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ABSTRACT. Interleukin (IL)-6 is a pleiotropic inflammatory cytokine with both pro- and anti-inflammatory capac-
ities, produced by different cells and tissues, such as leukocytes, adipocytes, and endothelium. From the viewpoint
of cardiologists, this cytokine is a reliable biomarker of cardiac dysfunction, occurrence of atrial fibrillation, car-
diac myxoma with recurrence, remote metastasis or embolization, and atherosclerotic processes. Although IL-6
levels were detected in patients undergoing cardiac operations and reported sporadically, the perioperative kinet-
ics of IL-6 in cardiac surgical patients was insufficiently elaborated. The influencing factors, clinical implications,
and causative effects of IL-6 on clinical outcomes and potential treatment choices among cardiac surgical patients
remained to be clarified as well. The purpose of this article is to discuss these aspects of IL-6 in patients undergoing
a cardiac operation.
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L-6 is a dual functional cytokine with both pro- and
nti-inflammatory capacities [1]. IL-6 exerts its biolog-
cal functions via two signaling pathways: the classic
ignaling pathway via the membrane-bound IL-6 recep-
or (IL-6R), which is responsible for anti-inflammatory
rocesses, and the trans-signaling pathway via the soluble
L-6R (sIL-6R), which participates in pro-inflammatory
rocesses [2, 3]. IL-6 is ubiquitous and is secreted by
ll types of cells, including fibroblasts, endothelial cells,
nd cardiomyocytes [4]. The production of IL-6 may be
nfluenced by many factors, both positive (the epinephrine
nd norepinephrine levels in the circulation and excita-
ion of the sympathetic nervous system) and negative (use
f �-blockers, angiotensin-converting enzyme inhibitor
nd angiotensin II type 1 receptor antagonist) [5]. The
ecrotic death of cells coincides with the upregulation of
L-6, mediated by NF-�B and p38MAPK. IL-6 is also
nvolved in cellular apoptosis. Biffl et al. [6] reported the
nconsistent effects of IL-6 on polymorphonuclear leuko-
ytes, which was only effective prior to the concentration
f polymorphonuclear leukocytes in culture reaching 10-
0×106/mL. IL-6 and pertinent cytokines were found to
e involved in the left ventricular remodeling, via car-
iomyocyte hypertrophy and apoptosis, by upregulating
he anti-apoptotic protein B-cell lymphoma-extra large
Bcl-xL) [5]. In a rat myocardial ischemia-reperfusion
njury model, exogeneus IL-6 possibly induced cardiomy-
cyte apoptosis via inducible nitric oxide synthase (iNOS)

ction [7]. An experimental study also revealed that apop-
otic cardiomyocytes in cardiac-specific gp130 knock out

ice [8]. IL-6 can inhibit myeloma cell apoptosis by acti-
ating gp130 through IL-6R, whereas the IL-6/sIL-6R
complex can inhibit myocardial apoptosis and limit infarct
size in reperfused acute myocardial infarction [9].
Recent studies reported that IL-6 was elevated in the condi-
tion of acute and chronic infections [10], cardiac functional
impairment [11] and geometric alterations [12], pulmonary
artery hypertension [13], the occurrence of atrial fibrilla-
tion [14], and the presence, recurrence, and metastasis of
cardiac myxoma [15, 16]. Plasma IL-6 strongly correlated
with the six-minute walking distance and right atrial pres-
sure, independently associated with mortality [17]. IL-6
participated in the development of coronary artery disease
and was significantly expressed in unstable angina patients
with unfavorable outcomes [18]. IL-6 is expressed in the
infarcted left ventricle, especially in the bordering area
of infarction [12]. Activation of the JAK/STAT pathway
via IL-6 could mediate cytoprotective and antiapoptotic
effects in acute myocardial infarction [19]. Although, in
animal experiments, targeted deletion of the IL-6 gene did
not alter myocardial infarct size or left ventricular remod-
eling [12], with combined IL-6 and sIL-6R, effects of the
inhibition of cardiomyocyte apoptosis and the reduction of
myocardial infarct size could be attained, thus providing
a potential therapeutic alternative [20]. The mechanisms
could relate to the fact that IL-6 plays its pro-inflammatory
role by triggering the oxidant reactions resulting from
intracellular adhesion molecule-1 and subsequent neu-
trophil adhesions. The use of the selective IL-6R antagonist
MR16-1 may decrease inflammatory cell infiltrations, min-

