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ABSTRACT. Guillain-Barré syndrome (GBS) is the most common cause of acute paralysis in the United States.
Campylobacter jejuni is a common trigger for GBS, igniting autoimmunity as a result of molecular mimicry between
C. jejuni lipooligosaccharide (LOS) and host gangliosides. Evidence also suggests an active role for cell-mediated and
innate immunity in pathogenesis of GBS. Infection alone is not enough for GBS to develop, infection with the same
strain might yield different outcomes in different patients.C. jejuni strains with low to absent molecular mimicry to self-
antigens can cause full-blown GBS with positive autoantibodies. A role for T helper 17 and IL-17 in acute phase of GBS
is also identified. Currently, no biological treatment is validated for severe, ventilation-dependent patients with GBS,
who might not benefit from either IVIG or plasma exchange therapy. Use of biologic agents in treatment-resistant
GBS, especially anti-IL-17 agents, such as secukinumab, ixekizumab, and brodalumab, is to be hoped. This review
covers up-to-date knowledge on autoimmune mechanisms responsible in different subtypes of GBS: acute inflammatory
demyelinating polyneuropathy and acute motor axonal neuropathy; as well as the experimental autoimmune neuritis
(EAN), a commonly used animal model of GBS.

Key words: Guillain-Barré syndrome, Campylobacter jejuni, experimental autoimmune neuritis, acute inflamma-
tory demyelinating polyneuropathy, acute motor axonal neuropathy

INTRODUCTION

Guillain-Barré syndrome (GBS) is an acute inflamma-
tory radicular polyneuropathy and is clinically charac-
terized by spreading of muscle weakness from proximal
to distal muscles and diminished deep tendon reflex.
GBS is the most common cause of acute paralysis in the
United States and its prevalence appears to be relatively
constant among different geographical regions [1, 2].
The incidence ofGBS is estimated between 0.84/100,000
per year and 1.91/100,000Guillain-Barré syndromeyear
in North America and Europe [2-5]. These estimates
are similar to reports in Japan and Australia, whereas
the incidence is reported to be lower in East Asia and
Middle East [3, 6, 7].
GBS is considered an infection-triggered autoimmune
disease, as about two-thirds of patients report a history
of a recent viral or bacterial infections, before the onset
of neurological symptoms [8-12]. Respiratory and
gastrointestinal infections are the most common
preceding types of infections in GBS. Campylobacter
jejuni is the most common pathogen detected, detected
in about one-third of positive stool cultures [13], and
44-88% of positive direct stool samples [14-18], from
patients with GBS. Fortunately, somewhere between 1

in 3,000 to 5,000 of symptomatic patients infected with
C. jejuni develop GBS [19, 20], indicating that host
factors are important in the predisposition to the
development of GBS [21-23]. A commonly believed
autoimmune hypothesis regarding GBS pathology
suggests that antigen/molecular mimicry and anti-
ganglioside autoantibodies are two main pathogenic
factors in GBS. Meanwhile, molecular mimickery and
humoral autoimmune responses cannot fully explain
the pathology and nature of GBS. Here, we provide
an update for the current status of GBS. Figure 1
summarizes main autoimmune pathomechanisms
involved in GBS.

DATA SELECTION

References for this article were extracted through a
comprehensive search in Scopus, PubMed, and
Embase databases, updated through the date of
submission. The MESH search term (“Guillain-Barré
Syndrome” OR “GBS” OR “Neuritis, Autoimmune,
Experimental” OR “EAN”AND “autoimmunity” OR
“autoimmune” OR “auto-immune”) was adapted to
search all databases. A total number of 1,754
references were extracted and selected by title and
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abstract by two independent authors to include a
primary number of 200 references. Included references
were then evaluated through full-text review and full
texts were accessed through the Digital Library of
Tehran University of Medical Sciences portal site. The
reference lists of the included articles were also
skimmed to look for potentially missed/gray literature.

CLINICAL SUBTYPES OF GUILLAIN-BARRÉ
SYNDROME

Based on electrophysiological characteristics and
patterns of nerve root and axonal involvement, GBS
can be divided into several subtypes [24]. While all
subtypes have the same clinical presentation, two most
common patterns can be distinguished.

Acute inflammatory demyelinating polyneuropathy
(AIDP)

This is the most common clinical picture by whichGBS
presents in adults of western countries, comprising
about 85% of patients [16]. AIDP is clinically charac-
terized by progressive muscle weakness and neuro-
muscular paralysis, like other subtypes of GBS.
Segmental demyelination and lymphocyte infiltration
with secondary axonal damage are key pathological
features of this subtype, respectively, seen in peripheral
nerves and nerve root biopsies [23, 25, 26].
AIDP is a prototypic example of an autoimmune
reaction mediated by molecular mimicry. Bacterial and
viral epitopes are presented to T cells by activated
neurotropic macrophages in the peripheral nervous
system. Cross reactivity of pathogen epitope-specific T-
cells, the resulting cytokine production, and the release
of free radicals, disrupts bloodnerve barriers (BNB) and
destructs the myelin sheet culminating in acute
demyelinating syndrome. The BNB has an almost
similar structure to the blood brain barriers (BBB) but
instead of astrocyte podocyte playing the main barrier
role in BBB, the endothelial basement membrane helps
with the barrier function of BNB [27]. TheBNBalso has
a specific immunologic role in T-cell migration [27].
Experimental autoimmune neuritis (EAN) is an animal
model close to AIDP, using the myelin sheet epitopes,
P0 and P2, as twomajor cross-antigens to induce T-cell-
mediated neuritis. In this model, activated T-cells are
also responsible for production of anti-Schwann cells
autoantibodies that directly target the mature, myelin-
producing Schwann cells [23]. EAN is therefore amodel
for mixed humoral and cellular immunity response
against myelin sheath epitopes.

