 1, . . . ,M, and τ = max
m=1,...,M

τm. We define the space S
rq
hτ = [Srq

hτ ]
4, where

(3.14) Srq
hτ =

{
φ ; φ(x, t) =

q∑

i=0

tiφi(x), φi ∈ Sr
ht, t ∈ Im, x ∈ Ωt, m = 1, . . . ,M

}
,

with integers r, q > 1 and Sr
ht defined in (3.1). For ϕ ∈ Srq

hτ we introduce the notation

(3.15) ϕ±
m = ϕ(t±m) = lim

t→tm±

ϕ(t), {ϕ}m = ϕ+
m −ϕ−

m.

In order to bound the solution on intervals Im−1 and Im, we augment the resulting

identity by the penalty expression ({whτ}m−1,ϕhτ (t
+
m−1))tm−1

. The initial state

whτ (0−) ∈ Sr
h0 is defined as the L

2(Ωh0)-projection of w
0 on Sr

h0, i.e.

(3.16) (whτ (0−),ϕh)Ωt0
= (w0,ϕh)Ωt0

∀ϕh ∈ Sr
h0.

Moreover, we introduce the prolongation whτ (t) of whτ |Im−1
on the interval Im.

(The space-time DG technique with prolongation was analyzed theoretically in [39]

on a scalar model problem.)

In what follows we denote

(3.17) (a, b)ω =

∫

ω

ab dx

for functions a, b defined in a set ω ⊂ R2.
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Now the space-time DG approximate solution is defined as a function whτ ∈ Srq
hτ

satisfying (3.16) and the following relation for m = 1, . . . ,M :

∫

Im

((DAwhτ

Dt
,ϕhτ

)

Ωt

+ âh(whτ ,whτ ,ϕhτ , t)
)
dt(3.18)

+

∫

Im

(b̂h(whτ ,whτ ,ϕhτ , t) + Jh(whτ ,ϕhτ , t) + dh(whτ ,ϕhτ , t)) dt

+

∫

Im

(β̂h(whτ ,whτ ,ϕhτ , t) + Ĵh(whτ ,whτ ,ϕhτ , t)) dt

+ ({whτ}m−1,ϕhτ (tm−1+))Ωtm−1

=

∫

Im

lh(whτ ,wB,ϕhτ , t) dt ∀ϕhτ ∈ Srq
hτ .

R em a r k 3.1. In the derivation of the discrete problem, the approximate solu-

tion and the test functions are viewed as elements of the space Srq
hτ . In practical

computations, integrals appearing in the definitions of the forms âh, b̂h, dh, Jh, Ĵh
and β̂h and also the time integrals over Im are evaluated with the aid of quadrature

formulas using values of the approximate solution at discrete points of intervals Im.

Therefore, the space Srq
hτ is finite dimensional and the discrete problem is equivalent

to a finite algebraic system for every m = 1, . . . ,M .

3.2. Discretization of the elasticity problem. In the discretization of the

structural problem we consider the displacement u and the deformation velocity y

and split the basic system into two systems of first-order in time

̺b
∂y

∂t
+ cM̺

by − divP (F ) = f ,
∂u

∂t
− y = 0 in Ωb × [0, T ],(3.19)

u = uD in Γb
D × [0, T ],(3.20)

P (F )n = gN in Γb
N × [0, T ],(3.21)

u(·, 0) = u0, y(·, 0) = y0 in Ωb.(3.22)

We construct a partition T b
h of Ω

b
into a finite number of closed triangles K with

mutually disjoint interiors satisfying the standard properties formulated in [12]. The

approximate solution at every time instant t ∈ [0, T ] will be sought in the finite-

dimensional space

(3.23) S
b,s
h = {v ∈ L2(Ω); v|K ∈ Ps(K),K ∈ T b

h }
2,

where s > 0 is an integer and Ps(K) denotes the space of polynomials of degree

not greater than s on K. By Fb
h we denote the system of all faces of all elements
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K ∈ T b
h and distinguish three sets of boundary, “Dirichlet”, “Neumann” and inner