imize the pro-inflammatory amplification and thus improve
cardiac geometric and functional status [21]. In addi-
tion, IL-6 genotype studies have revealed that genotype
CC patients presented the highest plasma IL-6 levels and
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Figure 1
ighest cardiac death risks, followed by genotypes GC and
G [22].
lthough continuous reports demonstrate that IL-6 is asso-

iated with postoperative adverse events [23], the kinetics
f IL-6 in terms of operation types and surgical techniques
ave not been sufficiently described. Moreover, there have
een conflicting results for IL-6 levels in terms of compar-
sons between certain cardiac operations and techniques,
or instance, on-pump versus off-pump coronary artery
ypass grafting (CABG). The clinical implications of IL-6
xpressions entail further discussions. In order to highlight
hese aspects, a systematic review of IL-6 levels in cardiac
urgical patients was made.

ARDIOPULMONARY BYPASS (CPB)

PB may trigger an inflammatory cascade and lead
o systemic inflammatory response syndrome (SIRS),
hile the cytokines, including circulating IL-6, in the

nflammatory process can be triggered by many fac-
ors, such as anesthesia, surgical procedure, hemodynamic
hanges, ischemia-reperfusion injury, hypothermia and
ndotoxin release [1, 24]. As a result, both the immune
nd hematopoietic systems are involved, in response to
ocal and systemic inflammatory reactions [25], leading
o microcirculatory disorders and even multiorgan failure
26]. Usually, plasma IL-6 is significantly elevated 1 h
nd peaks 1-6 h after CPB, and then falls but remains sig-
ificantly higher [27-34]. In patients receiving pulmonary
ndarterectomy, under profound hypothermic circulatory
rrest, the peak of circulating IL-6 could be delayed until
2 h after the operation [35]. Lequier et al. [36] observed
delayed peak, which occurred 8 h after CPB. Beghetti

t al. [37] noted, in pediatric cardiac surgical patients
hat the circulating IL-6 levels peaked 6 h after CPB and
emained high for five days. Dehoux et al. [38] observed,
n a prospective control study that IL-6 remained high 1-6

after CPB, with no significant peak, but kinetics of IL-
in lipopolysaccharide-induced whole blood cell cultures
as contrary and in a parabolic curve form with a nadir

ppearing 2 h after CPB, implying the impact of CPB on
ipopolysaccharide hyporesponsiveness.
auser et al. [39] noted that serum and alveolar IL-6 levels

ncreased after CPB, which correlated with postoperative
orbidity. Thus, IL-6 could be used to assess the severity of

he systemic inflammatory response after CPB. In 32 chil-
ren <two years of age with congenital heart disease repair
nder CPB, IL-6 in the bronchoalveolar lavage reached its
eak 2 h and fell 14 h after CPB; however, corticosteroid
nhalation did not influence the IL-6 release in comparison
o control (figure 1), implying that corticosteroids did not
ffect the pulmonary inflammatory response [40].
arube et al. [41] reported that IL-6 levels did not differ
etween the coronary sinus and the arterial blood. They
xplained that IL-6 levels in the arterial blood reflected the
evels in the whole body, while precluding the myocardial
ource of IL-6. Wan et al. [42], who reported higher IL-6
evels in the coronary sinus than in the arterial blood, and
igher IL-6 levels in the left atrium than in the pulmonary

rtery, proposed a contrary statement that myocardium was
main source of IL-6. Liebold et al. [34] found that plasma

L-6 levels from the arterial blood were much higher than
hose from the coronary sinus, and that those from the left
A comparison of bronchoalveolar interleukin-6 levels between
patients receiving corticosteroid inhalation ( ) and control ( ) [40].