Acute motor axonal neuropathy (AMAN)

Being the second most common pathological subtype,
AMAN is most common among patients with East
Asian origin [28]. As its name indicates, axonal
degeneration is the primary feature of this subtype
[29] with mild lymphocyte infiltration and minor
inflammation [9, 26, 30]. Again, molecular mimicry
has a strong pathogenic role in this phenotype,
considering high degree of analogy between C. jejuni
antigens and host gangliosides such as ganglioside M1

(GM1), ganglioside M1b (GM1b), ganglioside D1a
(GD1a), and N-acetylgalactosaminyl GD1a (GalNAc-
GD1a), primarily expressed on the surface of the
motor axolemma. B cells play an important role with
the production of autoantibodies that cross react with
axon ganglioside and perpetuate axonal degeneration
by activatingmacrophages and the complement system
[23, 31].

IMMUNOPATHOLOGY OF AUTOIMMUNITY

IN GUILLAIN-BARRÉ SYNDROME

Cell-mediated immunity

Humoral immune responses either derived by anti-
ganglioside autoantibodies, or by molecular mimicry
to myelin proteins, are dependent on a functional cell-
mediated immunity to maintain antibody production
against neoantigens that further fuel autoimmunity. T
cells infiltrate myelin sheath during acute phase of GBS
and peripheral blood mononuclear cells of patients
with GBS are shown to be responsive to GM1 and
GM3 [32]. T-cell reactivity and proliferation in
response to gangliosides and myelin-derived proteins
have been addressed by several other studies, summa-
rized below.

Regulatory T cells

Regulatory T (Treg) cells are crucial for the mainte-
nance of peripheral tolerance, as they prevent
maturation and downregulate cytokine production
and activation of autoreactive T cells, particularly the
CD4+ helper T-cell subtype. A decrease in numbers or
loss of function of Treg cells can result in aberrant
activation of autoreactive T cells [27].
Quantitatively,Treg cells are reduced innumber, at least
in acute/attack phase of GBS, when demyelination
progressively involves an increasing number of periph-
eral nerve sheaths [28-31]. Patients with an AIDP
subtype show a decrease in the number of circulating
mature FOXP3+ T cells, and activated HLA-DR-
positive Treg cells, in the early phases of disease [32].
This acute reduction in the number of mature CD4+

CD25+ Treg cells is reversible in that treatment with
intravenous immunoglobulin (IVIg) restores peripheral
Treg cell populations [29], a result replicated by other
studies reporting a significant improvement in the
number and function of FOXP3+ Treg cells after IVIg
treatment, in both AIDP and AMAN patients [29-31].
Whether the reduction in Treg cells is a primary
pathogenic event or a secondary phenomenon in
response to an increase in other T-cell subpopulations
remains to be elucidated. Anti-ganglioside antibodies
are also more prevalent in patients with lower
CD4+CD25+ T cells as compared to those with a
normal mature Treg cell population [28]. Nonetheless,
the reduction of Treg cells does not associate with
severity or clinical subtype of GBS [28]. Finally, GBS
has been reported in patients with advanced stage of
acquired immune deficiency syndrome (AIDS) with
CD4+ count fewer than 50 cells/mm3 but relatively
spared Treg cell population, suggesting that CD4+

helper T cells are dispensable for the induction of GBS
pathology [33, 34].

Guillain-Barré autoimmunity 3



The functional status ofTreg cells hasbeen addressed by
a number of other studies. It was initially demonstrated
that the function of Treg cells, in terms of preserved
immunosuppressive traits, FOXP3 expression, and
cytotoxic T lymphocyte antigen-4 (CTLA-4) and
CD45RO levels, is intact in both AIDP and AMAN
subtypes of GBS [29]. Although quantitatively suffi-
cient, FOXP3+ mature Treg cells appear to be
functionally insufficient in the suppression of Th1 and
Th17 cytokine production andproliferation in vitro [32].
Further evidence in line with functional defects of Treg
cells in GBS comes from studies investigating surface
expression of suppressor molecules on these cells. Treg
cells deficient in CTLA-4 have been shown to induce an
autoimmune phenotype in mice, including EAN
[35, 36]. CTLA-4 effectively blocks activation of
antigen-presenting cells (APC) by binding to costimu-
latory molecules B7-1 (CD80) and B7-2 (CD86) in
dendritic cells and conveying an inhibitory signal.
CTLA-4 further suppresses effector T cells by attenuat-
ing signal transduction via theT-cell receptor forantigen
in these cells [37-39]. Mice deficient in the expression of
the B7 gene also develop autoimmune peripheral
neuropathy, regardless of the presence of Treg and
Breg cell populations in the spleen. These mice have
lower counts of regulatory T and B cells, which could
effectively prevent antigen presentation and cytokine
production by Th1 cells upon adoptive transfer [40].
CD73 is another membrane bound surface molecule
expressed by Treg cells and together with CD39, acts as
an ecto-5’-nucleotidase, converting extracellular aden-
osine-5-monophosphate to adenosine. CD73 can
thereby promote immunosuppression through adeno-
sine: adenosine receptor (A2A) interaction in dendritic
cells [35, 41, 42], induce anergy within effector T cells
and promote Treg cell maturation [43]. CD73 has also
been shown to facilitate lymphocyte infiltration and
chemotaxis into peripheral nerves, in experimental
autoimmune encephalomyelitis (EAE) [44-46] and has
shown a similar role in promoting lymphocyte
infiltration into nerve sheaths of patients diagnosed
with GBS/AIDP [47].

