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Basophils as a potential therapeutic target in cancer
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Abstract: Basophils, which are considered as redundant relatives of mast cells and the rarest granulocytes in peripheral
circulation, have been neglected by researchers in the past decades. Previous studies have revealed their vital roles in allergic
diseases and parasitic infections. Intriguingly, recent studies even reported that basophils might be associated with cancer
development, as activated basophils synthesize and release a variety of cytokines and chemokines in response to cancers.
However, it is still subject to debate whether basophils function as tumor-protecting or tumor-promoting components; the
answer may depend on the tumor biology and the microenvironment. Herein, we reviewed the role of basophils in cancers, and
highlighted some potential and promising therapeutic strategies.
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1 Introduction

Basophils were first discovered by Paul Ehrlich
in 1879. They are the least common of the abundant
granulocytes, accounting for less than 1% of peripheral
leukocytes. Their lifespan in circulation is estimated
in days (Karasuyama and Yamanishi, 2014), and they
are continually produced and replenished by progenitor
cells in the bone marrow. Subsequent studies have
identified their typical characteristics of releasing
histamine and leukotrienes, as well as their expression
of the high-affinity immunoglobulin E (IgE) receptor
FcεRI (Schroeder, 2011; Siracusa et al., 2013). In
addition, basophils were revealed to produce a strand
of cytokines such as interleukin (IL)-4 and IL-13, which
are known as key regulators of T helper lymphocyte
2 (Th2) immune responses (Li et al., 1996; Redrup et al.,
1998). These findings demonstrated that basophils
play crucial roles in allergic disease and immunity to
helminths. Moreover, in recent years, novel techniques

using basophil-deficient mice and fluorescent protein-
labeled basophils allowed us to explore the in vivo
functions of basophils and track basophil populations
in vivo in diverse immune settings (Obata et al.,
2007; Wada et al., 2010; Sullivan et al., 2011).
Surprisingly, recent studies have now highlighted
previously unrecognized roles of basophils, in which
they participate not only in allergic inflammation and
parasite infection, but also in cancers (Anthony, 1982;
de Monte et al., 2016; Sektioglu et al., 2017; Kara‐
suyama et al., 2018; Webb et al., 2019).

2 Receptors and ligands in basophils

Basophils express a variety of receptors (Fig. 1),
and their proliferation, maturity, subsistence, activation,
and biological behaviors are closely regulated by
relevant ligands in response to various factors.

The high-affinity IgE receptor FcεRI is expressed
on the surface of basophils (Malveaux et al., 1978). The
binding of allergen-specific IgE antibodies to FcεRI
when exposed to allergens has been shown to promote
allergic disorders (Oda et al., 2019; Engeroff et al.,
2020). Crawford et al. (2018) revealed that FcεRI-
expressing basophils were closely associated with skin
carcinogenesis (Fig. 2a). Their study demonstrated
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that IgE-effector cells protected against carcinogenesis,
and FcεRI-expressing basophils were found to be
mainly the IgE-positive cell population in murine skin
tumors resulting from exposure to a carcinogen. Moreover,
IgE-mediated protection was verified through FcεRI,
as mice were more susceptible to the development of
tumor in the absence of this high-affinity receptor.
This result was consistent with findings of other
research (Nigro et al., 2016). Crawford et al. (2018)
revealed that the level of FcεRI+ cells was negatively
associated with the severity of human squamous-cell
carcinomas. These findings revealed that basophils may
play vital roles in inhibiting tumor growth through the
IgE-FcεRI axis; however, the relevant mechanism
remained unclear and further investigation was prompted.

Basophils express the specific IL-3 receptor (IL-3R)
throughout their lifespan. IL-3R plays a critical role in
the growth, differentiation, survival, and function of
basophils (Saito et al., 1988; Mayer et al., 1989;
Hagmann et al., 2017; Zellweger et al., 2018). IL-3-
elicited basophils support and sustain the development
of Th2 immune responses by producing IL-4, a major
Th2-type cytokine (Oh et al., 2007; Yoshimoto et al.,
2009). Lantz et al. (1998) reported that IL-3, although

not indispensable for the production of basophils,
contributes to increasing the amount of basophils. Many
studies revealed that IL-3 can protect basophils from
apoptosis through multiple pathways (Didichenko
et al., 2008; Rohner et al., 2018). Apart from regulating
allergic inflammation (Gentinetta et al., 2011; Salter
et al., 2015) and parasitic infection (Herbst et al., 2012),
recent evidence suggested that IL-3 also contributes
to allograft fibrosis and chronic rejection by activating
basophils (Balam et al., 2019).