faces: Fb,B
h = {Γ ∈ Fb

h ; Γ ⊂ ∂Ωb}, Fb,D
h = {Γ ∈ Fb

h ; Γ ⊂ ΓD
b }, Fb,N

h = {Γ ∈

Fb
h ; Γ ⊂ Γb

N} and Fb,I
h = Fb

h \ Fb,B
h . For each Γ ∈ Fh we define a unit normal

vector nΓ. We assume that for Γ ∈ Fb,B
h the normal nΓ has the same orientation as

the outer normal to ∂Ωb. By hΓ we denote the length of Γ. For ϕ ∈ Sb,s
h symbols

ϕ
(L)
Γ and ϕ

(R)
Γ denote the traces of ϕ on Γ from the sides of elements K

(L)
Γ and K

(R)
Γ

adjacent to Γ. We assume that nΓ is the outer normal to ∂K
(L)
Γ . Further, 〈ϕ〉Γ

denotes the average of the traces on Γ and [ϕ]Γ = ϕ
(L)
Γ − ϕ

(R)
Γ is the jump of ϕ

on Γ.

If a = (aij)
2
i,j=1, b = (bij)

2
i,j=1 are tensors, then we set a : b =

2∑
i,j=1

aijbij .

The DG discretization in space is formulated with the use of following forms.

Linear elasticity form:

(3.24) abh(u,ϕ) =
∑

K∈T b
h

∫

K

σ(u) : e(ϕ) dx−
∑

Γ∈Fb,I

h

∫

Γ

(〈σ(u)〉 · n) · [ϕ] dS

−
∑

Γ∈Fb,D

h

∫

Γ

(σ(u) · n) ·ϕ dS − θ
∑

Γ∈Fb,I

h

∫

Γ

(〈σ(ϕ)〉 · n) · [u] dS

− θ
∑

Γ∈Fb,D

h

∫

Γ

(σ(ϕ) · n) · u dS,

where σ(u) is defined by (2.20). Here the parameter θ is chosen as 1, 0,−1 for the

SIPG, IIPG, NIPG, respectively, version of the elasticity form.

Nonlinear IIPG elasticity form (θ = 0):

(3.25) abh(u,ϕ) =
∑

K∈T b
h

∫

K

P (F ) : ∇ϕ dx−
∑

Γ∈Fb,I

h

∫

Γ

(〈P (F )〉n) · [ϕ] dS

−
∑

Γ∈Fb,D

h

∫

Γ

(P (F )n) · ϕ dS.

Penalty form:

(3.26) Jb
h(u,ϕ) =

∑

Γ∈FI
h

∫

Γ

Cb
W

hΓ
[u] · [ϕ] dS +

∑

Γ∈FD
h

∫

Γ

Cb
W

hΓ
u ·ϕ dS.

Here Cb
W > 0 is a sufficiently large constant.
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Right-hand side form:

(3.27) lbh(ϕ)(t) =
∑

K∈T b
h

∫

K

f(t) ·ϕ dx+
∑

Γ∈Fb,N

h

∫

Γ

gN (t) ·ϕ dS

− θ
∑

Γ∈Fb,D

h

∫

Γ

(σ(ϕ)n) · uD(t) dS

+
∑

Γ∈Fb,D

h

∫

Γ

Cb
W

hΓ
uD(t) · ϕ dS.

Finally, we set (u,ϕ)Ωb =
∫
Ωb u · ϕ dx. In the nonlinear case, it is not clear how

to define the SIPG and NIPG versions of the elasticity forms so that the form abh is

linear with respect to the test function ϕ.

3.2.1. STDGM for the structural problem. An approximate solution of prob-

lem (3.19)–(3.22), i.e., the approximations of the functions u,y will be sought in the

space of piecewise polynomial vector functions Sb,sq∗

hτ = [Sb,sq∗

hτ ]2, where

(3.28)

V = Sb,sq∗

hτ =

{
v ∈ L2(Ωb × (0, T )) ; v|Im =

q∗∑

i=0

tiϕi with ϕi ∈ Sb,s
h , m = 1, . . . ,M

}
.