T helper 1 (Th1) and T helper 2 (Th2)

Serum expression of Th1 and its associated cytokines,
such as interferon-g (IFN-g), interleukin 1b (IL-1b),
tumor necrosis factor-a (TNF-a), and IL-6, increase in
early phases of GBS and decrease during the recovery
phase [48]. Similarly, an increase in the IFNg/IL-4 ratio
is observed in sera of GBS patients during the acute
phase, stimulating further maturation of naive T cells
into Th1 cells, whereas the Th2 subtype is the
predominant T-cell population during the recovery
phase [48]. A similar reaction happens in sciatic nerves
and lymph nodes of EAN mice, where Th1 cytokines
are upregulated during the acute phase and Th2
cytokines are augmented in the recovery stage [49].
Administration of intravenous immunoglobulins ef-
fectively reduces Th1 numbers and levels of proin-
flammatory cytokines [32]. It is also supposed that the
clomipramine and imipramine-induced reduction in
suppression of myelin auto-reactive T and B cells is a
result of a reduced number of Th1 cytokines in the
peripheral nerves of EAN rats [50].

Interestingly, despite a growing population of IFN-g-
secreting Th1 cells during acute phase of GBS, no
specific reactivity to myelin proteins P0, P2, or PMP22
is seen, showing an independent role for Th1 cytokines
in induction of peripheral neuro-inflammation [51].
Meanwhile, GM1-specific helper T cells expand and
respond to GM-1 with IFN-g production in peripheral
blood of patients with GBS [52].
There are nonetheless conflicting studies reporting that
both Th1 and Th2 cell populations are expanded in
GBS patients with an unchanged Th1/Th2 balance and
IL-4+/IFNg+ ratio during the active phase of GBS [53]
and an absence of a sequential increase in Th1 and Th2
populations, as well as a concomitant increase in
proinflammatory cytokines in some patients with
GBS [54].

T helper 17 (Th17) cells

Plasma levels of interleukin 17 (IL-17) and interleukin
22 (IL-22), which are the main Th17 cytokines, are
increased during acute stage of GBS, concurrent with
increased levels in the CSF [49, 54]. This is accompa-
nied by an upregulation of expression of transcripts for
retinoic acid receptor-related orphan receptor gamma
(RORg) and signal transducer and activator of
transcription 3 (STAT3) which are critical Th17
transcription factors [49, 55]. Peripheral production
by T lymphocytes comprises the main source of IL-17
and IL-22 in GBS, a process that is reversed after IVIg
therapy [56].
Th17 and IL-17A levels are also increased in sciatic
nerve specimen of mice with EAN [57], and associated
with the severity of neuritits in these animals [58].
Blocking phosphorylation of STAT3 in EAN animal
models alleviates inflammation along with a decrease in
the Th17 cell population, as well as RORg and IL-17
expression in peripheral neurons [59]. Similarly, block-
ing Th17 cell infiltration could effectively downregulate
IL-17A production, ameliorate neuroinflammation,
and improve the clinical picture in EANmouse models,
albeit not in the AMAN subtype [60-62].
Follicular T helper (Tfh) cells represent a distinct
subpopulation of memory T cells with characteristics
of a germinal center follicular cell. Tfh cells are
necessary for B-cell maturation and antibody isotype
switching [63]. The Tfh2 and Tfh17 subtypes are
endowed with an ability to induce B-cell maturation
via the production of IL-21 [64], and have been shown
to expand in GBS [64, 65]. This increase is confined to
patients with AMAN phenotype, as the Tfh2 and
Tfh17 cell counts are unchanged in AIDP patients [64].
Also, inhibition of glycolysis in T cells of EAN mice is
reportedly associated with a downregulation of the
Th17, Th1, and Tfh subtypes, and increased Treg cell
development and a prevention of disease progression
in mice with EAN [66].

