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Abstract: Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear 
terms, while energy characteristics are crucial for practical application because any hardware realizations of nonlinear systems 
are relative to energy flow. The involvement of memristive terms relative to memristors enables multistability and initial-dependent 
property in memristive systems. In this study, two kinds of memristors are used to couple a capacitor or an inductor, along with 
a nonlinear resistor, to build different neural circuits. The corresponding circuit equations are derived to develop two different 
types of memristive oscillators, which are further converted into two kinds of memristive maps after linear transformation. The 
Hamilton energy function for memristive oscillators is obtained by applying the Helmholz theorem or by mapping from the 
field energy of the memristive circuits. The Hamilton energy functions for both memristive maps are obtained by replacing the 
gains and discrete variables for the memristive oscillator with the corresponding parameters and variables. The two memristive 
maps have rich dynamic behaviors including coherence resonance under noisy excitation, and an adaptive growth law for 
parameters is presented to express the self-adaptive property of the memristive maps. A digital signal process (DSP) platform is 
used to verify these results. Our scheme will provide a theoretical basis and experimental guidance for oscillator-to-map 
transformation and discrete map-energy calculation.
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1 Introduction 

In 1971, Leon Chua predicted the existence of 
the fourth fundamental electronic component, which 
is known as a memristor (Chua, 1971). Memristors 
can be magnetic flux-dependent (Batas and Fiedler, 
2011; Li et al., 2021; Vignesh et al., 2024) or charge-
controlled types (Chandía et al., 2018; Isah et al., 
2020; Sun et al., 2023). They are nonlinear resistors 
(NRs) with memory characteristics. A nonlinear circuit 
with a memristor exhibits complex nonlinear dynamic 
behaviors. For example, Xu et al. (2016) designed 
a improved memristive Chua circuit by applying a 

non-ideal active voltage-controlled memristor to re‐
place the Chua’s diode of the Chua circuit. The result 
indicated that the improved memristive Chua circuit 
had multiple attractors with multistability. Guo et al. 
(2022) incorporated a magnetic flux-regulated mem‐
ristor into different branches of a Chua circuit to ex‐
plore the influence of magnetic field on the output state 
of the circuit. Ye et al. (2020) designed a multiple 
memristors chaotic circuit, and used the circuit for an 
image-encryption algorithm. A four-variable memris‐
tive oscillator and nonlinear control were investigated 
by Gokyildirim et al. (2022). Njimah et al. (2023) sug‐
gested a chaotic system with four-scroll chaotic attrac‐
tors. Because memristors can simulate synaptic weight-
regulation behavior and pulse-timing-dependent syn‐
aptic plasticity, memristors are widely used in artifi‐
cial synapses and neural networks. Examples include 
the electric-field-sensitive memristor neuron model 
(Yang et al., 2023c), the electromagnetic-sensitive and 
electric-field-sensitive memristor neuron model (Yang 

Research Article
https://doi.org/10.1631/jzus.A2300651

* Jun MA, hyperchaos@lut.edu.cn

 Feifei YANG, https://orcid.org/0000-0002-1649-1225
Lujie REN, https://orcid.org/0000-0002-6906-3259
Jun MA, https://orcid.org/0000-0002-6127-000X

Received Dec. 25, 2023; Revision accepted Feb. 10, 2024; 
Crosschecked Mar. 1, 2024; Online first Apr. 3, 2024

© Zhejiang University Press 2024

https://crossmark.crossref.org/dialog/?doi=10.1631/jzus.A2300651&domain=pdf&date_stamp=2024-03-01


J Zhejiang Univ-Sci A (Appl Phys & Eng)   2024 25(5):382-394    |

et al., 2023a), memristive neural networks (Pham et al., 
2016; Pedretti et al., 2017; Wang et al., 2018; Smagu‐
lova and James, 2019; Bao H et al., 2020; Yang et al., 
2023b), and memristive synapses (Covi et al., 2016; 
Boybat et al., 2018; Juzekaeva et al., 2019; Wu et al., 
2022; Lin et al., 2023).

Recently, application of discrete memristors has 
become a research hotspot. Discrete memristors can 
be obtained by applying the forward Euler difference 
algorithm (Bao BC et al., 2020). Previously, many dis‐
crete memristive maps have been proposed, for exam‐
ple, 2D discrete memristor maps (Deng and Li, 2021, 
2022; Bao BC et al., 2023), a 3D discrete memristor 
map (Lai and Yang, 2023), discrete memristive hyper‐
chaotic maps (Fan et al., 2023; Ma et al., 2023; Ren 
et al., 2023), discrete memristive neuron maps (Ra‐
makrishnan et al., 2022; Mehrabbeik et al., 2023; Xu 
et al., 2023), a discrete memristive map based on mul‐
tiple nonlinear terms (Hoang et al., 2023), a discrete 
memristive map without a fixed point (Ramadoss et al., 
2022), and a discrete memristive map with asymme‐
try (Pham et al., 2024). Zhao et al. (2023) designed 
fully fixed-point digital integrated circuits of discrete 
memristive maps, which provided a foundation for 
the further application of discrete memristor maps. 
Most of the suggested discrete memristors and maps 
have been proposed from mathematical forms rather 
than by clarifying their physical properties in a theo‐
retical way. Physical modeling of discrete memristor 
maps is not perfect, and is generally obtained by intro‐
ducing discrete memristors into existing discrete maps. 
The energy of discrete memristor maps is also an 
open problem.