By s and q∗ we denote positive integers representing the degrees of polynomial ap-

proximations in space and time in the discretization of the structural problem. We

introduce the one-sided limits and the jump of a function ϕ ∈ S
b,sq∗

hτ at time tm

similarly to (3.15). Now, the approximate STDG solution of problem (3.19)–(3.22)

is defined as a couple uhτ ,yhτ ∈ Sb,sq∗

hτ such that

∫

Im

(
̺b
(∂yhτ

∂t
,ϕhτ

)

Ωb
+ cM (̺byhτ ,ϕhτ )Ωb + abh(uhτ ,ϕhτ )(3.29)

+ Jb
h(uhτ ,ϕhτ )

)
dt+ ({yhτ}m−1,ϕhτ (tm−1+))Ωb

=

∫

Im

lbh(ϕhτ ) dt ∀ϕhτ ∈ Sb,sq∗

hτ ,

∫

Im

((∂uhτ

∂t
,ϕhτ

)

Ωb
− (yhτ ,ϕhτ )Ωb

)
dt(3.30)

+ ({uhτ}m−1,ϕhτ (tm−1+))Ωb = 0 ∀ϕhτ ∈ Sb,sq∗

hτ , m = 1, . . . ,M.

Similarly to (3.16) we define the initial states uh(0−), yh(0−) ∈ Sb,s
h by

(3.31) (uh(0−),ϕh)Ωb = (u0,ϕh)Ωb ∀ϕh ∈ Sb,s
h ,

(yh(0−),ϕh)Ωb = (y0,ϕh)Ωb ∀ϕh ∈ Sb,s
h .
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3.3. Coupling procedure. In the solution of the complete coupled FSI problem

it is necessary to apply a suitable coupling procedure. See, e.g., [2] for a general

framework. Here we apply the following algorithm, in which we proceed successively

from one time interval [tk, tk+1] to the next interval [tk+1, tk+2].

(1) Assume that the approximate solution of the flow problem on the time level tk
as well as the deformation of the structure uhτ,k are known.

(2) Set u0
hτ,k+1 := uhτ,k, l := 1, and apply the iterative process:

(a) Compute the stress tensor τ f and the aerodynamical force acting on the

structure and transform it to the interface Γb
N .

(b) Solve the elasticity problem, compute the deformation ul
hτ,k+1 at time tk+1

and approximate the flow domain Ωl
tk+1
.

(c) Determine the ALE mapping Al
tk+1h

and approximate the domain velocity

zlh,k+1.

(d) Solve the flow problem on the approximation of Ωl
tk+1
.

(e) If the variation of the displacement |ul
hτ,k+1 − u

l−1
hτ,k+1| is larger than the

prescribed tolerance, then set l := l+ 1 and go to (a). Else k := k+ 1 and

go to (2).

This algorithm represents the so-called strong coupling. If in the step (e) we set

k := k+1 and go to (2) already in the case when l = 1, then we get the weak (loose)

coupling.

4. Algorithmization and numerical realization

of the coupled problem

The linear algebraic systems equivalent to (3.16) and (3.18) are solved either by

the direct solver UMFPACK ([14]) or by the GMRES method with block diagonal

preconditioning. These methods are also used for the solution of the structure prob-

lem (3.29)–(3.31). In the case of nonlinear elasticity on each time level the nonlinear

system is solved by the Newton method.

4.1. Newton method. In the case of nonlinear elasticity model, the form

abh(u,ϕ) is linear with respect to ϕ, but nonlinear in u. As a consequence, the

STDGM discrete scheme results in systems of nonlinear algebraic equations. For

their solution we apply the Newton method (see [15]), which was applied in, e.g.,

[30] and [35], where the incompressible flow model and the conforming finite element

discretization were employed.

Let f : RN → RN . We seek a solution α ∈ RN such that f(α) = 0. The Newton

algorithm to obtain a solution is the following: let α(0) be an initial guess of the

sought solution and let ε > 0 be a given tolerance. For i > 0 iterate:
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(1) Evaluate the residual r(i) = f(α(i)).

