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Abstract: Tinnitus is defined as a perception of sound without any external sound source. Chronic tinnitus is a frequent 
condition that can affect the quality of life. So far, no causal cure for tinnitus has been documented, and most phar-
macologic and psychosomatic treatment modalities aim to diminish tinnitus’ impact on the quality of life. Neuromod-
ulation, a novel therapeutic modality, which aims at alternating nerve activity through a targeted delivery of a stimulus, 
has emerged as a potential option in tinnitus treatment. This review provides a brief overview of the current neuro-
modulation techniques as tinnitus treatment options. The main intention is to provide updated knowledge especially for 
medical professionals counselling tinnitus patients in this emerging field of medicine. Non-invasive methods such as 
repetitive transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and transcutaneous 
vagus nerve stimulation were included, as well as invasive methods such as implanted vagus nerve stimulation and 
invasive brain stimulation. Some of these neuromodulation techniques revealed promising results; nevertheless, 
further research is needed, especially regarding the pathophysiological principle as to how these neuromodulation 
techniques work and what neuronal change they induce. Various studies suggest that individually different brain states 
and networks are involved in the generation and perception of tinnitus. Therefore, in the future, individually tailored 
neuromodulation strategies could be a promising approach in tinnitus treatment for achieving a more substantial and 
longer lasting improvement of complaints. 
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1  Introduction 
 

Tinnitus is defined as a perception of sound 
(usually a tone or buzzing, but also other sounds) 
without any external sound source. About 10% to 
15% of the population of Europe and the USA are 
currently experiencing tinnitus, and are seeking med-
ical evaluation and therapy (Axelsson and Ringdahl, 
1989; Hoffman and Reed, 2004; de Ridder et al., 2014a). 
Chronic tinnitus can lead to a lower health-related 
quality of life (Nondahl et al., 2007; Prestes and 

Daniela, 2009) and depressive symptoms (Folmer  
et al., 1999; Dobie, 2003; Weidt et al., 2016). In about 
90% of people with chronic tinnitus, some forms of 
hearing loss have been documented (Davis and Rafaie, 
2000; Adjamian et al., 2014). The pathophysiology of 
tinnitus is not yet thoroughly understood. In the dis-
tant past, most forms of tinnitus were assumed to be 
generated in the inner ear or in the cochlear nerve. 
The fact that tinnitus usually persists after auditory 
nerve section (Jackson, 1985) implicates the essential 
involvement of the central nervous system in the 
pathophysiology of tinnitus generation and percep-
tion. Nevertheless, tinnitus is still thought to be trig-
gered by a peripheral lesion of hair cells in the cochlea, 
which results in a loss of input to the central auditory 
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areas. This theory is supported by different studies 
(van de Heyning et al., 2008; Punte et al., 2011;  
Ramos et al., 2012) examining cochlear implantation 
as an effective treatment option for single-sided deaf 
patients with tinnitus. Besides cochlear implants, 
other techniques, which aim at restoring hearing 
function, like conventional hearing aids, also play an 
important role in the therapy of tinnitus patients. In 
the initial theories about the involvement of the cen-
tral nervous system in tinnitus generation, the reor-
ganization of the auditory cortex was considered to be 
the origin of all further developments. However, 
various functional imaging studies and animal models 
have demonstrated that non-auditory areas as well as 
the auditory cortex are involved and play an important 
role in chronic tinnitus patients (Schlee et al., 2008, 
2009; Vanneste et al., 2010b). The involvement of 
central nervous structures in the pathophysiology of 
tinnitus has had great implications for further thera-
peutic attempts to reduce tinnitus-related complaints. 
This development is reflected by the fact that, on the 
basis of meta-analytic reviews, most guidelines rec-
ommend cognitive behavioral therapy as the standard 
treatment for chronic disabling tinnitus. 

Different underlying theories assume that a pe-
ripheral lesion of the cochlear hair cells induces a 
suboptimal or maladaptive plasticity of the central 
nervous system, inducing reorganization and hyper-
activity in central auditory and non-auditory struc-
tures (Mühlnickel et al., 1998; Kaltenbach and Afman, 
2000; Salvi et al., 2000; Eggermont and Roberts, 2004; 
Vanneste and de Ridder, 2012; Hoare et al., 2016). 

One such theory focuses on the alteration in the 
tonotopic organization of the central auditory speci-
ficity as induced by hearing loss due to hair cell 
damage. Neurons with a loss of afferent sound input 
in the affected frequencies could still respond to input 
from nearby intact frequency regions. This could lead 
to a shift in the neuron’s characteristic frequency, thus 
resulting in an over-representation of frequencies near 
the edge of the hearing loss (Eggermont and Roberts, 
2004; Adjamian et al., 2014). 