Gamma delta T cells (gd T cells) and natural killer

cells

The gd T cells are a small subgroup of T cells, endowed
by surface expression of both T cell and NK-cell
receptors. The rich surface repertoire enables a variety
of activating as well as inhibitory signals to be
transduced by this T-cell subgroup. Because of their
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ability to recognize non-protein bacterial antigens, the
gd TCR can respond to a variety of bacterial and non-
bacterial stimuli. Expansion of the gd T cell subset is
observed in active lesions and CSF of multiple sclerosis
patients [67]. The gd T cell subset is also known to be
the predominant source of IFNg and proinflammatory
cytokine production and to mediate oligodendrocyte
cytotoxicity in chronic lesions of multiple sclerosis
[68, 69].
It has been shown that gd T cells derived from
peripheral blood of GBS patients can promote
expansion and upregulation of NK-cell receptors in
vitro and produce excessive amounts of IL-4 in
response to non-protein antigens [70]. Peripheral
blood gd T cells could be expanded after exposure to
different non-protein antigens of C . jejuni in vitro [71].
gd T cells can infiltrate peripheral nerve sheaths and
mediate immune response and antibody production
against ganglioside-like epitopes on peripheral nerves
[72, 73]. In contrast, presence of the IFN-g-producing
gd T cell subset is decreased in the acute phase of GBS
[74], suggesting a preponderance and IL-4 and
antibody production, over the production of IFN-g
in this subtype. In line with these results, patients with
increased anti-GM1 antibody titers or anti-C. jejuni
antigens show an expansion of the population of CD8+

gd T cells [75].
A study published two decades ago reported no
differences in the frequency of NK cell populations in
patients with GBS [76], nor did it show any change in
severity of cellular infiltration, demyelination, and
antibody response to myelin proteins, after blocking
NK cells surface receptors in EAN rats [77]. Studying
the role of killer-cell immunoglobulin-like receptor
polymorphisms in predisposition to GBS has yielded
inconclusive results [78].

Humoral immunity

Glial cells and anti-glial antibodies

Presence of neuropsychiatric symptoms such as
depression in about 67%, anxiety in 82%, hallucination
in 60%, delusion in 70%, and REM sleep abnormalities
in GBS patients [79, 80] points to the involvement of
the central nerve system in GBS. The inflammatory
neuropathy and circulating mediators of inflammation
induce immunophenotypic changes in Schwann cells,
with increased expression of HLA class I and class II
expression [81]. The latter cells also express costimu-
latory molecules similar to those on T cells, such as B7-
1 (CD80), B7-2 (CD86), as well as intercellular
adhesion molecules and cell surface adhesion markers
[82]. Immunoactive phenotypes are also seen in
endothelial linings of the blood-brain barrier as well
as the blood-nerve barrier. Immunoactivated endothe-
lial cells facilitate leukocyte margination and migra-
tion, induce maturation in naive lymphocyte, and
mediate interactions between T cells and APC [83].
IgG autoantibody against non-myelinating Schwann
cells has been found in 24% of GBS patients and 26%
of CIDP patients [84], whereas anti-astrocyte auto-
antibodies are present in the sera of 60% of GBS
patients [85]. Interestingly, sera of patients with GBS

react with monoaminergic neurons of the ventral
tegmental area, cholinergic nuclei of the forebrain, as
well as nor-adrenergic neurons in the brain stem. This
observation provides justification for the variety of
neuropsychiatric abnormalities seen in GBS [86]. Less
than 10% of patients with CNS involvement have
positive serum anti-GM1 antibody in their serum,
suggesting that CNS involvement in GBS is indepen-
dent of anti-axonal or anti-myelin circulating auto-
antibodies.

B cells and anti-ganglioside antibody

Gangliosides are naturally processed glycolipids that
are ubiquitously present on the extracellular surface
and cell membranes of the nervous system. Ganglio-
sides are composed of oligosaccharide in the form of
sialic acid residues extending across the cell membrane,
composing themain antigenic part of the molecule [87].
Anti-ganglioside antibodies are the most frequent
autoantibodies found in GBS and are present in sera of
up to 80% of patients with axonal subtype (AMAN),
and 62% of patients with demyelinating subtypes
(AIDP) [88]. These antibodies are more frequent in
patients who have been infected by C. jejuni strains in
which surface lipooligosaccharides (LOS) or lipopo-
lysaccharides (LPS) mimic host oligosaccharide strains
in gangliosides. Together, these considerations support
a role of antigen and molecular mimicry as a principal
mechanism for autoantibody production in GBS [89].
Both T-cell-dependent and T-cell-independent path-
ways of B-cell activation appear to be functional in the
pathology of GBS [90, 91]. Bacterial LPS is a T-cell-
independent antigen that primarily triggers production
of low-affinity anti-ganglioside IgM antibodies [92].
Short-lived plasma blasts that are produced as a result
undergo affinity maturation and IgG class-switching
under persistent exposure to culprit antigen, as is seen
during prolonged C. jejuni infection [93]. Antigen
sialylation, which occurs in LPS of most C. jejuni
strains, increases the likelihood of high affinity
autoantibody production. Affinity maturation of
autoantibodies is crucial to produce the characteristic
neuro-inflammatory phenotype since low affinity IgM
or IgG autoantibodies fail to reproduce GBS in animal
models sensitized with GM1 [94]. Importantly, high
titers of IgM anti-GM1 antibodies are produced by
peripheral blood mononuclear cells (PBMC) derived
from patients with GBS and multifocal motor
neuropathy, whereas IgG and IgA anti-GM1 auto-
antibodies are confined to GBS, supporting involve-
ment of a T-cell-dependent antibody response [91].
Furthermore, IgM anti-GM1 antibodies of GBS
patients are polyclonal in nature, in contrast to
oligoclonal antibodies in patients with multifocal
motor neutropathy [95], in line with T-cell-dependent
antibody production against axonal components in
GBS. Importantly, GM1 is found in higher concen-
tration in ventral root neurons compared with dorsal
roots [96], justifying higher prevalence of motor
neuropathy in patients with anti-GM1 [97]. Backing
up the above evidence, immunization of mice, that lack
the ability to produce complex gangliosides and
express GM3 and GD3 instead, with ganglioside-
mimicking LPS was found to result in a strong, T-cell-
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dependent, antibody production with predominance of
IgG autoantibodies. This was attributed to lack of
tolerance formation to self-complex gangliosides,
resulting in a predominant T-cell-dependent response
[98].
Antigen mimicry by itself is not sufficient to induce
peripheral neuritis. Patients infected with C. jejuni
strains with molecular mimicry to ganglioside T1
(GT1) did not develop GBS, whereas others with no
proven mimicry to GT1 or other gangliosides showed
signs of peripheral neuritis. Mutation in glycosyl-
transferase after autoantibody induction may help
C. jejuni to escape from the host immune system at the
expense of losing molecular mimicry or switching to
LPS/LOS subtypes that are less antigenic [93].