atrium were much lower than those from the pulmonary
artery. Taken together, the disparities in IL-6 levels from
blood samples of different sites taken during operations
under CPB could be explained by a limitation in coronary
sinus blood sampling.
Sablotzki et al. [43] found an increased IL-6 release after
CPB with peak values 6 h after the operation, coinciding
with a peak in body temperature. As observed in neonates
and infants receiving cardiac operations, IL-6 started to
increase at the end of CPB and peaked 2 h (at 298 and
254 pg/mL) following protamine injection, but there was
no significant intergroup difference in spite of a more pro-
nounced elevation in neonates [30].
In pediatric patients, it was found that the elevation of
serum IL-6 did not correlate with the duration of the aortic
cross-clamp time (either >80 min or <80 min), tempera-
ture (mild or moderate hypothermia) or surgical approach
(ventriculotomy or atriotomy) on postoperative days 0, 1
and 4 [44]. Grünenfelder et al. [45] reported, in a prospec-
tively controlled, randomized study, that IL-6 levels were
significantly higher 24 h after the operation in the hypother-
mic than in the normothermic group. Menasche et al. [46]
found that IL-6 levels were higher in patients having a
normothermic bypass, while suggesting that vasodilation
occurring with warm heart operations is mediated by a
temperature-dependent release of cytokines. Ohata et al.
[47] found no differences in IL-6 levels in normother-
mic and moderate hypothermic bypasses before and 0, 12
and 24 h after CPB in adult patients undergoing cardiac
operations.
Steinberg et al. [48] reported increased plasma IL-6 and
complement levels in response to CPB. Mareus et al.
[49] found no correlation between serum IL-6 levels and
CPB duration. Saatvedt et al. [50] noted a close cor-
relation between IL-6 levels 48 h after CPB and CPB
duration. Whitten et al. [51] found a positive correla-
tion between IL-6 levels after CPB and CPB duration,
other than aortic cross-clamp duration. Lequier et al. [36]
demonstrated a significant increase in plasma IL-6 levels at
all observed times in comparison to the preoperative base-

line, but the insignificant difference in IL-6 levels between
patients with and without endotoxemia following CPB
indicated that IL-6 elevation could be due to CPB alone. In
children undergoing major cardiovascular surgery, serum
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nterleukin-6 and cardiac operations

evels of IL-6 increased dramatically during and/or after
he operation, indicating that IL-6 elevation levels could
esult from an incorporated impact anesthesia, surgical
rauma, and endothelial functional alterations [52]. More-
ver, evidence has been presented to confirm the superior
L-6-eliminating effects of heparin-coated CPB over con-
entional CPB [53], membrane oxygenation over bubble
xygenation [54] and low tidal volume/high positive end-
xpiratory pressure (PEEP) over high tidal volume/low
EEP [55].
n addition, many authors have attempted periopera-
ive conditioning on IL-6 production in cardiac surgical
atients; in most situations, a good effect was obtained
table 1 ).

ORONARY ARTERY BYPASS GRAFTING

omparisons between CABG and valve replacement
atients revealed serum IL-6 levels to be significantly
igher in the valve group than in the CABG group at the
nd of surgery and 24 h after the operation (figure 2A) [66],
hich was explained as the result of cardiotomy suction in
alve surgery.
ome authors [67, 68] found that IL-6 levels were similar

n both on-pump and off-pump CABG patients with a base-
ine level of 3.9 and 2.7 pg/mL, respectively. It was also
ound that the peak values of IL-6 appeared at the time
f protamine use in both groups, then decreased gradu-
lly and recovered to the baseline level 30 days after the
peration (figure 2B) [67]. Uyar et al. [69] compared the
inetics of perioperative serum IL-6 levels in valve replace-
ent, on-pump and off-pump CABG patients, finding that

L-6 was elevated 1 and 4 h after the operation, with simi-
ar trends seen in on-pump and valve replacement patients,
hereas off-pump patients exhibited much higher IL-6 lev-

ls at each sampling time. They concluded that off-pump
as associated with a reduced cytokine response. How-

ver, two reports on the kinetics of plasma IL-6 between
n-pump and off-pump CABG by the same group from
he Prince of Wales Hospital, Hong Kong, displayed sim-
lar trends for each group, but with conflicting results: no
ntergroup difference in one report [31], but significantly
levated plasma IL-6 levels in the on-pump group during
nd at the end of surgery in comparison to off-pump, which
as interpreted as a reduced pro-inflammatory reaction to

he off-pump maneuver [33].
n comparison to conventional CABG patients, Strüber
t al. [70] found that the IL-6 levels in patients under-
oing a minimally invasive direct coronary artery bypass
MIDCAB) procedure was significantly lower up to 8 h
fter the operation, followed by a gradual elevation and a
atch with the levels of the conventional CABG patients