Another theory focuses on thalamocortical 
dysrhythmia (TCD) as a pathophysiologic model for 
tinnitus generation (Llinás et al., 1999; Vanneste and 
de Ridder, 2012). The neuronal plasticity due to the 
hearing loss affects the thalamocortical signal trans-
mission, resulting in a TCD. Physiologically, an au-

ditory stimulus increases the thalamocortical rhythms 
from alpha (8‒13 Hz) to gamma (>30 Hz) waves 
(Joliot et al., 1994; Vanneste and de Ridder, 2012). In 
deafferentation, an increased spontaneous firing rate 
of neurons leads to a slowing down of resting state 
from alpha to theta (4‒7 Hz) oscillations with an 
increase in surrounding gamma activity (de Ridder  
et al., 2015b). The consequence of specific thalamic 
nuclei hyperpolarization in TCD is a constant, coupled 
theta–gamma band activity (Vanneste and de Ridder, 
2012). In correlation with electroencephalography 
(EEG) and magnetoencephalography (MEG) studies, 
tinnitus is associated with a persistent high-frequency 
gamma band activity in temporal brain areas (Llinás 
et al., 1999, 2005; Weisz et al., 2005, 2007; Vanneste 
and de Ridder, 2012). Furthermore, theta burst-firing 
increases the synchronization of neuronal oscillatory 
activity, which is thought to play a part in the changed 
neural activity gaining access into consciousness  
(de Ridder et al., 2015b; Hoare et al., 2016). Alterna-
tively, a noise-cancelling mechanism involving dif-
ferent non-auditory brain areas has been proposed to 
diminish or prevent tinnitus perception (de Ridder  
et al., 2014a, 2015b). 

The involvement of the non-auditory network in 
chronic tinnitus patients was first described by Ja-
streboff (1990). Since then, various functional neu-
roimaging studies have demonstrated altered brain 
structures in tinnitus patients, which led to the mod-
elling of different networks involved in tinnitus gen-
eration (Schlee et al., 2008, 2009; Vanneste et al., 
2010b). de Ridder et al. (2011a) and Langguth et al. 
(2013) identified several such networks that partici-
pate alongside the auditory cortex in tinnitus patients 
and generated a model of involved networks. These 
networks include a perception network (subgenual 
and dorsal anterior cingulate cortices, posterior cin-
gulate cortex, precuneus, parietal cortex, and pre-
frontal cortex), salience network (anterior cingulate 
cortex, anterior insula), distress network (anterior 
cingulate cortex (subgenual and dorsal anterior cor-
tical cortices), anterior insula and amygdala), and 
memory areas (parahippocampal area, amygdala, and 
hippocampus).  

As previously mentioned, a different concept 
focuses on a dysfunctional noise-cancelling mecha-
nism, which seems to be driven by the limbic fronto-
striatal network (de Ridder et al., 2014a; Leaver et al., 
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2011, 2012, 2016a; Mühlau et al., 2006; Rauschecker 
et al., 2010, 2015; Seydell-Greenwald et al., 2012, 
2014). Various imaging studies have demonstrated 
structural and functional changes in the ventromedial 
prefrontal cortex, nucleus accumbens and medial 
dorsal nucleus in the thalamus (Pandya et al., 1994; 
Tanibuchi and Goldman-Rakic, 2003; Mühlau et al., 
2006; Leaver et al., 2011, 2012, 2016a, 2016b; Meyer 
et al., 2016). It is theorized that the limbic structures 
suppress auditory activity via projections from the 
ventromedial prefrontal cortex to the thalamic retic-
ular nucleus (Mühlau et al., 2006; Rauschecker et al., 
2010; Leaver et al., 2011, 2016a). 

All the above-mentioned theories are based on 
functional imaging studies, which can only indicate 
the underling mechanism in tinnitus generation. Re-
cently, Sedley et al. (2015) demonstrated the appro-
priateness of these theories through the intracranial 
mapping of the cortical tinnitus in a patient. Another 
way to gain more information about the essential 
contributions of specific brain areas could be to in-
vestigate the behavioral effects resulting from the 
transient disturbance of neural activity in these re-
gions due to the different neuromodulation methods 
(Langguth et al., 2012). 

These interventions can be divided into invasive 
(e.g. epidural/subdural or deep brain electrical stim-
ulation) and non-invasive methods (Langguth et al., 
2012). Particularly, the non-invasive methods can be 
furthermore divided into direct (e.g. transcranial 
magnetic or electrical stimulation) and indirect neu-
rostimulation (e.g. neurofeedback, acoustic coordinated 
reset (CR) neuromodulation, and tailored notched 
music therapy). So far, none of the neuromodulation 
procedures have been established as a routine therapy 
method in tinnitus patients. This review covers most 
of the neuromodulation methods, but the ones induced 
by different ways of acoustic stimulation were excluded 
(e.g. cochlea implantation as an invasive neuromod-
ulation, acoustic CR neuromodulation and tailored 
notched music therapy as an indirect neurostimulation). 