Thymic stromal lymphopoietin (TSLP) receptor
(TSLPR) was found to be expressed on mast cells and
basophils (Siracusa et al., 2011; Varricchi et al.,
2018). TSLP could activate basophils through binding
to its high-affinity receptor TSLPR in the context of
pathological status (Ziegler and Artis, 2010; Siracusa
et al., 2011; Varricchi et al., 2018). Siracusa et al.
(2011) discovered that TSLP-elicited basophils were
different from IL-3-elicited basophils, which indicated
that basophils formed a heterogeneous cell population.
What is more, TSLP could promote basophil haemato‐
poiesis by acting on bone-marrow resident progenitors and
eliciting mature basophil responses in both IL-3-IL-3R-
sufficient or -deficient environments.

Fig. 1 Surface and secreted molecules of basophils. Basophils express cell surface receptors for immunoglobulin, chemokines, and
cytokines, which are important for their development, maturation, homeostasis, and effector functions. They also secrete a
variety of molecules, including cytotoxic granule proteins, cytokines, chemokines, and immunoregulatory mediators in
response to different stimulations, and play roles in allergic diseases, parasitic infections, and cancers. TSLP: thymic
stromal lymphopoietin; TSLPR: TSLP receptor; IL: interleukin; GM-CSF: granulocyte-macrophage colony-stimulating
factor; VEGF-A: vascular endothelial growth factor-A; CCL: chemokine (C-C motif) ligand; MIP-1α: macrophage
inflammatory protein-1α; RANTES: regulated upon activation normal T cell expressed and secreted factor; CXCL8:
chemokine (C-X-C motif) ligand 8.
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Suppression of tumorigenicity 2 (ST2), an IL-1
receptor family member that participates in regulating
Th2 immune responses, is stably expressed on basophils
and activated by its ligand IL-33 (Smithgall et al.,
2008). A previous study showed that basophils responded
to IL-33 by producing pro-inflammatory cytokines such
as IL-4, IL-6, IL-8, IL-13, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) (Smithgall et al.,
2008). Moreover, Schneider et al. (2009) reported that
IL-33 could not only activate unprimed basophils, but
also elicit basophil expansion in the bone marrow
through indirectly promoting the production of hema‐
topoietic growth factors, such as GM-CSF and IL-3.
In a model of allergic asthma, IL-33 was able to
potentiate the capacity of basophil migration and
increase the surface activation markers on basophils
during allergen exposure (Salter et al., 2016).

3 Basophil-related cytokines and cancers

A distinct set of cytokines is synthesized and re‐
leased by basophils (Fig. 1). Among them, the most
important ones are IL-4 and IL-13, which are crucial
during type 2 immune response, and contribute to
different cancers (Nakayama et al., 2017; Shan et al.,
2018; Shibata et al., 2018; Galeotti et al., 2019; Yo‐
shikawa et al., 2019).

3.1 IL-4 cytokine

A major cytokine secreted by basophils, IL-4,
was found to be important for immune responses
ranging from allergy to cancer (Marone et al., 2020b).
M2 macrophages have been well known for aggravating
tumor progression by enhancing tumor angiogenesis
and metastasis (Wang et al., 2018; Zhang et al., 2020).
In pancreatic ductal adenocarcinoma (PDAC), basophil-
derived IL-4 was found to promote M2 macrophage
polarization, thus exerting indirect tumor-promoting
function (de Monte et al., 2016). Therein, a high accu‐
mulation of basophils was observed in tumor-associated
lymph nodes. More importantly, basophil-deficient
mice failed to develop tumors, which indicated basophils
as crucial contributors to PDAC development. A further
investigation showed that T cell-derived IL-3-activated
basophils generated and released IL-4, which in turn
induced both Th2 and M2 polarization, and consequently
contributed to tumor progression (Fig. 2c). Consistently,

other groups also revealed that basophil-secreted IL-4
induced M2 skewing (Borriello et al., 2015; Ho et al.,
2016).