4 h after the operation, indicating a less procedure-related
nflammatory response in MIDCAB due to the lack of
lobal ischemia, protamine use, and moderate hypother-
ia. Gunaydin et al. [71] disclosed similar IL-6 trends in

oth mini-CPB and conventional CABG patients, whereas,
n the conventional CABG patients, IL-6 levels were sig-
ificantly higher during CPB and at the end of CPB, and

ollowing protamine reversal with respect to mini-CPB
atients (figure 2C). A comparative study of IL-6 levels in
lective percutaneous transluminal coronary angioplasty
PTCA) without CPB, CPB-supported PTCA, and on-
3

pump CABG patients demonstrated significant differences
at 3, 6, and 24 h after the procedures, with the highest found
in on-pump CABG patients, supporting the CPB relevance
of IL-6 (figure 2D) [72]. On the contrary, Gulielmos et al.
[73] observed that IL-6 levels started to increase in each
group of CABG procedures within 2 h after ischemia, and
peaked 12 h after ischemia. At 15 min, day 1 and day 2 after
ischemia, IL-6 levels of patients with mini-thoracotomy
CABG were significantly higher than those of conven-
tional CABG patients. The result denied the relation of
IL-6 production due to CPB.
The preoperative IL-6 level could be a biomarker for
predicting postoperative complications, such as atrial fib-
rillation [74, 75]. Hedman et al. [76] proposed a cutoff
value for IL-6 of 3.8 pg/mL, a level above which, in
CABG patients, could predict early graft occlusion and
late adverse cardiovascular events; patients with early graft
occlusion or late adverse cardiovascular events were asso-
ciated with a much higher plasma IL-6 levels (figure 2E).
However, data from articles by Parolari et al. and Hed-
man et al. were somewhat inconsistent. The mean IL-6
level in on-pump CABG in the study by Parolari et al.
was 3.9 pg/mL, whereas the cutoff for predicting adverse
events, as proposed by Hedman et al., was 3.8 pg/mL. The
detection of plasma IL-6 in both studies was the same,
that is, by using commercially available enzyme-linked
immunosorbent assay kits (R&D System). Clearly, the pro-
posed cutoff was not suitable for the patient population
similar to that in Parolari’s study.
Some inflammatory biomarkers, including IL-6, displayed
similar trends in on-pump and off-pump CABG proce-
dures, while other biomarkers, such as tumor necrosis
factor-�, exhibited advanced and elevated peaks. This
revealed that the postoperative inflammatory response was
unrelated to either on-pump or off-pump surgical tech-
niques [67].

HEART VALVE OPERATION

Bacci et al. [77], who evaluated plasma IL-6 levels in
patients receiving aortic or mitral valve replacement with
a bio- or a mechanical prosthesis, found no difference in
plasma IL-6 with respect to the prosthetic valve and the
site of valve insertion (figure 3A). However, the authors
failed to indicate the blood sampling time. Trikas et al.
[78] conducted a prospective randomized control study on
plasma IL-6 among 30 patients with mitral stenosis. In their
study, the healthy controls had an IL-6 level of 3.8 pg/mL,
whereas the mitral stenosis patients had a baseline IL-6
of 6.9 pg/mL and a postoperative value of 5.5 pg/mL at
the six-month follow-up stage (figure 3B). The preoper-
ative elevated IL-6 levels were explained as the result of
an immune response to congestive heart failure, while the
secondary significant decline in IL-6 was due to a reduced
left atrial size and an improved cardiac function.