The aim of this review is to give a short and 
updated overview of the different neuromodulation 
approaches in tinnitus research out of the plenty of 
new literature, especially for medical professionals 
counselling tinnitus patients. Due to the fact that there 
is no causal therapy for tinnitus, it is not unusual that 
often well-informed patients ask medical profession-

als about a specific neuromodulation therapy which 
they heard or read about. In the last years more and 
more data on neuromodulation strategies are available 
and new techniques were introduced into the field. 
This article reviews the newest literature of neuro-
modulation techniques in tinnitus treatment so that 
medical professionals can counsel their patients ac-
cording to the latest information and their respective 
implications in the possible future treatment options 
of tinnitus. Furthermore, the present value of each 
technique in clinical routine will be discussed in the 
particular section. 
 
 
2  Repetitive transcranial magnetic stimulation 
 

Transcranial magnetic stimulation (TMS) is a 
non-invasive type of neuromodulation. Intermittent 
magnetic fields are produced by a coil that is in con-
tact with the subject’s scalp and that delivers elec-
tromagnetic pulses (Theodoroff and Folmer, 2013). 
These magnetic fields pass largely undistorted through 
the cranium and affect the neuronal activity of the 
brain beneath (Kleinjung et al., 2005). Different mag-
netic fields are generated according to the coil design. 
Figure-eight coils are often used due to their focused 
pattern of activation, but other coil types are also used 
(Soleimani et al., 2016). In repetitive TMS (rTMS), 
several TMS pulses are applied to the subject’s head 
during one session. The utilized frequency of rTMS 
modulates the cortical activity differently. In the 
motor cortex, high-frequency rTMS (i.e. 5‒20 Hz) 
transiently increases the cortical excitability, while 
low-frequency rTMS (i.e. 1 Hz) usually leads to a 
reduction of neural activity (Chen et al., 1997; Sieb-
ner et al., 2003; Zaghi et al., 2010b). This reduction 
has led to the proposal of low-frequency rTMS as an 
innovative treatment strategy for tinnitus, which is a 
condition associated with increased cortical activity 
in temporal brain areas (Hoffman and Cavus, 2002; 
Theodoroff and Folmer, 2013). A selection of litera-
ture (Kleinjung et al., 2005; Rossi et al., 2007; Khedr 
et al., 2008, 2009; Anders et al., 2010; Marcondes  
et al., 2010; Mennemeier et al., 2011; Chung et al., 
2012; Lee et al., 2013) has shown that repeated ses-
sions of low-frequency rTMS applied to temporal or 
temporoparietal cortical areas had a possible thera-
peutic efficacy in terms of tinnitus suppression, but 
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the effect at clinical level was usually partial and 
temporary (Lefaucheur et al., 2014). Sham stimulation 
failed to demonstrate any beneficial effect. Further 
studies have suggested that the therapeutic efficacy of 
rTMS could be enhanced by stimulating frontal or 
prefrontal cortical areas in addition to the temporo-
parietal cortex (Kleinjung et al., 2008; Kreuzer et al., 
2011; de Ridder et al., 2013; Lehner et al., 2013a, 
2013b; Langguth et al., 2014; Lefaucheur et al., 2014). 
Most recently, studies have combined high-frequency 
rTMS of the left dorsolateral prefrontal cortex with 
low-frequency rTMS of the right, left or both tem-
poroparietal cortical areas and have demonstrated a 
larger tinnitus improvement than unilateral low- 
frequency rTMS of the temporoparietal cortex alone 
(Lehner et al., 2013a, 2013b, 2015; Lefaucheur et al., 
2014). Furthermore, a new stimulation design has 
applied burst rTMS to the auditory cortex for tinnitus 
suppression (de Ridder et al., 2007a, 2007b). In con-
trast to tonic TMS, which mainly inhibits pure tone 
tinnitus, burst stimulation transiently suppressed both 
pure tone and narrow-band tinnitus (de Ridder et al., 
2007a, 2007b). 

Despite some promising results, the therapeutic 
effect of rTMS on chronic tinnitus is usually partial 
and temporary. Furthermore, the long-term effects of 
TMS are still not known yet. For these reasons, rTMS 
is not recommended as a therapeutic option in clinical 
routine. Nevertheless, rTMS qualifies as a diagnostic 
method in research investigating which brain areas 
are involved in tinnitus generation. On that basis, 
rTMS has been used for localization purposes in other 
neuromodulation methods targeting different brain 
areas for tinnitus suppression. For this purpose, 
mainly high-frequency rTMS was used, e.g., for de-
termining the correct position of an implanted epi-
dural electrode. 
 
 
3  Transcranial electrical stimulation 

3.1  Transcranial direct current stimulation 

In transcranial direct current stimulation (tDCS), 
another non-invasive method of brain stimulation, a 
relatively weak, constant current (between 0.5 and 2 mA) 
is applied via scalp electrodes and passes through the 
cerebral cortex (Vanneste et al., 2011a; Vanneste and 
de Ridder, 2012). Two saline-soaked surface sponges 

act as surface electrodes, one serving as the anode and 
the other as the cathode. Anodal tDCS induces a de-
polarization of neurons leading to an excitatory effect 
on the underlying cerebral cortex while, under the 
cathode, a hyperpolarization causes an inhibitory 
effect. Depending on the polarity of the stimulation, 
tDCS can increase or decrease cortical excitability in 
the brain regions to which it is applied (Miranda et al., 
2006). 