More importantly, a recent study by He et al.
(2021) reported that intratumoral basophils were an
independent adverse prognostic factor in gastric cancer,
and indicated that IL-4 expression was elevated in the
high-basophil group. They also found that the abundance
of basophils was closely associated with M2 macrophage
infiltration in tumor. The authors concluded that tumor-
infiltrating basophils played an essential role in the
formation of an immune-evasive tumor microenviron‐
ment (TME). In addition, IL-4 was reported to be involved
in tumor progression in many malignancies, such as
colon cancer, thyroid cancer, lung cancer, breast cancer,
and renal cell carcinoma (Shankaranarayanan and
Nigam, 2003; Prokopchuk et al., 2005; Falkensammer
et al., 2006; Todaro et al., 2006; Zhang et al., 2008;
Lin et al., 2019). Strikingly, IL-4 neutralization was
found to alter the TME of colon cancer (Ito et al.,
2017). Increased cluster of differentiation 8-positive
(CD8+) T cell production and granzyme B expression
were observed in IL-4 antibody-treated tumors,
while angiogenic factors such as vascular endothelial
growth factor (VEGF) and epidermal growth factor (EGF)
were significantly reduced. In addition, arginase 1
(Arg1), an immunosuppressive factor suppressing
T cell activation, as well as M2 macrophage markers,
was also found to be downregulated. Interestingly,
tumor-associated macrophages (TAMs) isolated from
IL-4-depleted tumors failed to inhibit T cell prolifera‐
tion in vitro, which suggested that IL-4 neutralization
impaired the T cell-suppressive ability of TAMs. The
study also indicated that the combination of IL-4
antibody and other immunotherapies synergistically
inhibited tumor growth and promoted the accumulation
of CD4+ and CD8+ T cells in the TME of tumor-
bearing mice.

Gocheva et al. (2010) found that cathepsins, as
proteases associated with cancer progression, were
regulated and activated by IL-4 in TAMs, and thus
promoted PDAC invasion and growth in tumor-bearing
mice, and concluded that IL-4 could augment TAM
tumor-promoting ability, thereby accelerating tumor
development. Intriguingly, IL-4 combined with lipopoly‐
saccharide (LPS) was shown to weaken the macrophage-
induced invasiveness of PDAC cells in vitro (Salmi‐
heimo et al., 2016). This effect may be explained
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by the findings of Wanderley et al. (2018), where LPS
could polarize TAM to a tumor-protecting status even
in the context of IL-4. Cancer stem cells (CSCs) play
an important role in tumor initiation, recurrence,
and metastasis (Clara et al., 2020). Colon CSCs were
reported to produce IL-4 that was essential to the survival
of these cells (di Stefano et al., 2010). Antiapoptotic
proteins may be vital for protecting CSCs, as the admin‐
istration of IL-4 antibody resulted in the downregulated
expression of cellular FLICE-like inhibitory protein
(cFLIP) and B-cell lymphoma-extra large (Bcl-xL).
Moreover, IL-4 blocked enhanced tumor response
to standard chemotherapeutic drugs and delayed tumor
growth. CSCs showed higher resistance to chemother‐
apeutic drugs compared with cancer cells, whereas
the combination with IL-4 antibody abolished this
effect (Gharib et al., 2017). Todaro et al. (2007) suggested
that IL-4 protected CSCs from being killed by drug

treatment, and concluded that apoptosis-resistant CSCs
dictated colon carcinogenesis and therapy refractori‐
ness through the autocrine action of IL-4. Moreover,
di Stefano et al. (2010) found that survivin, another
apoptosis inhibitor, was increased in colon CSCs
regulated by IL-4 via the signal transducer and activator
of transcription 6 (STAT6) signaling pathway. To some
extent, this was consistent with a different study on
breast cancer (Zhang et al., 2008). Similar to CSCs,
cancer-initiating cells (CICs) are characterized by the
capacity for promoting tumor growth and chemotherapy
resistance (Kreso and Dick, 2014; Lima-Fernandes
et al., 2019). Volonté et al. (2014) revealed that
colorectal CIC-associated IL-4 might be responsible
for blocking the proliferation of T cells through target‐
ing IL-4R expressed in T cells, which was dependent
on cell-to-cell contact between CICs and T cells.
Moreover, IL-4 blocking resulted in the enrichment of