CONGENITAL HEART DEFECT REPAIR
Various studies revealed that the patients with a congeni-
tal heart defect, regardless of being cyanotic or acyanotic,
presented higher circulating IL-6 levels compared to con-
trols (figure 4A) [79-81]. The more distinctive changes in
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t
e
h
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c
t
M
r

nd (E) between patients with ( ) and without ( ) early graft occl
vents. CABG: coronary artery bypass grafting; CPB: cardiopulmona
ransluminal coronary angioplasty.

he cyanotic patients may be explained by the possible
ffect of chronic congestive heart failure and chronic shunt
ypoxemia [79]. Moreover, IL-6 levels were significantly
igher in patients with pulmonary artery hypertension

ompared with non-pulmonary artery hypertension con-
rols (figure 4B) [82, 83].

adhok et al. [84] reported that, in pediatric patients
eceiving congenital heart defect repair, the circulating IL-
and between patients with ( ) and without ( ) late cardiovascular
ass; OPCAB: off-pump coronary artery bypass; PTCA: percutaneous

6 on day 1 after the operation increased to 271 ± 68 pg/mL
from a preoperative baseline of 46 ± 12 pg/mL, then
declined on days 2 and 3 after the operation, but insignifi-
cantly different from the preoperative baseline. The highest

circulating IL-6 level was seen on day 1 after the operation
as 629 ± 131 pg/mL in patients with a single ventricle,
which was proportional to the elongated CPB duration of
106 ± 23 min (figure 4C). Gupta et al. [85] reported that
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ion ( ) and 6 month postoperation ( )) and control ( ) [79]. AV:
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erum IL-6 levels did not differ significantly at post-bypass
nd at peak time between patients with cavopulmonary
nastomosis and those with other corrective operations in
he pediatric population (figure 4D). The postoperative 2-

IL-6 levels in pediatric congenital heart defect patients
orrelated with a long cross-clamp time (figure 4E) [86]
nd increased infusions of inotropics, as well as declined
rterial oxygenation [87], other than in terms of relating to
hoices of either a centrifugal or a roller pump (figure 4F)
88].

ULMONARY ENDARTERECTOMY

L-6 is a risk factor responsible for the development of
ulmonary artery hypertension by mediating pulmonary
rtery remodeling via promoting the proliferation of pul-
onary endothelial and smooth muscle cells [89]. In the

hronic thromboembolic pulmonary hypertension piglet
odel, the pulmonary IL-6 gene was significantly over-

xpressed in comparison to sham controls or reperfused
nimals, indicating that IL-6 activities were associated
ith hemodynamic status caused by chronic pulmonary
rtery occlusion [90]. Maruna et al. [35] reported that
lasma IL-6 peaked 12 h after pulmonary endarterectomy
nder profound hypothermic circulatory arrest, which was
uch higher than the preoperative baseline (25 ng/L ver-
7

sus 522 ng/L). Whether or not the delayed peak was
due to profound hypothermia was unknown. In patients
receiving pulmonary endarterectomy, however, IL-6 was
significantly higher in the roller pump than in the centrifu-
gal pump group 24 h after the operation (587 ± 38 ng/L
versus 327 ± 37 ng/L, p<0.001) [91].

AORTIC ANEURYSM/DISSECTION REPAIR

According to contemporary theories, an inflammatory pro-
cess is involved in the formation, expansion, or rupture
of abdominal aortic aneurysms (AAAs) [92]. Research
showed that IL-6 levels did not differ between patients
with acute and chronic aortic dissections and chronic and
hypertensive or healthy controls, but did differ between
acute and hypertensive or healthy controls [93]. The
results suggested differential pro-inflammatory cytokine
activities between acute and chronic courses of aortic
dissection. Artemiou et al. [94] found serum IL-6 lev-
els did not differ between patients with ascending and
patients with descending aortic aneurysms (7.58 pg/mL
versus 6.86 pg/mL, p = 0.449). IL-6 levels detected in the
aortic tissues were higher in patients with AAAs and tho-
racic aortic aneurysms compared with controls (figure 5A)
[95]. Wallinder et al. [96] compared plasma IL-6 lev-
els of patients with different sizes of AAAs and found
increased IL-6 levels in patients with an AAA >5.0 cm,
in comparison to those with an AAA <5.0 cm, albeit
without significant difference. However, IL-6 levels in
larger AAA patients were significantly higher than in
controls (figure 5B). Juvonen et al. [97] reported that IL-
6 concentration was similar, irrespective of dimensions
of AAAs and the presence of thrombus. However, other
authors [94, 96, 98] stated that IL-6 levels in AAA patients
depended on aneurysmal dimensions and even aneurys-
mal growth rates. The discovery of increased IL-6 in the
thrombus of the AAA hinted that the thrombus could be a
source of IL-6 due to the leukocyte response and the pro-
duction of other inflammatory cytokines, such as tumor
necrosis factor-� [99]. The intramural thrombus in situ in
endovascularly repaired patients could explain the stronger
inflammatory response during endovascular repair [42].
Cheuk et al. [100] noted a rapid peak time for plasma IL-6
in patients with endovascular treatment of type B aortic
dissection appearing within hours after treatment, but IL-6
reduced remarkably 6 h and returned to the baseline level
24 h after treatment. Another discovery in their study was
that plasma IL-6 levels were directly proportional to the
length of the endovascular graft deployed. Gabriel et al.
[101] observed a plasma L-6 peak appeared 24 h after the
endovascular treatment of aortic aneurysms. In their opin-
ion, the IL-6 elevation was due to the contact between
the leukocytes and the stent graft. Dawson et al. [102]
compared the plasma IL-6 levels among three groups of
AAA patients: unrepaired, endovascularly repaired, and
surgically repaired. In their study, IL-6 levels descended
in order in the three groups, namely, the endovascularly
repaired AAA patients had a higher IL-6 than those receiv-
ing open surgery (figure 5C). This was explained by a