Anti-myelin protein antibodies

Several studies have investigated the role of antibody
production against myelin proteins and their roles in
pathogenesis of the disease [99-102]. Myelin protein
zero (P0) is the major part of structural glycoproteins
in membrane of PNS myelin sheets, and myelin P2
protein is another membrane protein in PNS and a
lesser amount in CNS, both used to induce EAN in
animal models. Molecular mimicry between some viral
epitopes and P0 can initiate cross-reactivity and
autoimmune response [103], hence the production of
auto-antibodies against myelin proteins, in particular
P0, in patients with GBS and CIPD patients [104].
Circulating T cells from GBS patients show increased
IL-4 and IL-10 secretion after stimulation with P0 and
P2 and PMP22 during the recovery phase [105, 106],
whereas P2 IgG reactivity is increased during the peak
of disease in GBS patients [107]. Finally, induction of
tolerance to P0 by nasal administration of the antigen
prevents development of EAN and downregulates the
Th1 response [108, 109].
Significance of other autoantibodies in GBS is yet to be
demonstrated. Serum autoantibody secretion against
gliomedin and neurofascin, which are adhesion
molecules in the Ranvier nodes, is shown to disrupt
their aggregation role in the clustering of voltage-gated
sodium channel in EAN rats [110, 111]. IgG fixation
against neurofascin, gliomedin, and neuronal cell
adhesion molecule has been detected in sera of GBS
patients in about 43% of cases [112]. In contrast, auto-
antibodies against PMP22, another Schwann cell
surface protein, are rare in GBS patients [51].

Innate immunity

Innate immune receptors

Toll-like receptors (TLRs) are crucial parts of the
innate immunity and are endowed by a unique
property that enables recognition of a myriad of
pathogen-associated molecules. Among the best stud-
ied are TLR4 that forms a complex with LPS of gram-
negative bacteria such as C. jejuni andTLR9 that
recognizes unmethylated CpG islands in DNA viruses
[113]. TLRs are strategically expressed on the surface
of APC, from dendritic cells to T and B cells, and their
activation is paramount to the induction of innate and
adaptive immune response to pathogens. The TLR-4