(2) Check the residual and stop iterations with α := α(i) if ‖r(i)‖ 6 ε.

(3) Compute δα from

(4.1) ∇αf(α
(i))δα = r(i).

(4) Update α(i+1) := α(i) − δα, set i := i+ 1 and go to 1.

Note that (4.1) represents a system of linear algebraic equations.

4.2. Realization of the discrete elasticity problem. We shall now briefly

discuss the application of the Newton method to our discretization of the nonlinear

elasticity problem. We can express the sought approximate solution as a linear

combination of basis functions in the space [V ]2.

Let ψi, i = 1, . . . , N = dimV , be a basis of V . Then the sought solution uhτ can

be expressed as

(4.2) uhτ = uhτ (α) =

2N∑

i=1

αiφi,

where α = (αi)
2N
i=1 are the finite element coefficients and where φi = (ψi, 0) for

1 6 i 6 N and φi = (0, ψi−N ) for N < i 6 2N form the basis of [V ]2.

In order to apply the Newton method as defined in Subsection 4.1, we must dif-

ferentiate the form abh(uhτ (α),ϕ) (and subsequently the tensor P ) with respect to

the coefficients α. For clarity, we shall denote the gradient with respect to α by ∇α

and the gradient with respect to X = (x1, x2) ∈ Ωb by ∇X . Clearly

(4.3)
∂

∂αk
uhτ = (ψi, 0), 1 6 k 6 N, i = k,

∂

∂αk
uhτ = (0, ψi), N < k 6 2N, i = k −N,

and

(4.4) ∇Xuhτ =

N∑

i=1

αi∇X(ψi, 0) +

N∑

i=1

αi+N∇X(0, ψi)

=




N∑
i=1

αi
∂ψi

∂x1
,

N∑
i=1

αi
∂ψi

∂x2
N∑
i=1

αi+N
∂ψi

∂x1
,

N∑
i=1

αi+N
∂ψi

∂x2


 .

By (2.12) and (2.13),

(4.5) P (F ) = P (∇XX +∇Xu).
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Taking into account that ∇X(X) is the constant unit matrix I, we introduce the

simplified notation

(4.6) P̃ (∇Xu) = P (I +∇Xu).

Now the gradient of the form abh can be expressed as

(4.7) ∇αa
b
h(uhτ (α),ϕ) =

∑

K∈Th
b

∫

K

∇α(P̃ (∇Xuhτ (α)) : ∇Xϕ) dx

−
∑

Γ∈Fb,I

h
∪Fb,D

h

∫

Γ

∇α(〈P̃ (∇Xuhτ (α))〉n · [ϕ]) dS

+
∑

Γ∈Fb,I

h
∪Fb,D

h

∫

Γ

Cb
W

hΓ
∇α([uhτ (α)] · [ϕ]) dS.

Let P̃ (∇Xuhτ (α)) = (Pij)
2
i,j=1 (here for simplicity we do not explicitly write the

dependence of Pij on ∇Xuhτ (α)) and let ϕ = (ϕ1, ϕ2). From

(4.8) P̃ (∇Xuhτ (α)) : ∇Xϕ = P11
∂ϕ1

∂x1
+ P12

∂ϕ1

∂x2
+ P21

∂ϕ2

∂x1
+ P22

∂ϕ2

∂x2
,

we obtain that

(4.9)
∂

∂αk
(P̃ (∇Xuhτ(α)) : ∇Xϕ) =

∂

∂αk
P11

∂ϕ1

∂x1
+

∂

∂αk
P12

∂ϕ1

∂x2

+
∂

∂αk
P21

∂ϕ2

∂x1
+

∂

∂αk
P22

∂ϕ2

∂x2
,

∂

∂αk
(〈P̃ (∇Xuhτ (α))〉n · [ϕ]) =

( ∂

∂αk
〈P11〉n1 +

∂

∂αk
〈P12〉n2

)
[ϕ1]

+
( ∂

∂αk
〈P21〉n1 +

∂

∂αk
〈P22〉n2

)
[ϕ2].