still-active AAA in the endovascularly treated patients.
Stamataki et al. [103] reported that, in patients receiving
AAA repair, IL-6 levels elevated at the end of surgery,
which directly correlated with the aortic cross-clamp time.
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Circulating interleukin-6 levels in patients with congenital heart defects: (A) between cyanotic ( ) and acyanotic ( ) patients and control ( )
[ ) [83
l eart d
a ients w

A
A
a
c
a
r

C

S
p
t
9
t

80-82]; and (B) between PAH patients ( ) and non-PAH controls (
evel ( ) [85]; (D) kinetic changes in patients undergoing cogenital h
nd longer (60 minutes) cross-clamp time [87]; and (F) between pat

nother study showed cytosolic IL-6 levels of ruptured
AA patients were significantly higher than those of either

symptomatic AAA patients or cadaveric kidney donor
ontrols (figure 5D) [104]. The mechanisms of surgically
nd endovascularly repaired aortic aneurysms for IL-6
eversal remain to be clarified.

ARDIAC MYXOMA RESECTION

eino et al. [105] reported serum IL-6 levels in two

atients undergoing cardiac myxoma resections, revealing
hat serum IL-6 levels were higher before surgery (6 and
pg/mL), but fell afterwards (4 pg/mL). Clinical observa-

ions on a group of seven cardiac myxoma patients revealed
, 84]; (C) of postoperative day 1 ( ) in comparison to preoperative
efect repair [86]; (E) between patients with shorter (30 minutes) ( )
ith the use of centrifugal ( ) and roller pumps ( ) [89].

a close correlation between tumor size and preoperative
IL-6 levels (figure 6A), while myxoma resection led to a
significant reduction in circulating IL-6 (figure 6B) [106].
Mochizuki et al. [15] observed a rapid decline in serum
IL-6 after myxoma resection, along with sustained ele-
vation after recurrence. In cases where cardiac myxoma
induced intracerebral aneurysms, serum and cerebrospinal
IL-6 levels could have been persistently high [16].

HEART TRANSPLANTATION
IL-6 was determined as a sensitive biomarker of allograft
rejection based on the significantly elevated IL-6 levels
in the severe rejection group, as opposed to the no or
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ild rejection group [107]. Similarly, Perez-Villa et al.
108] reported that serum IL-6 levels were higher in heart
ransplant patients with a low grade (0-2) rejection than
cantly reduced at postoperative 1-month ( ) and 6-month follow-up
rrection was shown between plasma IL-6 and dimension of cardiac
those with grade 3A or above (figure 7A). They stated
that patients with serum IL-6 >30 pg/mL were unlikely to
develop allograft rejection above grade 3A. Kubala et al.
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A and above ( ) [108]; and (B) dynamic changes of interleukin-6