The application of tDCS led to a temporary re-
duction in tinnitus loudness or distress ranging from 
seconds to hours, depending on the location of corti-
cal stimulation (Song et al., 2012; Shekhawat et al., 
2016). Anodal tDCS over the left temporoparietal 
area with the cathode over the contralateral frontal 
scalp resulted in a transient suppression of tinnitus in 
up to 40% of participants (Fregni et al., 2006; Garin  
et al., 2011; Shekhawat et al., 2013). Furthermore, 
bifrontal tDCS placement of the electrodes on the 
dorsolateral prefrontal cortex (with either the anodal 
electrode on the right and the cathodal electrode on 
the left side, or the opposite orientation), temporarily 
suppressed tinnitus perception and tinnitus distress in 
up to 43% of participants (Vanneste et al., 2010a, 
2011b, 2013a; Vanneste and de Ridder, 2011; de Ridder 
and Vanneste, 2012; Faber et al., 2012; Frank et al., 
2012). Lastly, bilateral tDCS over the auditory cortex 
has been shown to suppress tinnitus loudness (Joos  
et al., 2014). 

Due to the broad region of brain stimulation in 
tDCS between and underneath the electrodes, the 
interpretation of anatomically involved brain areas is 
difficult. One potential improvement to this problem 
is the use of high-definition tDCS (HD-tDCS) (Shek-
hawat et al., 2016). For controlled targeting of the 
stimulation, the conventional large sponge electrodes 
are replaced with smaller gel electrodes in HD-tDCS. 
In the setting of a 4×1 HD-tDCS, four electrodes are 
placed in a ring around a polarity determining the 
center electrode (Datta et al., 2009; Edwards et al., 
2013). This arrangement of tDCS enables a controlled 
targeting of the stimulation underneath the electrodes 
(Shekhawat et al., 2016). Shekhawat et al. (2016) 
demonstrated that 77.8% of the participants responded 
to HD-tDCS and referred to suppression of tinnitus 
loudness and annoyance with equal results. This was 
with a stimulation location of the left temporopari-
etal area and right dorsolateral prefrontal cortex. In 
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conclusion, HD-tDCS provides an opportunity to 
stimulate multiple target sites simultaneously and 
could therefore be a promising non-invasive neuro-
modulation method in tinnitus treatment (Shekhawat  
et al., 2016), but further research is required. 

3.2  Transcranial alternating current stimulation 

Another technique of non-invasive transcranial 
electrical stimulation is based on the application of 
alternating currents through an electrode, and is 
known as transcranial alternating current stimulation 
(tACS). The frequency of applied alternating currents 
allows for the manipulation of intrinsic cortical os-
cillations and it is therefore possible that tACS can 
interact with rhythmic neuronal activity (Zaghi et al., 
2010a). It follows that tACS should be able to mod-
ulate functions that are closely related to brain oscil-
lations at specific frequencies, such as the decreased 
alpha and the increased gamma activity in the audi-
tory cortex of tinnitus patients (Lorenz et al., 2009;  
de Ridder et al., 2011b; Vanneste et al., 2013b). The 
application of tACS intensifies the individual alpha 
frequency of the stimulated area (Zaehle et al., 2010a) 
and this is how tACS is presumed to modulate the 
tinnitus percept (Vanneste et al., 2013b). 

Despite the plausibility of this theoretical model, 
no effect on the tinnitus percept has been obtained by 
alpha modulated tACS over the auditory and dorso-
lateral prefrontal cortex (Zaehle et al., 2010b; Zaghi  
et al., 2010a; Vanneste and de Ridder, 2013). Alt-
hough the study of alpha-modulated tACS is at an 
early stage, further investigation does not seem mer-
ited (Claes et al., 2014; Hoare et al., 2016). 

3.3  Transcranial random noise stimulation 

A further method of non-invasive transcranial 
electrical stimulation that has been tested to a greater 
extent is transcranial random noise stimulation 
(tRNS). In tRNS, the generated current consists of 
random oscillations in a normal distribution for am-
plitude with a frequency spectrum between 0.1 and 
640 Hz, which appears similar to “white noise” in 
structure (Paulus, 2011; Vanneste et al., 2013b; To  
et al., 2017). Potentially, the application of tRNS 
might disrupt tinnitus related synchrony in the audi-
tory cortex and could thus induce an improvement of 
the tinnitus percept (van Doren et al., 2014). Vanneste  
et al. (2013b) demonstrated a larger transient suppres-

sive effect on tinnitus loudness and tinnitus-related 
distress with tRNS as compared to tDCS and tACS 
when applying the electrodes over the auditory cortex 
bilaterally. In another study (Joos et al., 2015), mul-
tiple sessions of tRNS showed an increased effect on 
tinnitus loudness but no further effect on tinnitus 
distress. Furthermore, a multisite transcranial elec-
trical stimulation protocol with bilateral auditory 
cortex tRNS after bifrontal tDCS showed more pro-
nounced suppressive effects on tinnitus loudness and 
distress than the bifrontal tDCS protocol alone (To  
et al., 2017).  