signaling-mediated pathway starts by the triggering of
the CD14 and LPS-binding protein (LBP) complex on
the surface of the APC, resulting in the formation of
the TLR4 homodimer. This is followed by intracellular
TLR4 signaling through either the Myeloid differenti-
ation primary response gene 88 (MyD88)-dependent or
the MyD88-independent pathways. Both pathways
culminate in activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) [114],
which in turn activates several cytokine and chemokine
genes to form an inflammatory cellular phenotype. On
the other hand, TLR9, an intracellular receptor that
recognizes viral CpG DNA motifs ferried into
endosomal compartments as part of the intracellular
life cycle of DNA viruses [113], activates MyD88
through a set of similar intracellular signaling
components. Figure 2 summarizes the main pathways
involved in TLR signaling in patients with GBS.
Critically, it has been shown that mice lacking the
MyD88 gene show complete resistance to the induction
of autoimmune encephalopathy, whereas in wild-type
mice TLR expression and MyD88 activation is
enhanced during the active phase of the disease
[115]. Expression levels of TLR4 and TLR9, as well
as activated forms of MyD88, show upregulation
during induction of EAN in an experimental rat model
[116]. Upregulation of TLR9 expression is observed in
PBMC and splenocytes, in addition to the sciatic nerve,
and is maintained during the entire course of disease
[116, 117]. Moreover, TLR9 expression is enhanced
during the entire course of EAN in PBMC of GBS
patients and is shown to correlate with their disease
severity and disability [118-120]. TLR9 suppression in
mice was shown to induce tolerance in plasma DCs,
downregulate costimulatory molecules and Th1 cyto-
kine secretion, altogether accelerating EAN recovery
[121]. TLR9 blocking also ameliorated clinical scores
in these animals [122].
In another study, although TLR2, TLR4,MyD88, and
NF-kB activation were upregulated in PBMCs of
patients with GBS, and correlated with disease severity
and the ability of dendritic cells to produce TNF-a and
IL-1b and type 1 IFN [123, 124]. Both TLR2 and
CD14, which also act as co-receptor for TLR2 to bind
to the heat shock protein 70 (HSP70), are upregulated
along with CD14 and HSP70 in the sciatic nerve of rats
with experimentally induced EAN. These results are
however controversial as elevated TLR2 levels were
shown to be directly correlated with disease severity in
EAN [120], in contrast with those of a previous study
showing TLR2 and TLR6 mRNA levels to have a
negative correlation with clinical severity [117].
Polymorphism in the TLR4 gene could even predict
risk for GBS in the Indian population and some
polymorphisms are more common in the AMAN
subtype [19].
Importantly, sialylation of C. jejuni LPS amplifies the
TLR-MD2 interaction with the LPS:LBP:CD14
complex, which potentiates dendritic cell activation
and IFN-b and TNF-a secretion. This results in a
stronger costimulation for the T-cell-dependent re-
sponse to LPS, increased B-cell proliferation, and as
mentioned above, high affinity autoantibody produc-
tion. Sialylated LOS also induces CD40-independent
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immunoglobulin class switching, which further
increases antibody affinity to self-ganglioside [125].
High titers of anti-GM antibody, as previously
mentioned, correlate with disease severity in GBS
[123].
Other innate immune receptors, including the killer-
immunoglobulin-like receptors (KIRs), are also impli-
cated in GBS. Unlike TLR, KIR expression is
principally confined to the plasma membrane of
NK. KIRs interact with their respective HLA I ligands
to initiate and/or regulate NK cells cytotoxic function
[126]. Results from various studies have shown no
difference between frequencies of KIR gene among
GBS, CIDP, and healthy controls, whereas HLA-B
Bw4-T and the inhibitory pair KIR-3DL1/HLA-B
Bw4-T are more frequent in both GBS and CIDP
patients compared to controls REF. The HLA-C2 and
the inhibitory pair KIR-2DL2/HLA-C2 frequencies
have also been shown to predict higher GBS risk
[78, 127].
Finally, we need to mention the nucleotide oligomeri-
zation domain (NOD)-like receptors, which are
intracellular pattern recognition receptors expressed
in a variety of cell types. Specific homozygote
genotypes of NOD1 have been shown to be associated
with higher GBS risk, especially the AMAN andAIDP
subtypes [128]. The exact role of NOD-like receptors
and their therapeutic potential in GBS remains elusive.

Cytokines

Cytokines are the key chemical modulators in the
immune system and play an important role in the
pathogenesis of GBS [129]. Cytokines such as IL-1,
IFN-g, TNF-a, IL-6, IL-17, and IL-22 are proin-
flammatory modulators, whereas some other such as
IL-10 and transforming growth factor-b (TGF-b) are
known to have profibrotic and anti-inflammatory
effects. Overall, it appears that a shifting balance
toward inflammatory cytokines is responsible for GBS
pathology [18, 129], but the bigger picture is more
complicated. IL-17 [129], IL-23 [130], IL-16 [131], IL-
27 [132], and IL-8 [133] are other proinflammatory
cytokines found to be upregulated in serum or nerve
sheaths in EAN or GBS.

Proinflammatory cytokines. As the prototype proin-
flammatory cytokine, IL-1b, is abundantly produced
by macrophages, monocytes, dendritic cells, and
Schwann cells during the acute phase of GBS [129].
Increased IL-1b is also detected in sciatic nerve and
lymph nodes of EANmodels [49]. IL-1b is upregulated
in infiltrating PBMC of the sciatic nerve in EAN rats,
even before clinical signs of neuritis appear, and
therefore may act as a crucial factor to initiate the
pathogenesis [129, 134, 135]. Together with IL-6 and
TNF-a, IL-1b induces Th1 and Th17 maturation and
further activation of monocyte/macrophages to pro-
duce IFN-g, which further fuels T helper cell
differentiation into the Th1 phenotype. Excessive
amounts of IFN-g have been shown to induce IL-6
and TNF-a production in Schwann cells, in mouse
models of neuritis [136, 137]. Similarly, IL-1b, IFNg,
IL-6, and TNF-a expression in sciatic nerves peaks
during acute GBS and returns to normal levels during