109] reported that plasma IL-6 levels in the early reperfu-
ion period (30 min) were higher in heart transplant patients
han in non-heart transplant patients, but the situation was
eversed in the late reperfusion period (24 h) with a higher
L-6 level in non-transplant patients, which was probably
he result of a lack of immunosuppressive therapy. Wan
t al. [24] reported a similar elevation-repression trend of
lasma IL-6 from early (90 min) to late (12-24 h) reper-
usion, finding that IL-6 at the 90-min reperfusion point
orrelated with ischemic time. As described by Sakai et
l. [110], plasma IL-6 levels in heart transplant patients
emained stable before the start of CPB, decreased after
PB and then increased significantly compared to con-

rols at the end of CPB until 60 min after CPB, before
eturning to the control value 24 h after the operation
67 ± 9 pg/mL). In non-transplant cardiac surgical patients
nder CPB, a similar IL-6 elevation was only seen 60 min
fter CPB (290 ± 76 pg/mL), with the elevation remain-
ng for 24 h (138 ± 42 pg/mL). The results suggested that
PB could have led to IL-6 elevation, but heart transplants
rought about an IL-6 turndown due to immunosuppres-
ive therapeutics (figure 7B). Birks et al. [111] compared
erum and myocardial tissue IL-6 levels between unused
nd used heart donors; however, no significant difference
as found in serum IL-6, but IL-6 mRNA was 2.4 times
igher in unused than in used heart donors. They ascribed
he increased IL-6 mRNA in unused donors to the afore-
and infusions of inotropic agents. Plenz et al. [112] found
hat the mRNAs of IL-6, IL6R and gp130 were upregulated
n donor and failure hearts, in comparison to controls, with
o cardiac chamber difference noted, indicating that donor
r failure hearts might produce IL-6 and mediate acute
llograft rejection and late transplantation vasculopathy.
irculating IL-6, irrespective of its source (either from the
onor heart or from the recipient), would negatively impact
he donor heart [113].

EFT VENTRICULAR ASSIST DEVICE (LVAD)

MPLANT

n all patients, circulating IL-6 levels were elevated shortly
fter assist device implantation, unless the candidates were
ection ( ) was associated with higher serum IL-6 levels over grade
t transplant patients [109]. CPB: cardiopulmonary bypass.

not infected or had not deteriorated (figure 8A) [114].
Research revealed that LVAD implants were associated
with an initial decrease in IL-6 levels up to 90 days after
implantation, before recovering to pre-implantation lev-
els (figure 8B) [115]. This phenomenon was attributed
to cardiac function improvement after LVAD implanta-
tion, along with subsequent overt or significant infection
or immunosuppression. Goldstein et al. [116] found an
initial decrease in serum IL-6 at the time of LVAD implan-
tation to 33.6 ± 9 (range: 1.07-106.9) pg/mL, followed by
a secondary decline to 11.3 ± 4 pg/mL at the two-month
follow-up stage (figure 8C), while a late elevation was only
observed in patients with a serious device infection. Caruso
et al. [52] defined a pre-implantation cutoff of serum IL-6
of 8.3 pg/mL, as patients with an IL-6 level above this
cutoff point were found to have longer hospitalization
duration, poorer cardiac function or more serious compli-
cations, such as multiorgan failure. Loebe et al. [117]
compared two sorts of LVADs and found the axial flow
MicroMed DeBakey device was associated with higher
IL-6 levels than the pulsatile Novacor device (figure 8D).
Myocardial and serum IL-6 levels of 23 LVAD implant
patients showed higher myocardial IL-6 protein and serum
IL-6 in comparison to those of heart transplant patients
(figure 8E) [118]. However, myocardial IL-6 contents were
unlikely to correlate with the cardiac function of LVAD
recipients, and incapable of predicting clinical outcomes
with respect to circulating IL-6 levels [119].

CONCLUSIONS

In cardiac surgical patients, the expression of IL-6 reflects
the inflammatory process in relation to anesthesia, sur-
gical trauma, CPB, and perioperative complications. It
also predicts postoperative cardiac function and compli-
cations, such as infection, atrial fibrillation, cardiac
dysfunction, and myxoma recurrence or metastasis. Preop-

erative preconditioning or immediate treatment by way of
steroids, anesthetics, aprotinin, and ultrafiltration can bene-
fit patients with eliminations of inflammatory cytokine and
improvements in their outcomes. Novel therapeutic agents
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or IL-6 elimination, by inhibiting myocardial apoptotic
rocesses, are expected to be developed.
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