The whole-frequency spectrum of tRNS is often 
subdivided into a low- (0.1‒100 Hz) and a high- 
frequency (100‒640 Hz) tRNS, which can result in 
diverse effects (Terney et al., 2008; Fertonani et al., 
2011; Saiote et al., 2013; Joos et al., 2015). Regarding 
the frequency spectrum, Joos et al. (2015) demon-
strated that both low- and high-frequency tRNS reduced 
tinnitus loudness while only low-frequency tRNS had 
an effect on tinnitus-related distress. Whole-frequency 
tRNS applied bilaterally over the temporoparietal 
cortex had no significant effects on tinnitus loudness 
or tinnitus-related distress. 

Generally, tRNS could be a potential treatment 
option for tinnitus, but further studies are needed to 
evaluate the therapeutic effect of tRNS in a clinical 
routine. 

 
 

4  Neurofeedback 
 

Neurofeedback is based on the principal of op-
erant conditioning, and is another example of a non- 
invasive neuromodulation technique. In it, relevant 
aspects of brain signals acquired through EEG or 
other functional imaging techniques are extracted and 
processed into visual or acoustic signals, which are 
then fed back to the participant in real time. The par-
ticipant has to fulfill a task using the visual or acoustic 
feedback signals, and gets rewarded for desired 
changes or punished for undesired changes in brain 
activity. This kind of operant conditioning of EEG 
rhythms has already yielded successful results in 
attention-deficit hyperactive disorder and epilepsy 
(Lubar and Bahler, 1976; Lubar and Shouse, 1976; 
Lansbergen et al., 2011). As tinnitus patients also 
demonstrate abnormal spontaneous brain activity with 
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higher theta (4‒7 Hz), gamma (>30 Hz), beta (14‒30 Hz), 
and lower alpha (8‒13 Hz) band activity, neurofeedback 
has been studied as a treatment option (Gosepath et al., 
2001; Schenk et al., 2005; Dohrmann et al., 2007a, 
2007b; Crocetti et al., 2011; Hartmann et al., 2014). 
Both a single change of an increase of alpha fre-
quency, and a combined change with an increase of 
alpha and a decrease of beta or delta frequency in the 
region of the auditory cortex correlated with reduced 
tinnitus distress scores (Gosepath et al., 2001; Schenk 
et al., 2005; Dohrmann et al., 2007a, 2007b; Crocetti 
et al., 2011; Hartmann et al., 2014). However, besides 
some methodological shortcomings, difficulties in 
defining outcome measurements and small group 
sizes with lacking control condition, the non-invasive 
technique of neurofeedback seems to have some fu-
ture potential in the treatment of tinnitus. To date, no 
source localization algorithms of the EEG recordings 
(e.g. low-resolution electric tomography analysis 
(LORETA)) have been used to optimize the spatial 
resolution in the neurofeedback setting. Neurofeed-
back training protocols, which specifically focus on 
different brain areas of tinnitus networks by using an 
EEG source localization algorithm, could be investi-
gated as an even more specific non-invasive treatment 
modality for tinnitus in the future. 

 
 
5  Vagus nerve stimulation (VNS) 

5.1  General concept of VNS 

Discrimination training as a form of auditory 
stimulation has been postulated to reverse the patho-
logical neuroplastic changes in the auditory system 
associated with hearing loss and subsequent tinnitus 
(Hoare et al., 2014, 2016). However, the clinical 
benefit of this concept of auditory stimulation has 
been limited and the demonstrated improvements 
transitory (Hoare et al., 2010, 2016). As previously 
mentioned, not only the central auditory structures  
are involved in the suboptimal or maladaptive neu-
roplasticity in tinnitus generation and perception; 
non-auditory brain areas also participate in the plastic 
changes. Another important part in the modulation of 
cortical plasticity is played by the cholinergic and 
noradrenergic forebrain system. Animal studies have 
illustrated a pronounced and long-lasting change in 
cortical reorganization as induced by electrical stim-

ulation of the cholinergic nucleus basalis (Kilgard and 
Merzenich, 1998a). This finding led to the idea of 
pairing auditory stimulation with electrical stimula-
tion of the nucleus basalis as a possible tinnitus 
treatment (Kilgard and Merzenich, 1998b). However, 
an invasive procedure has to be performed to stimu-
late the nucleus basalis and therefore this kind of 
stimulation is not practicable in an extensive applica-
tion for tinnitus treatment (Hoare et al., 2016). Engi-
neer et al. (2013) demonstrated a similar stimulation 
of the nucleus basalis by using a much less invasive 
electrical VNS in noise-exposed rats with hearing loss 
and behavioral evidence of tinnitus. The pairing of 
VNS with auditory stimulation—consisting of acoustic 
tones at frequencies outside the tinnitus range—  
reversed the abnormal neural activity and behavioral 
correlates of tinnitus in noise-exposed rats (Engineer 
et al., 2013). Neither VNS nor acoustic stimulation 
alone showed a similar effect (Engineer et al., 2013). 
It has been postulated that while acoustic tones stim-
ulate the auditory cortex as a target for the neuro-
plastic change, the VNS promotes the desired cortical 
reorganization by inducing neuroplastic activity (En-
gineer et al., 2013). 