the recovery phase [138]. There are inconsistent results
regarding role of IFN-g in acute phase of GBS, as
production of this cytokine has been shown to be
dispensable from the described model of blood-nerve
barrier disruption in early GBS [139-141]. IL-1b and
IL-6 production is also enhanced in the CSF of patients
with GBS [142], in line with the concomitant central
neuroinflammation. Circulating IL-6 is also shown to
be able to cross blood-brain barrier [143], andmight, at
least partly, contribute to acute neuropsychological
changes observed in acute GBS.
Circulating proinflammatory cytokines are shown to
disrupt the blood-nerve barrier, alter its immune active
phenotypes, increase its permeability, and promote T-
cell infiltration. The proinflammatory milieu prepare
the ground for circulating anti-myelin autoantibodies
to enter the neural sheet, leading to focal demyelin-
ation, as seen in the AIDP subtype of GBS [144, 145].
TNF-a has also been shown to reproduce a demyelin-
ation phenotype in CNS in experimental models of
autoimmune encephalitis [146]. Macrophage infiltra-
tion and proinflammatory cytokine production direct-
ly induce demyelination, nerve lesions, and axonal
degeneration [147] and appear to be the principal
mechanisms of axonal degeneration in the AMAN
subtype.
Similar to other proinflammatory cytokines, Th17 cell
and RORg expression increase in peripheral blood and
CSF of GBS patients during the acute stage of the
disease [148] and CSF levels of IL-17 and IL-22 directly
correlate with GBS disability scale scores [149]. Similar
to other proinflammatory cytokines, IL-17 and IL-22
disrupt blood brain barrier and blood-nerve barrier,
facilitating neutrophil activation and their infiltration
into the nerve sheaths [150]. Neutrophils are able to
release active forms of matrix metalloproteinases
(MMPs), and IL-17 itself activates certain MMPs,
further breaching the blood-nerve barrier [151-153].

IFN-g and IL-2. IFN-g is a major Th1 cytokine with a
positive feedback on Th1 cell maturation. IFN-g is
produced by many cell types other than Th1 cells,
including endothelial cells, cytotoxic T cells, NK cells,
as well as macrophages [154]. IFN-g in turn can induce
immunophenotypic changes in Schwann cells and
enhance antigen-presenting properties of APC and
expression of adhesion molecules on endothelial cells
[155]. IFN-g can further perpetuate and extend the
initial immune response by facilitating leukocyte
infiltration and antigen presentation in later stages
of GBS [156]. Administration of monoclonal antibody
against IFN-g alleviates disease symptoms in Lewis
rats, whereas recombinant IFN-g exacerbates disease
severity in actively induced EAN or adaptive transfer-
induced EAN [157]. Linomide, a synthetic immuno-
modulatory compound, can suppress IFN-g produc-
tion in macrophages, which results in induced IL-1b
and TNF-a mRNA expression, hence mitigating
neuroinflammation in EAN rats, and prevents the
development of clinical signs of EAN [158]. Interest-
ingly, mice deficient in IFN-g showed a compensatory
higher percentage of Th17 cells and elevated IL-17A
serum levels [159], suggesting a redundancy in the
proinflammatory effect of these cytokines.
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IL-2 promotes Treg cell differentiation [160] and
suppresses Th17 cell maturation [161] and is essential
for maturation of almost all types of T lymphocytes.
Levels of soluble IL-2Ra, which essentially antag-
onizes IL-2 function, are elevated in acute GBS and are
restored to baseline levels during recovery [162]. This
happens parallel to a downregulation of IL-2 in early
phase GBS and upregulation during the recovery
phase [163]. Interestingly, non-sialylated serotypes of
C. jejuni fail to stimulate expression of CD25, i.e., the
a subunit of the IL-2R, in PBMC of healthy
individuals [139].

Anti-inflammatory cytokines. As mentioned above,
several reports in the literature show that serum levels
of both TGF-b and IL-10 increase during acute GBS
and correlate with clinical severity [140, 164], whereas
there are studies that report otherwise [48, 138, 165].
Similarly, increased IL-10 and IL-10 mRNA expres-
sion in sciatic nerves and lymph nodes has been found
during recovery stage of EAN [134, 135, 138], whereas
others have detected no significant changes in IL-10
expression either in CSF or in serum of GBS patients
[142]. Importantly, both IL-6 and IL-10-producing
PBMC expand during early phase of GBS, suggesting a
potential natural balance between pro- and anti-
inflammatory cytokines, which may justify the self-
limiting nature of the disease [165].
IL-10 inhibits almost all aspects of Th1 cell-related
pathogenesis, from downregulation of IFN-g expres-
sion [166], to LPS-dependent IL-1b and TNF-a
stimulation [167] and induction of nitrous oxide or
reactive oxygen secretion [168]. Although specific IL-
10 gene (IL10) polymorphisms are shown to predict
GBS risk in some populations, no correlation between
IL10 polymorphisms and the clinical course of the
disease has been found [169]. IL-4 increases in the
recovery phase and helps limit the disease
[106, 129, 138]. Few reports, however, have found
no significant difference in the number of IL-4-
producing PBMC between healthy control and GBS
patients [53] and no detectable IL-4 in CSF and blood
of GBS patients [170]. Together, these facts implicate
that GBS cannot be explained merely by an imbalance
in the production of Th1/Th2 or pro- and anti-
inflammatory cytokines and points out to the function
involvement of Th17 cells.