Fig. 2 Mechanisms of recruitment and functions of basophils in the TME. (a) Basophils were recruited and activated in
TDLNs under the influence of TME, and regulated the tumor-promoting Th2 immune response in PDAC. The
recruitment of basophils into TDLN was closely associated with the secretion of chemokines CCL7/MCP3 by M2
macrophages, and basophil activation was induced by T cell-derived IL-3. (b) Treg depletion in melanoma-bearing mice
enhanced tumor infiltration of basophils and CD8+ T cells, leading to the rejection of the tumor. Intratumoral basophils
enhanced CD8+ T cell accumulation via the production of chemokines CCL3 and CCL4. (c) Cutaneous exposure to the
carcinogen DMBA induced IgE production signaling through FcεRI expressed on basophils, which in turn mediated the
protection against carcinogenesis. Moreover, αβ T cell-derived IL-4 was critical for IgE production, while tumor-protective
IgE also required γδ T cells. DMBA: 7,12-dimethylbenz[a]anthracene; TDLN: tumor draining lymph node; TME: tumor
microenvironment; Th2: T helper lymphocyte 2; PDAC: pancreatic ductal adenocarcinoma; CCL: chemokine (C-C motif)
ligand; MCP3: monocyte chemotactic protein 3; IL: interleukin; Treg: regulatory T cell; CD: cluster of differentiation;
IgE: immunoglobulin E.
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CD8+ T cells and enhanced anti-CICs immune responses.
These results indicated that the neutralization of IL-4
signaling may shed light on new immunotherapy
targeting CICs. Recently, Lin et al. (2019) reported that
miR-195-5p, a tumor suppressor, regulated colorectal
cancer (CRC) epithelial-mesenchymal transition (EMT),
which consequently affected IL-4 expression. More
importantly, miR-195-5p-mediated IL-4 secretion
resulted in the reduction of M2 macrophage polariza‐
tion. Costamagna et al. (2020) found that IL-4 adminis‐
tration was capable of prolonging survival and rescuing
myogenesis as well as muscle mass in colon cancer-
bearing mice. These results proved that IL-4 treatment
may improve the quality of life of CRC patients. Overall,
basophil-derived IL-4 might participate in regulating
CSC survival, angiogenesis, tumor cell proliferation,
EMT, and TME.

3.2 IL-13 cytokine

Akin to IL-4, IL-13 is another vital Th2 cytokine
responsible for many physiological and pathological
activities. Schroeder and Bieneman (2017) revealed
that basophils produce IL-13 when cocultured with
lung cancer cell line A549. Interestingly, Zhang Y et al.
(2018) demonstrated that IL-13 promotes the prolifera‐
tion and migration of A549 cells. We cannot exclude
the possibility that basophil-derived IL-13 might
play a role in the growth and invasion of lung cancer.
There is accumulating evidence that regulatory T cells
(Tregs) contribute to immunosuppressive TME (Saka‐
guchi et al., 2008). Sharma et al. (2018) found that
Tregs could induce basophil activation and promote the
release of IL-13. A later study from the same group
indicated that Tregs might also mediate tumor immune
escape by activating basophils (Das et al., 2020). Liou
et al. (2017) reported that IL-13 was expressed in
acinar-to-ductal metaplasia and pancreatic intraepithelial
neoplasia cells, and differentiated inflammatory macro‐
phages into Ym1+ macrophages in these lesions, which
then secreted IL-1 receptor antagonist (IL-1Ra) and
chemokine (C-C motif) ligand 2 (CCL2), promoting
pancreatic fibrosis and tumor growth. IL-13 was
reported to attenuate tumor growth of melanoma and
fibrosarcoma-bearing mice possibly via the recruitment
of neutrophils and macrophages (Ma et al., 2004).
These results indicated that IL-13 played a role in
antitumor immunity likely through activating innate
immune responses.

Sinha et al. (2005) reported that IL-13 negatively
regulated immune surveillance and promoted the
development of metastatic breast cancer. Their study
revealed that IL-13-deficient mice could generate M1
macrophages, which then played a tumor-protective
role by producing nitric oxide (NO) after the surgical
resection of a primary tumor. In addition, myeloid-
derived suppressor cells (MDSCs) decreased to normal
levels after surgery, which reduced the suppression of
immune surveillance by CD4+ T cells and CD8+ T
cells. However, M1 macrophages alone were not
sufficient to eradicate tumors, since IL-4Rα-deficient
mice could also generate M1 macrophages but with
an elevated MDSC after removal of the primary tumor,
and the tumor remained susceptible. These results
indicated that effective antitumor immunity required a
coordinated interaction of multiple aspects, such as
increased NO-producing M1 macrophages and cytotoxic
lymphocytes, as well as decreased MSDCs. Aspord
et al. (2007) indicated that CD4+ T cell-derived IL-13
promoted the development of breast cancer induced
by dendritic cells (DCs), which were instructed by
cancer cells in vivo. Moreover, phosphorylated STAT6
was detected in cancer cells, indicating that an IL-13/
STAT6 signaling pathway may participate in regulating
tumor growth.