Now for ϕ = (ψj , 0) we have

P̃ (∇Xuhτ(α)) : ∇Xϕ = P11
∂ψj

∂x1
+ P12

∂ψj

∂x2
,(4.10)

∂

∂αk
(P̃ (∇Xuhτ (α)) : ∇Xϕ) =

∂

∂αk
P11

∂ψj

∂x1
+

∂

∂αk
P12

∂ψj

∂x2
,(4.11)

∂

∂αk
(〈P̃ (∇Xuhτ (α))〉n · [ϕ]) =

( ∂

∂αk
〈P11〉n1 +

∂

∂αk
〈P12〉n2

)
[ψj ],(4.12)
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while for ϕ = (0, ψj) we have

P̃ (∇Xuhτ(α)) : ∇Xϕ = P21
∂ψj

∂x1
+ P22

∂ψj

∂x2
,(4.13)

∂

∂αk
(P̃ (∇Xuhτ (α)) : ∇Xϕ) =

∂

∂αk
P21

∂ψj

∂x1
+

∂

∂αk
P22

∂ψj

∂x2
,(4.14)

∂

∂αk
(〈P̃ (∇Xuhτ (α))〉n · [ϕ]) =

( ∂

∂αk
〈P21〉n1 +

∂

∂αk
〈P22〉n2

)
[ψj ].(4.15)

It remains to express the derivatives of the tensor P̃—for our choice of the neo-

Hookean material they can be found in Section 4.3.

The Newton method is applied at each time step for the solution of the nonlinear

discrete problem. Each iteration of the Newton method represents a linear algebraic

system and is solved by the direct solver UMFPACK (cf. [14]).

4.3. Neo-Hookean material—derivatives. Let P̃ = P̃ (uhτ (α)) = (Pij)
2
i,j=1

be the first Piola-Kirchhoff tensor of the neo-Hookean material as defined in (2.22).

Let uhτ (α) = (u1, u2). From (2.13) and (2.22) we get

P11 = µb
(
1 +

∂u1
∂x1

)
+ c1

(
1 +

∂u2
∂x2

)
,(4.16)

P12 = µb ∂u1
∂x2

− c1
∂u2
∂x1

,(4.17)

P21 = µb ∂u2
∂x1

− c1
∂u1
∂x2

,(4.18)

P22 = µb
(
1 +

∂u2
∂x2

)
+ c1

(
1 +

∂u1
∂x1

)
,(4.19)

where

(4.20) c1 =
λb log(detF )− µb

detF
.

Now let uhτ (α) = (u1, u2) =
2N∑
k=1

αkψk, where ψk = (ψk, 0) for 1 6 k 6 N and

ψk = (0, ψk−N ) for N < k 6 2N .

Let us express first the derivative of the determinant of F with respect to the

coefficient αk. If 1 6 k 6 N and i := k, then

(4.21)
∂

∂αk
(detF ) =

∂ψi

∂x1

(∂u2
∂x2

+ 1
)
−
∂ψi

∂x2

∂u2
∂x1

,

and for N < k 6 2N , i := k −N :

(4.22)
∂

∂αk
(detF ) =

∂ψi

∂x2

(∂u1
∂x1

+ 1
)
−
∂ψi

∂x1

∂u1
∂x2

.
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The derivatives of P̃ (uhτ (α)) with respect to the coefficient αk are given as follows:

If 1 6 k 6 N and i := k, then

∂

∂αk
P11 = µb ∂ψi

∂x1
+ c2

∂

∂αk
(detF )

(
1 +

∂u2
∂x2

)
,(4.23)

∂

∂αk
P12 = µb ∂ψi

∂x2
− c2

∂

∂αk
(detF )

∂u2
∂x1

,(4.24)

∂

∂αk
P21 = −c1

∂ψi

∂x2
− c2

∂

∂αk
(detF )

∂u1
∂x2

,(4.25)

∂

∂αk
P22 = c1

∂ψi

∂x1
+ c2

∂

∂αk
(detF )

(
1 +

∂u1
∂x1

)
,(4.26)

where c1 is as in (4.20),

(4.27) c2 =
λb − λb log(detF ) + µb

(detF )2
,

and ∂
∂αk

(detF ) is expressed in (4.21).