CONCLUSION AND FUTURE DIRECTIONS

A large body of literature providing both in vitro and in
vivo evidence on the etiopathogenesis of GBS notwith-
standing and despite experimental animal models for
GBS being available for years, the pathogenesis of
GBS remains uncertain. GBS is conventionally known
as a post-infectious disease and C. jejuni has been
identified as a major trigger factor in susceptible
patients. Nevertheless, infection alone is not enough
for GBS to develop and infection with the same strain
might yield different outcomes in different patients,
whereas even infection with C. jejuni strains with low
to absent molecular mimicry to self-antigens might
result in GBS [3, 4]. GBS is a multifactorial autoim-
mune disorder, presenting features from acute onset

polyneuropathy to chronic peripheral neuritis and
from a self-limiting process to a corticosteroid-
resistant, life-threatening condition [8].
Cell-mediated immunity seems to play a crucial role in
immunopathology of all types of GBS, especially the
AIDP subtype, based on extensive T-cell infiltration in
myelin sheets and PNS. Although initial reports were
in favor of a Th1/Th2 ratio imbalance and shift toward
a Th1 cytokine profile during acute phase GBS and a
Th2 cell prominence in the recovery phase [18, 48, 51].
Emerging evidence supports the role of Th17 and IL-17
in acute phase of GBS, where disruption of BNB and
neutrophil activation and infiltration, initiate demye-
lination and facilitate production of autoantibodies
[56, 151, 153]. Impaired Treg cell function or reduc-
tion in number of Tregs induced by IL-17 perpetuates
the Th17-driven inflammatory milieu in acute GBS
[27, 29, 31, 32]. gd T cells can recognize non-protein
antigens and precipitate antibody secretion in GBS
patients in response to ganglioside-like epitopes
[72, 74].
Humoral immunity is recognized as the major culprit
in the AMAN subtype. C. jejuni LOS/LPS shares
molecular epitopes with host gangliosides enriched in
cell membrane of neurons [88, 89], thereby triggering
the generation of autoantibodies that target axonal
gangliosides and, less commonly, myelin proteins as
hallmark features in pathogenesis in this subtype.
Finally, the high probability of GBS after infection
with specific C. jejuni strains can be attributed to the
degree of mimicry between LOS and ganglioside,
C. jejuni LOS sialylation status and hosts polymor-
phisms in pattern recognition receptors such as TLR,
NOD, and KIR [78, 89, 125, 127, 128].
IVIg treatment remains to be the first-line treatment
for GBS. Suggested mechanisms include:
– neutralization of anti-ganglioside autoantibodies by
the anti-idiotype antibody pool;
– reduction in the production of IL-2 and IFN-gwhich
are major pathogenic cytokines in the AMAN subtype;
– mitigating complement activation and formation of
a membrane attack complex;
– inhibition of macrophage activation by Fc receptor
blockade;
– reduction in proinflammatory cytokine production;
– stimulation of remyelination, especially in the AIDP
subtype [171].
Evidence supporting the efficacy of IVIg in acute GBS
is multiple and a second course of IVIG is warranted in
patients with severe GBS, unresponsive to the first
course of IVIG or in those with deterioration despite
the first course. Patients with rapidly progressive
weakness and grave initial presentation are often put
on plasma exchange, for which data on efficacy, or
superiority over IVIg, are limited [172]. Currently, no
biological treatment is validated for severe, ventila-
tion-dependent patients with GBS, which can be
attributed to additional risk posed by infectious and
non-infectious side-effects of these agents. It is to be
hoped that anti-IL-17 agents, including the fully
humanized IgG1 and IgG4 monoclonal antibodies,
secukinumab and ixekizumab, respectively, specific for
IL-17A, or brodalumab a humanized anti-IL-17
receptor monoclonal antibody are put into trial for
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treatment of GBS in persistent, IVIG-resistant or
acute, rapidly progressive, patients.
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north west of Iran. BMC Neurol 2007; 7 : 22.

8. DalakasMC. Pathogenesis of immune-mediated neuropathies.

Biochim Biophys Acta 2015; 1852(4):658-66.

9. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré

syndrome. Lancet 2016; 388(10045):717-27.

10. Farrokhi M, Dabirzadeh M, Dastravan N, et al. Mannose-

binding lectin mediated complement pathway in autoimmune

neurological disorders. Iran J AllergyAsthma Immunol 2016; 15

(3):251-6.

11. Wang X, Ma C, Wu J, Zhu J. Roles of T helper 17 cells and

interleukin-17 in neuroautoimmune diseases with emphasis on

multiple sclerosis and Guillain-Barré syndrome as well as their
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Guillain-Barré syndrome. JNeuroimmunol 2007; 183(1-2):232-8.

36. Chi LJ, Wang HB, Zhang Y, Wang WZ. Abnormality of

circulating CD4(+)CD25(+) regulatory T cell in patients with
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Neurol 2015; 78(3):343-54.

133. Huizinga R, van Rijs W, Bajramovic JJ, et al. Sialylation of

Campylobacter jejuni endotoxin promotes dendritic cell-

mediated B cell responses through CD14-dependent produc-

tion of IFN-beta and TNF-alpha. J Immunol 2013; 191

(11):5636-45.

134. Nazari M, Mahmoudi M, Rahmani F, et al. Association of

Killer Cell Immunoglobulin- Like Receptor Genes in Iranian

Patients with Rheumatoid Arthritis. PLoS One 2015; 10(12).

135. Blum S, Csurhes P, Reddel S, Spies J, McCombe P. Killer

immunoglobulin-like receptor and their HLA ligands in
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