Deepak et al. (2007) found that blocking IL-13
activity by delivering decoy IL-13Rα2 resulted in
delayed tumor growth and prolonged the survival of
Dalton’s lymphoma-bearing mice. A later study by the
same group showed that neutralization of IL-13 restored
and further augmented the production of reactive oxygen
intermediate from TAMs in murine Dalton’s lymphoma
(Deepak et al., 2008). This suggested that a blockade
of IL-13 could partially restore macrophage cytotoxicity
in Dalton’s lymphoma. Future studies should investigate
whether basophil-derived IL-13 can modulate tumor
growth and the formation of metastasis by acting on
other stromal cells in TME in preclinical models and/
or in human cancer.

3.3 VEGF-A cytokine

VEGF-A, a component of angiogenesis, is essential
for tumor progression and metastasis by delivering
oxygen and nutrients (Ferrara and Kerbel, 2005). Several
effector cells of inflammation are important sources
of angiogenic factors, such as mast cells, macrophages,
or basophils (Marone et al., 2016). Studies have
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shown that activated basophils are a major source of
VEGF-A (de Paulis et al., 2006; Marone et al., 2016,
2020a). Thus, basophils might be involved in the
complex network of inflammation and tumor angio‐
genesis, as well as in tumor development. Moreover,
supernatants of activated basophils induced an angio‐
genic response in the chick embryo chorioallantoic
membrane, which was inhibited by anti-VEGF-A anti‐
body (de Paulis et al., 2006).

Targeting VEGF-A proved efficient in suppressing
tumor growth, metastasis, and vascular leakage in
different mouse models including Lewis lung carcinoma
(LLC), melanoma, colon cancer, breast tumor, and ovarian
carcinoma (Koh et al., 2010). In a recent study, VEGF-A
was revealed to contribute to drug resistance, as its
silencing inhibited tumor cell proliferation and invasion
in dabrafenib-resistant melanoma cells (Caporali et al.,
2019). Cheng et al. (2019) found that dying tumor
cell-secreted VEGF-A was involved in tumor repopu‐
lation, which is a key contributor to tumor recurrence
after radiotherapy; the inhibition of VEGF-A or VEGF-A
receptors restrained tumor repopulation. This demon‐
strated that VEGF-A might be a potential target for
preventing tumor recurrence after radiotherapy.

In addition, VEGF-A was reported to play a key
role in the establishment of an immunosuppressive
TME by inhibiting the maturation of DCs, inducing
the expansion of MDSCs and promoting the proliferation
of Tregs (Terme et al., 2013). Moreover, in a recent
study, VEGF-A inhibition abated M2 macrophages
and suppressed the revascularization and progres‐
sion of pancreatic neuroendocrine tumors (Keklikoglou
et al., 2018). Studies are urgently needed to determine
whether basophil-derived VEGF-A regulates tumor
development through interacting with the above immune
cells in TME. Collectively, these findings suggested
that basophils might be involved in the complex
network of tumor angiogenesis by regulating vascular
growth factors and their receptors. Future investi‐
gations should evaluate the roles of VEGF-A and
other angiogenic factors produced by basophils in
different tumors.

4 Basophil-related chemokines and cancers

Basophils release several chemokines and express
numerous chemokine receptors on their surface (Fig. 1).

These chemokines play critical roles in a number of
processes, such as leukocyte recruitment and activation,
or inflammatory and immune responses (Romagnani,
2002; Russo et al., 2014).