5.2  Implanted VNS 

Based on the above-mentioned concept of VNS, 
several studies have been conducted in the last few 
years to explore the safety and efficacy of this pro-
cedure in humans (de Ridder et al., 2014b, 2015a). 

As the implantation of a stimulation electrode on 
the vagal nerve is an invasive procedure, there are 
several operative risks as well as adverse effects due 
to VNS. These include general anaesthesiological risks, 
possible infection of the surgical site by the device, 
hoarseness due to vocal cord hypomobility, and 
temporary increases of tinnitus (Hoare et al., 2016). 

In a pilot study, ten participants with chronic 
moderate to catastrophic tinnitus severity received an 
implantation of the vagal nerve stimulator (de Ridder 
et al., 2014b). The acoustic stimulation with tones, 
excluding the tinnitus-matched frequency, was paired 
with VNS (de Ridder et al., 2014b). A clinically 
meaningful improvement of the tinnitus as well as 
physiological effects measured by EEG was reported 
by four of ten participants (de Ridder et al., 2014b). 
Furthermore, it was demonstrated that five of the par-
ticipants with no improvement were taking different 



Peter and Kleinjung / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2019 20(2):116-130 
 

122

medications including muscarinic antagonists, nore-
pinephrine agonists, and γ-amino butyric acid ago-
nists. These medications could probably interfere 
with acetylcholine and norepinephrine release in-
duced by VNS. 

The company MicroTransponder Inc. has re-
cently presented its results of a double blind, ran-
domized, multicenter study with 30 patients titled 
“Paired VNS™ treatment uses Vagus Nerve Stimu-
lation (VNS) paired with tones” on their website 
(http://www.microtransponder.com/en-gb/tinnitus/ 
physicians/clinical-experiences, data not yet pub-
lished). The overall clinical responder rate measured 
with a minimum change of 20% in tinnitus handicap 
inventory (THI) scores (Newman et al., 1996) was 
56% in the paired VNS™-treated patient group. Only 
mild adverse events were reported. Some degree of 
vocal cord paralysis was described in two patients 
with ongoing clinical improvement of the hoarseness 
or voice weakness. The promising results of paired 
VNS with acoustic could lead to a treatment option 
for tinnitus patients. However, at the moment the 
paired VNS™ as a tinnitus treatment is not yet US 
Food and Drug Administration (FDA)-approved. 

5.3  Transcutaneous VNS 

Transcutaneous stimulation of the vagus nerve 
(tVNS) via a nerval branch innervating the skin in the 
external auditory canal, as a non-invasive approach, 
has been investigated in parallel (Kreuzer et al., 2012, 
2014; Lehtimӓki et al., 2013). A pilot study from 
Kreuzer et al. (2014) demonstrated the feasibility and 
safety of tVNS in patients without a history of cardiac 
disease. However, there was no clinically relevant 
improvement of tinnitus complaints. Lehtimӓki et al. 
(2013) demonstrated acute neuromodulative effects 
of tVNS paired with tinnitus frequency-filtered music 
on the evoked auditory cortical responses. Further-
more, some patients showed a significant clinical de-
crease in tinnitus handicap. Hyvärinen et al. (2015) 
showed compatible neuronal changes on MEG and 
that the tVNS-induced change was correlated with 
THI scores. At present, there is one ongoing ran-
domized, single-blind, controlled clinical study of 
tVNS for tinnitus (Li et al., 2015). The results of this 
study are expected to be very informative and could 
lead to further clinical investigation about tVNS as a 
therapeutic option for tinnitus. 

6  Invasive brain stimulation 
 
Based on the theory of neuronal plasticity and 

reorganization of the central nervous system in tin-
nitus generation, invasive brain stimulation focuses 
on altering the neuronal tinnitus network through the 
electrical stimulation of cortical (epidural or subdural) 
or deep brain areas using implanted electrodes. 

6.1  Epidural and subdural cortical stimulation 

de Ridder et al. (2004) published the first case 
report of tinnitus suppression by using invasive elec-
trical stimulation of the primary auditory cortex in a 
single tinnitus patient. The patient suffered from se-
vere left-sided tinnitus subsequent to a sensorineural 
deafness after acoustic neuroma surgery on the left 
side. After the tinnitus responded positively to TMS 
applied to the right auditory cortex, an extradural 
electrode was implanted for electrical stimulation. 
Initially, the electrical stimulation caused the patient’s 
tinnitus to disappear completely. However, three weeks 
postoperatively, the high-pitched tinnitus returned. 
This was possibly due to cortical plasticity in re-
sponse to the constant stimulation. 