Finally, for N < k 6 2N we set i = k −N and get

∂

∂αk
P11 = c1

∂ψi

∂x2
+ c2

∂

∂αk
(detF )

(
1 +

∂u2
∂x2

)
,(4.28)

∂

∂αk
P12 = −c1

∂ψi

∂x1
− c2

∂

∂αk
(detF )

∂u2
∂x1

,(4.29)

∂

∂αk
P21 = µb ∂ψi

∂x1
− c2

∂

∂αk
(detF )

∂u1
∂x2

,(4.30)

∂

∂αk
P22 = µb ∂ψi

∂x2
+ c2

∂

∂αk
(detF )

(
1 +

∂u1
∂x1

)
,(4.31)

where c1 is as in (4.20), c2 as in (4.27) and
∂

∂αk
(detF ) is expressed in (4.22).

5. Numerical experiments

Now we present our numerical results for a simplified vocal folds model. The

geometry of the domain occupied by the fluid and its size are given in Figure 1.

Moreover, we add to this geometry a semicircle subdomain with a radius 3.0 cm as

an outlet ΓO.

We prescribe the inlet boundary conditions on ΓI (left part of the boundary), the

outlet boundary conditions on ΓO (right part of the boundary, which is a semicircle),

and we prescribe boundary conditions on the impermeable fixed walls ΓW (including

the vertical segments of the semicircle) and on the moving impermeable walls denoted
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ΓO

ΓW

ΓW

ΓW

ΓWt
Γ1 Ωt

Ω
b

Γ
b
d

HI
HO

LI
Lg LO

Figure 1. Geometry of the computational domain at time t = 0 and the description of
its size: LI = 20.0 mm, Lg = 17.5 mm, LO = 55.0 mm, HI = 25.5 mm,
HO = 2.76 mm.

in Figure 1 by ΓWt
. The fluid flow problem is computed on the triangulation with

17652 elements. Further, for the definition of the fluid flow problem the following

data are used:

magnitude of the inlet velocity vin = 4ms−1,

dynamic viscosity µ = 1.80 · 10−5 kgm−1s−1,

inlet density ̺in = 1.225 kgm−3,

outlet pressure pout = 97611Pa,

Reynolds number Re = ̺invinHI/µ = 6941.7,

heat conduction coefficient κ = 2.428 · 10−2 kgm s−3 K−1,

specific heat cv = 721.428m2 s−2 K−1,

Poisson adiabatic constant γ = 1.4.

For the fluid solver we use the STDGM with polynomial approximation of degree 2

in space and degree 1 in time. We employ the IIPG version of the DGM with the

penalization constant CW = 500 for inner faces and CW = 5000 for boundary edges.

The stabilization parameters ν1 and ν2 from (3.13) are set to 0.1. The time step τ

is set to 1.0 · 10−6 s. For the first 1000 time steps the fluid flow is computed with

the fixed boundary. Then the part ΓWt
of the boundary is released and we solve the

FSI problem.

We assume that the elastic bodies resulting from a cut of vocal folds are isotropic

with constant material density ̺b = 1040 kgm−3. The triangulation used for the

solution of the structure problem has 5118 elements, see Figure 2. The division of the

domain into 4 regions with different material characteristics is illustrated in Figure 3

by the Lamé parameters and the setting of the material characteristics is described

in Table 1.

Further, the initial displacement and the initial deformation velocity are set to

be zero. On the bottom, right and left straight parts of the boundary we prescribe
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Figure 2. Model of vocal folds—computational mesh.

Eb νb λb µb

12 · 103 0.4 17143 4285

8 · 103 0.4 11430 2857

1 · 103 0.495 33110 335

100 · 103 0.4 142857 35714

Table 1. Nonhomogeneous model of vocal folds—Lamé parameters. See Figure 3 for the
visualization of the corresponding subdomains, ordered from the lower layer to the
upper layer.

homogeneous Dirichlet boundary condition (2.15) and on the curved part of the

boundary the Neumann boundary condition (2.16). The damping coefficient cM is

set to 1.0 s−1. For the solution of the dynamic elasticity problem we employ the

NIPG version of the DGM, where the penalization constant is set to Cb
W = 4 · 106.