4.1 CCL3/macrophage inflammatory protein-1α
(MIP-1α) chemokine

Existing data suggest that CCL3 is an important
chemokine augmenting immune cellular infiltration in
certain cancers and plays a vital role in antitumor
immunity. Allen et al. (2018) indicated that CCL3
augments tumor rejection and enhances CD8+ T cell
infiltration in colon cancer. Moreover, they demon‐
strated that a CCL3-secreting tumor vaccine can effect‑
ively reduce the growth of established tumors. Interest‐
ingly, evidence by Sektioglu et al. (2017) showed
that basophil-derived CCL3 could dampen tumor growth
via recruiting CD8+ T cells (Fig. 2b). In their study,
basophils infiltrated and were activated in the TME of
melanoma in the context of depletion of Treg cells.
Moreover, basophil depletion failed to suppress tumor
growth, as CD8+ T cells and other immune cells were
significantly reduced in the TME. Mechanistically,
tumor-derived IL-3, which is pivotal during the lifespan
of basophils as discussed above, recruited basophils into
the TME, which in turn produced CCL3 to promote
the migration and accumulation of CD8+ T cells in the
TME, thus leading to the rejection of the tumor.

Furthermore, basophil-derived CCL3 has also
been reported to participate in regulating hemato‐
logical malignancies. Baba et al. (2016) revealed that
basophils played an important role in chronic myeloid
leukemia (CML) by releasing CCL3. Their study
showed that basophil-derived CCL3 impaired the
normal hematopoiesis by inhibiting hematopoietic
stem/progenitor cell proliferation in the bone marrow.
In particular, CCL3-producing basophil-like leukemic
cells could induce the expansion of leukemia initiating
cells and thus promote the development of CML.
Remarkably, blocking C-C motif receptor 5 (CCR5), the
receptor of CCL3, significantly prevented CMLprogres‐
sion, which indicated that targeting basophil-derived
CCL3 might be a promising strategy to improve the
therapeutic outcome in CML.

In the LLC mouse model, the treatment with
MIP-1α and Propionibacterium acnes, which could
induce local inflammatory response, resulted in a reduced
tumor burden and prolonged survival in tumor-bearing
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mice. Moreover, increased myeloid DCs and natural
killer (NK) cells, as well as CD8+ T cells, were marked‐
ly accumulated in the TME of lung cancer (Nakano
et al., 2007). Nakasone et al. (2012) firstly revealed
that host-derived MIP-1α was responsible in primary
and metastatic melanoma-bearing mice. Both local‐
ized tumor growth and lung metastasis were potenti‐
ated in the absence of MIP-1α. Specifically, reduced
antitumor immunity cells, such as CD4+ T cells, CD8+

T cells, and NK cells, and their cytokine production,
including interferon-γ (IFN-γ) and tumor necrosis
factor-α (TNF-α), were detected in MIP-1α-deficient
mice. Allen et al. (2018) reported that CCL3 suppressed
colon tumor growth by modulating innate and adaptive
antitumor immunity in the TME. Therein, CCL3 derived
from engineered colon cancer cell lines recruited NK
cells, which synthetized and released IFN-γ and thus
promoted DC accumulation. The CCL3-CCR5 axis was
also found to augment the invasive and migratory abilities
of tumor cells in esophageal squamous cell carcinoma
(ESCC) (Kodama et al., 2020). In the latter study, both
TAMs and cancer cell lines were detected to secrete
CCL3 and its receptor CCR5, which is observable in
cancer cells. A further investigation suggested that
CCL3 induced migration and invasion of ESCC by
activating the phosphatidylinositol 3 kinase/protein
kinase B (PI3K/Akt) and mitogen-activated protein
kinase kinase/extracellular regulated protein kinase
(MEK/ERK) signaling pathways in tumor cells (Kodama
et al., 2020). Altogether, these results indicated that
basophil-secreted CCL3 may modulate innate and
adaptive immune responses and induce chemokine
release, which in turn changes the biological behavior
of the tumor. However, whether CCL3 functions as
an antitumor or protumor factor is still controversial
and needs further elucidation.

4.2 CCL4 chemokine

The inflammatory chemokine CCL4 plays a
significant role in the pathogenesis and progression of
cancer (Lien et al., 2018). Accumulated evidence
suggests that CCL4 is a critical contributor in attracting
relevant immune cells to the TME in certain cancers
(Spranger et al., 2015; Allen et al., 2018). Liu et al.
(2015) found that CCL4 expression was significantly
correlated with the expression of CD8 and granzyme
B in ESCC, and CCR5 was consistently found to be
mainly expressed on CD8+ T cells. Therein, it was