In a following case series from the same group 
(de Ridder et al., 2006), 12 participants with moderate- 
to-severe tinnitus received an implantation of two-pole 
electrodes, one electrode positioned intradural on the 
primary, and the other extradural on the secondary 
auditory cortex. The electrodes were then connected 
to an internal impulse generator which was first 
placed externally for one week and then implanted 
subcutaneously over the abdomen after beneficial 
effects of stimulation were noted. Overall, only two 
patients failed to report any improvement in their 
tinnitus complaints. Especially those participants with 
unilateral or pure tone tinnitus had better tinnitus 
suppression than those with bilateral or white noise 
tinnitus. Nevertheless, the tinnitus reappeared in all 
patients after a certain time of stimulation. 

Based on the model of TCD with hyperactivity 
in the vicinity of deafferented auditory cortex, Seid-
man et al. (2008) attempted to stimulate these neigh-
boring regions of the reorganized auditory cortex. After 
a tonotopic mapping of the areas with increased ac-
tivity in Heschl’s gyrus, electrode arrays were placed 
on these targeted sites in two participants. One par-
ticipant with bilateral, high-pitched tinnitus experienced 
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a sustained reduction of tinnitus, whereas the other 
participant with unilateral, high-pitched, narrow band 
tinnitus did not show a decrease in tinnitus.  

In another case report (de Ridder and Vanneste, 
2014), the auditory cortex stimulation induced by 
implanted electrodes was combined with subcutane-
ous C2 electrical stimulation. It was hypothesized that 
these two neuronal pathways interact at the level of 
the cochlear nuclei. The participant reported a di-
minished noise-like tinnitus and an absent pure tone 
tinnitus for a period of at least five years. 

The anterior cingulate cortex, a proposed re-
sponsible brain area in the tinnitus distress network, 
has been investigated as another location for cortical 
stimulation (de Ridder et al., 2016). In two partici-
pants, electrodes were implanted bilaterally over the 
dorsal anterior cingulate cortex. One participant re-
sponded to this kind of stimulation with a dramatic 
reduction of tinnitus loudness and distress, with a 
sustained effect for more than two years after im-
plantation. In contrast, the other participant did not 
report any improvement of the tinnitus although var-
ious stimulation parameters were evaluated. It was 
demonstrated that the participant experiencing an 
improvement in tinnitus had an increased functional 
connectivity from the dorsal anterior cingulate cortex 
to a tinnitus network consisting of the parahippo-
campal area, subgenual anterior cingulate cortex and 
insula, whereas the nonresponder had decreased 
functional connectivity between these areas (de Rid-
der et al., 2016). 

This example supports the assumption that there 
are different existing types of tinnitus according to the 
involved brain areas and their functional connectivity. 
The analysis of functional connectivity may deter-
mine at what localization a cortical implant could lead 
to an improvement of tinnitus. However, research 
about cortical stimulation in tinnitus patients is still at 
an early stage and further investigation is needed. 
Nevertheless, as an invasive neurosurgical procedure 
with various risks attached, cortical stimulation as a 
potential therapeutic option will presumably always 
be limited to a very select group of tinnitus patients. 

6.2  Deep brain stimulation 

Deep brain stimulation (DBS) of specific brain 
regions has become an effective treatment option in 
patients with therapy-resistant neurological disorders 

such as tremor (Koller et al., 1999; Rehncrona et al., 
2003), dystonia (Vidailhet et al., 2009), Parkinson’s 
disease (Krack et al., 2003; Bittar et al., 2005a), and 
chronic pain (Marchand et al., 2003; Bittar et al., 2005b; 
Owen et al., 2006). Thus far, an electrode for DBS has 
not been implanted solely for the purpose of tinnitus 
treatment. However, in patients with comorbid tin-
nitus who received DBS to alleviate movement dis-
orders, the concomitant effect on tinnitus perception 
has been evaluated. In the first study investigating this 
topic, an electrode was implanted in the ventralis 
intermedius nucleus of the thalamus of seven patients 
with movement disorders and comorbid tinnitus (Shi 
et al., 2009). Three of these seven patients reported 
reduced tinnitus loudness when DBS was turned on 
(Shi et al., 2009). In another study (Cheung and 
Larson, 2010), six patients suffering from Parkinson’s 
disease and concomitant tinnitus underwent an elec-
trode implantation in the subthalamic or ventralis 
intermedius nucleus of the thalamus with the elec-
trode lead traversing through, or being adjacent to, a 
locus of caudate neurons (area LC) in the body of the 
nucleus, which is a subsidiary of the striatal network. 
In five patients where the DBS lead tip traversed area 
LC, tinnitus loudness in both ears was suppressed 
(Cheung and Larson, 2010). In the one subject where 
the DBS lead was outside area LC, tinnitus remained 
unchanged (Cheung and Larson, 2010). The authors 
presume that the area LC, a striatal sensorimotor 
integration center that is not part of the classical au-
ditory pathway, may modulate the integration of 
phantom sensations generated from the central audi-
tory system to brain areas of perceptual awareness 
(Cheung and Larson, 2010). A recently published 
study (Smit et al., 2016) investigated the effect of 
DBS on tinnitus in a retrospective multicenter survey. 
The study indicated that DBS may indeed reduce the 
handicap caused by tinnitus. It was noted that stimu-
lation of the subthalamic nucleus resulted in the most 
beneficial effect. 