The ALE mapping is determined as described in Section 2.4. For the solution of

the static elasticity problem (2.26) we employ the NIPG version of the DGM, where

the penalization constant is set to CW = 103. Then the DG solution of the ALE

discrete problem (2.26) is interpolated to a continuous approximation.

We use the strong coupling algorithm described in Section 3.3 with the prescribed

tolerance 10−5. Further, we use 5 coupling subiterations as the maximum, however

the prescribed tolerance was usually reached after 2–3 coupling subiterations.

In what follows we compare the linear strain tensor e and the nonlinear Green

strain tensor E ∈ R2×2, see [13], defined by

(5.1) E =
1

2
(F⊤F − I), E = (Eij)

2
i,j=1
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Figure 3. Nonhomogeneous model of vocal folds—Lamé parameters.

with components

(5.2) Eij =
1

2

( ∂ui
∂xj

+
∂uj
∂xi

)

︸ ︷︷ ︸
eij-linear part

+
1

2

2∑

k=1

∂uk
∂xi

∂uk
∂xj

︸ ︷︷ ︸
E∗

ij
-nonlinear part

.

In the case of the linear elasticity the stress tensor depends on the strain tensor

e = (eij)
2
i,j=1 and in the case of nonlinear elasticity it depends on E = e+E∗, where

E∗ = (E∗
ij)

2
i,j=1.

The influence of the nonlinear part of the strain tensor is given by the ratio

(5.3) R :=
‖e‖

‖E‖
=

‖e‖

‖e+E∗‖
.

If R ≈ 1, then the nonlinear part of the strain tensor has no influence on the

computation (the linear elasticity model is sufficient), but ifR ≈ 0, then the nonlinear

part strongly takes effect and it is necessary to use a nonlinear elasticity model.

Figure 4 shows numerical simulation of the vocal folds from the beginning of the

FSI computation at 12 time instants. Figure 5 shows in detail the deformation of
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the vocal folds at 2 time instants for a maximal and minimal glottal gap during

vocal folds oscillations. In Figures 4 and 5 the case R ≈ 1 is depicted by white and

the case R ≈ 0 by dark red color. It can be seen that the nonlinear part of the

strain tensor takes effect in elements near to the boundary, therefore to correctly

capture the deformations of the vocal folds, it is necessary to use a nonlinear model

of elasticity.

a
ir

fl
o

w

vocal

fold

time

a

Figure 4. Deformation of vocal folds in dependence on time and the ratios of the norms of
the linear strain tensor and the nonlinear Green strain tensor at different time
instants.

vocal

fold

a
ir

fl
o

w

a

Figure 5. Deformation of vocal folds in dependence on time and the ratios of the norms of
the linear strain tensor and the nonlinear Green strain tensor at different time
instants—details for the smallest and the largest glottal gap between the vocal
folds.

761



6. Conclusion

The paper shows the applicability of the space-time discontinuous Galerkin method

in time dependent domains in the case of a fluid-structure interaction problem. We

present a detailed description of this method used both for the solution of com-

pressible Navier-Stokes equations written in the ALE form and for the solution of

nonlinear elasticity problem using the neo-Hookean model. The method which we

worked out is applied to the numerical simulation of vocal folds vibrations caused

by the air flow in the vocal tract model. The shape and material properties of the

elastic bodies are motivated by human vocal folds. The method allows us to assume

that the elastic body is formed by several parts with different material characteris-

tics. The novelty of the paper is the exemplification that the STDGM is suitable for

numerical solution of fluid structure interaction, especially to the simulation of vocal

folds vibrations. An important result is the demonstration that for the simulation of

vocal folds vibrations it is necessary to use the model of nonlinear elasticity, because

the linear elasticity model is not adequate.

Future work should be concentrated on the realization of a remeshing in the case

of closing the glottal channel during the oscillation period of the channel walls and

the identification of the acoustic signal.
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