indicated that CCL4 might be associated with CD8+ T
cell infiltration in TME. Surprisingly, Sektioglu et al.
(2017) showed that basophil-derived CCL4 could
dampen tumor growth in melanoma (Fig. 2b). In this
process, intratumoral basophils produced CCL4 to
promote the migration and accumulation of CD8+ T cells
in the TME, thus leading to the rejection of the tumor.
Similarly, Romero et al. (2020) found that CCL4
was strongly associated with CD8+ T cell infiltration
in PDAC. More crucially, Williford et al. (2019) used
a tumor stroma-targeting approach to deliver CCL4,
which resulted in recruiting DCs and CD8+ T cells in
TME and improving the antitumor effect of immuno‐
therapy. These results suggested that basophils might
also exert an antitumor immunity function through
attracting immune cell accumulation in the TME via
secreting CCL4.

Sasaki et al. (2016) reported that CCL4 could
mediate interactions between breast cancer cells and
intra-bone fibroblasts, which led to breast cancer bone
metastasis. Mechanistically, tumor-derived CCL4
induced fibroblasts to express connective tissue growth
factor (CTGF)/cellular communication network factor
2 (CCN2) by binding to its specific receptor CCR5,
which promoted cancer cell growth and survival in
the context of hypoxia. Blocking CCR5 resulted in
the reduction of tumor formation and fibroblast numbers.
This study indicated that the CCL4-CCR5 axis played
an important role in breast cancer bone metastasis,
which was considered a promising strategy to suppress
tumor metastasis. Lymphatic vessels play vital role in
tumor metastasis and immunity (Jiang, 2019). CCL4
was found to promote lymphangiogenesis in oral
squamous cell carcinoma (OSCC) (Lien et al., 2018).
Therein, CCL4 induced VEGF-C expression in OSCC
cells through activating the Janus kinase 2 (JAK2)/
STAT3 axis by binding to CCR5 and finally contributing
to lymphangiogenesis. Lien et al. (2018) concluded
that targeting CCL4 might be a novel efficient strategy
to suppress lymphangiogenesis and metastasis in OSCC.
Nevertheless, a recent study also found that tumor
cell-derived CCL4 plays an antitumor immunity role
by recruiting peripheral blood or peritumor regions γδ
T-cells into the TME of hepatocellular carcinoma
(Zhao et al., 2021). Therefore, these results suggested
that basophils and its secretion, CCL4, might be
potential target improving cancer immunotherapy
particularly in “cold” tumors.
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4.3 RANTES/CCL5 chemokine

CCL5, also known as regulated upon activation
normal T cell expressed and secreted factor (RANTES),
is expressed in various types of immune cells, such as
lymphocytes, macrophages, and basophils (Oliver
et al., 2010). Nakashima et al. (2014) reported that
basophils promoted the recruitment of eosinophils
through secreting CCL5. Moreover, the Ito group
found that CCL5 induced the accumulation of eosino‐
phils in the TME, thus exerting antitumor immunity
(Ito et al., 2017). Consequently, there is a possibility
that basophil-derived CCL5 might have tumor-protective
effects through acting on eosinophils. Zhang et al.
(2015) showed that CCL5 induced breast cancer
pulmonary metastasis via promoting CD4+ T cell
differentiation into Th2 cells, and the polarized Th2
cells then modulated the metastatic activity of TAMs,
which consequently promoted tumor growth and
metastasis. Similarly, Zheng et al. (2020) reported that
CCL5 modulated breast cancer distant colonization
via recruiting macrophages. Moreover, a recent study
revealed that CCL5 could induce CCR5-positive
macrophage accumulation in residual tumors, which
was in turn responsible for collagen deposition and
partly resulted in the acceleration of tumor recurrence
(Walens et al., 2019).

RANTES/CCL5 was reported to induce immune
escape by reducing CD8+ T cell infiltration and mediating
interactions between cancer cells and stromal cells,
such as macrophages and Treg cells. Chang et al. (2012)
found that tumor-derived CCL5 promoted CRC
progression through augmenting CD8+ T cell apoptosis
induced by transforming growth factor-β (TGF-β)
produced by Treg cells in the TME. Moreover, blocking
CCR5 or knockdown of CCL5 in tumor-bearing mice
resulted in reduced tumor growth, which was associated
with lower Treg cell recruitment and the reduction of
CD8+ T cell apoptosis. Similarly, Zhang SB et al.
(2018) showed that the accumulation of CD8+ T cells
in the TME was increased in CCL5-deficient mice.
CCL5 has been demonstrated to participate in regulating
ovarian cancer initiation and progression through
recruiting DCs, promoting the invasion, migration,
and differentiation of ovarian CSCs, and mediating
angiogenesis in ovarian cancer (Nesbeth et al., 2010;
Long et al., 2012; Tang et al., 2016). Interestingly,
CCL5 was also reported to induce NK cell accumula‐
tion in the TME of melanoma, which subsequently