It must be stated that in the above-mentioned 
studies an electrode for DBS was implanted due to 
another coexisting disease. It follows that the interac-
tive effects of these comorbidities with tinnitus are 
unknown. To conclude, more research of DBS in tin-
nitus is needed, particularly with regard to which pos-
sible brain regions show the most benefit from stimu-
lation but also to the effects of different stimulation 
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characteristics, such as frequency and intensity on the 
neuronal level. 

 
 

7  Concluding remarks 
 
In the last two decades, different neuromodula-

tion techniques have been developed, which enable 
the focal modulation of neuronal activity. The in-
creasing knowledge regarding tinnitus-related activ-
ity changes in the brain resulted in the logical con-
sequence that the neuronal correlates of tinnitus were 
directly targeted in terms of neuromodulation tech-
niques. The innovative idea was that this influencing 
of the electrical activity of the involved brain net-
works would serve as an important diagnostic and 
therapeutic tool in further research. In recent years, 
multiple invasive and non-invasive techniques have 
been evaluated for the normalization of tinnitus- 
related brain activity as a more causally oriented 
treatment approach. Experimental approaches using 
different neuromodulation techniques have demon-
strated some promising results in reducing tinnitus- 
related complaints, but have mostly failed in terms of 
a complete extinction of the tinnitus percept. 

However, most of the studies mentioned have 
similar limitations that lower their significance. First, 
the treatment efficacy is elusive due to the fact that for 
the outcome measure of tinnitus, only subjective (and 
no objective) measurements exist. Moreover, differ-
ent available outcome measures of tinnitus reduce the 
comparability between the available studies. Further 
limitations in most of the studies are a small sample 
size, a lack of adequate placebo condition or no pla-
cebo arm, the heterogeneity of the patients, possible 
previous treatment for tinnitus, ongoing therapy with 
antidepressant drugs, and no long-term follow-up. It 
is also important to mention the possible side effects 
of the different neuromodulation therapies such as 
seizures in rTMS or surgical risks in invasive neu-
romodulation techniques. 

In conclusion, different neuromodulation meth-
ods provide a confident outlook to possible therapeu-
tic options in the treatment of tinnitus. In particular, 
non-invasive neuromodulation techniques are prom-
ising as a treatment option for a large proportion of 
patients suffering from tinnitus, whereas invasive 
neuromodulation methods due to the neurosurgical 

risks will presumably be restricted to a select patient 
group: those with persistent severe tinnitus despite 
different previous treatment attempts. However, fur-
ther research is needed in almost every neuromodu-
lation procedure before the techniques can be con-
sidered as routine treatment options. The clinical 
heterogeneity of tinnitus leads to the assumption of 
the existence of different forms of tinnitus, which 
differ in their underlying pathophysiology (Frank et al., 
2012). Therefore, it seems to be crucial to typify the 
different kinds of tinnitus as well as their associated 
involved brain networks and brain states, thus 
providing a basis from which to modulate these spe-
cific brain areas with different neuromodulation 
techniques. The hope for the future is that a better 
phenotypization of tinnitus (e.g. in terms of stand-
ardized EEG procedures) may enable the design of 
individually personalized neuromodulation strategies. 
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中文概要 
 
题 目：神经调节方法治疗耳鸣 ——侵入性和非侵入性技

术概述 
概 要：耳鸣被定义为非外部声音产生的听觉感知，慢性

耳鸣是一种影响生活质量的常见病症。目前为

止，尚无任何针对耳鸣诱因的治疗方法，大部分

的药理和心理治疗方法都旨在减少耳鸣对生活

质量的影响。神经调节是一种新型的治疗方式，

该方法通过定向刺激来改变神经活动，已经成为

耳鸣治疗的一个潜在选择。本文就当前神经调节

技术治疗耳鸣做了简要概述，主要目的是为相关

人士提供更新的知识介绍，特别是在这个新兴医

学领域的专业工作者。本文介绍了包括经颅磁重

复刺激、经颅电刺激、神经反馈和经皮迷走神经

刺激等非侵入性方法，以及植入的迷走神经刺激

和侵入性脑刺激等侵入性方法。虽然一些研究已

经展示了神经调节技术的良好应用前景，但是相

关的研究还需要加强，尤其是关于神经调节的病

理生理学原理，即这些神经调节技术如何发挥作

用以及神经调节所引起的神经元变化。多项研究

表明，不同个体的大脑活动状态和神经连接网络

都参与了对耳鸣的产生和感知。因此，未来个性

化定制的神经调节策略可能是一个有前景的耳

鸣治疗方法，从而更显著、更持久地改善这个常

见病症状。 
关键词：耳鸣；神经调节；侵入性方法；非侵入性方法 
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