suppressed tumor growth after the depletion of autophagy
gene Beclin1 (BECN1) (Mgrditchian et al., 2017).
Collectively, these results suggested that whether CCL5
exerted antitumor or protumor immunity was contro‐
versial, and this divergence may result from different
tumor types and microenvironments. Thus, basophil-
derived CCL5 may be responsible for maintaining
stem cell-like characteristics altering the infiltration of
immune cells, such as NK cells, macrophages, DCs, and
CD8+ T cells and inducing CD4+ T cell differentiation,
which finally promotes or attenuates tumor progression.

5 Conclusions and challenges

Basophils account for less than 1% of all peripheral
blood leukocytes. Despite their small numbers in
peripheral blood and tissues, they participate in regu‐
lating many disorders, such as allergy, infection, and
cancer. To understand the exact role of basophils,
technical issues in basophil identification must be
first addressed. The current markers to detect baso‐
phils are not reliable and are divergent, and therefore,
new markers are urgently necessary. Moreover, their
functions in allergic disease and parasitic infection
have been largely and widely investigated, but there
are fewer studies focusing on the role of basophils in
the TME. This topic should draw more attention in
future studies with great emphasis on the relevant
molecular mechanisms.

Immunotherapies targeting the programmed death-1/
programmed death-ligand 1 (PD-1/PD-L1) axis have
innovated strategies for antitumor immunity and achieved
great success in multiple cancers. Tumor cells evade
immunological surveillance and avoid being killed
by immune cells by expressing PD-L1. Studies have
shown that immune cells such as macrophages and
neutrophils also express PD-L1 in the TME of cancers,
which promotes tumor cell proliferation and suppresses
tumor-killing immune cells (Deng et al., 2021; Petty
et al., 2021). Intriguingly, it has been reported that
basophils express PD-L1 in early lung adenocarcinoma
(Lavin et al., 2017). Moreover, tissue resident basophils
can induce the polarization of lung macrophages
to the M2 subtype (Cohen et al., 2018). However,
whether PD-L1+ basophils play the role of anti- or
pro-tumorigenesis remains largely unknown and needs
thorough investigation to clarify.
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The TME is composed of multiple immune
cells, such as CD8+ T cells, macrophages, NK cells,
Tregs, MDSCs, neutrophils, and eosinophils. Many
of these are already known to be involved in regulating
tumor initiation and development, either in tumor-
promoting or tumor-protective roles. Understanding
the role and molecular mechanism of basophils in
the TME will be helpful and important to design
new targeted drugs that can regulate basophil activity
to halt cancer progression. Similar to macrophages
and neutrophils that have dual anti- or pro-tumorigenic
roles, basophils have also been reported to promote
tumor rejection in mice or to be related to reduced
survival. Whether this effect depends on tumor type
or other factors is still unclear. In addition, targeting
basophils, such as their depletion or reprogramming,
may trigger uncertain reactions because TME is a
complex network composed of immune cells, cancer
cells, and other stromal cells. Simultaneous single-
cell analysis of the immune landscape of the TME in
different tumors can help us to better identify the
role of basophils during tumor development. Taken
together, many issues need to be urgently addressed,
and the answers may be helpful to design novel
strategies to improve outcomes for cancer patients,
whether combined with current therapy or applied
alone.

In summary, the biology of basophils in allergy
and infection has been widely investigated. In addition,
recent studies have showed that basophils participate
in tumor initiation and progression directly or syner‐
gistically with other stromal cells by secreting cyto‐
kines and chemokines. Further studies should focus
on the mechanisms of activation, recruitment, and
signaling pathways of basophils in the TME. Single-cell
RNA-seq will aid in uncovering the characteristics of
basophils in different cancers. The controversy over
whether basophils function as tumor-promoting or
tumor-protecting cells remains, and thorough investi‐
gations are needed to determine their potential as a
novel target for future cancer immunotherapies.
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