Inspired by the suggestion in (Ma, 2024) that 
biophysical and memristive maps can be converted 
from memristive circuits, we decided to define the en‐
ergy function in a theoretical way. In this work, we 
constructed two simple memristive circuits by using 
two kinds of memristor elements, an NR, and either a 
capacitor or an inductor. The two simplest memris‐
tive oscillators were derived and their Hamilton en‐
ergy functions were obtained with a physical approach. 
Based on the transformation relationship between the 
oscillator and map, as described in (Guo et al., 2023b), 
we obtained two different types of memristive maps 
and the corresponding Hamilton energy functions. The 
results provide possible guidance for designing dis‐
crete maps and calculating energy.

2 Model and scheme 

From a physical viewpoint, continuous energy 
exchange is crucial to support oscillation in a circuit, 
and connection to nonlinear elements is effective in 
triggering nonlinear behaviors. Therefore, both capac‐
itive and inductive components and nonlinear elements 
are required to build an oscillatory circuit for generat‐
ing different firing modes. We constructed a simple 
memristive circuit using a memristor element, an NR, 
and a capacitor, as shown in Fig. 1 (Case 1).

In Fig. 1, the current of the NR branch in the 
circuit is estimated by

iNR =-
r
ρ (V -

V 2

V0 )  (1)

where ρ denotes the resistance within the linear re‐
gion, V0 is a cut-off voltage, and r is a dimensionless 
gain. The physical properties of the memristor with 
controllable parameters can be estimated by

ì

í

î

ïïïï

ïïïï

iM =M ( )φ VM = φV

dφ
dt

= αφ + βV.
(2)

According to Kirchhoff’s laws, the circuit equa‐
tions for the memristive circuit in Fig. 1 can be de‐
scribed as follows:

ì

í

î

ï
ïï
ï

ï
ïï
ï

C
dV
dt

=
r
ρ ( )V -

V 2

V0

- φV

dφ
dt

= αφ + βV.

(3)

Fig. 1  Simple magnetic flux-controlled memristor (MFCM) 
circuit. M(φ) denotes an MFCM, and C is a capacitor
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Dimensionless parameters and variables are de‐
fined for Eq. (3) as follows:

ì

í

î

ïïïï

ïïïï

x =
V
V0

 w =
φ

ρCV0

 τ =
t
ρC



c = ρ2CV0 a = αρC.
(4)

Physical equations in Eq. (3) can be updated by

ì

í

î

ïïïï

ï
ïï
ï

dx
dt

= r ( )x - x2 - cwx

dw
dt

= aw + βx.
(5)

The field energy for the electric components in 
Fig. 1 and the dimensionless energy H1 are derived by

ì

í

î

ïïïï

ï
ïï
ï

W1 =
1
2

CV 2 +
1
2

LMi2
M =

1
2

CV 2 +
1
2
φiM

H1 =
W1

CV 2
0

=
1
2

x2 +
1
2

cw2 x.
(6)

The same Hamilton energy function is confirmed 
for Eq. (3) by applying Helmholtz’s theorem. The 
equation for the memristive oscillator can then be re‐
written in a vector form, as follows:

( )ẋ
w

= ( )r ( )x - x2 - cwx

aw + βx
=Fc +Fd = ( )-βcwx

βx + 0.5βcw2 +

      ( )r ( )x - x2 - cwx(1 - β)

aw - 0.5βcw2
= ( )0 -β
β 0 ( )x + 0.5cw2

cwx
+
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÷

÷

÷

÷
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÷

÷

÷
r( )x - x2 -cwx( )1 - β

x + 0.5cw2
0

0
aw - 0.5βcw2

cwx

( )x + 0.5cw2

cwx
.

(7)

According to Helmholtz’s theorem, the Hamil‐
ton energy function H1 meets the following criterion:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ÑH T
1 Fc =-βcwx

¶H1

¶x
+

                   ( )βx + 0.5βcw2 ¶H1

¶w
= 0

dH1

dτ
= r ( )x - x2 ( )x + 0.5cw2 -

              cwx ( )x - βx - aw + 0.5cw2 =ÑH T
1 Fd.

(8)

Indeed, the energy function H1 in Eq. (6) matches 
the criterion in Eq. (8) completely. Furthermore, the 
linear transformation is imposed on the sampled time 
series for variables from Eq. (5).

ì
í
î

ïï

ïïïï

yn =
rDτ

1 + rDτ
xn zn =

rDτ
1 + rDτ

wn μ = bDτ 

λ = 1 + rDτ δ = aDτ + 1 γ = cDτ 
(9)

where Δτ is the time step for numerical approach of 
Eq. (5), and a memristive map is proposed by

ì
í
î

ïï yn + 1 = λ ( )yn - y2
n - γyn zn

zn + 1 = δyn + μzn.
(10)

Applying the same weights for two terms in the 
discrete energy function for Eq. (6), the Hamilton en‐
ergy for the memristor map in Eq. (10) can be esti‐
mated by

Hn =
1
2

yn +
1
2
γz 2

n yn. (11)

To investigate the self-adaptation of a memris‐
tive map, one parameter for the map must be con‐
trolled by the energy flux in an adaptive growth law:

ì

í

î

ïïïï

ïïïï

μn + 1 = μn + k × θ ( )p -Hn 

θ ( )× = 1 p ≥ 0 

θ ( )× = 0 p < 0.

(12)

where the threshold 0<p<1 determines the total energy 
of the memristive map in the nth iteration. μn is the 
value for the memristive parameter in the nth itera‐
tion, the parameter k is the growth step, and the 
Heaviside function θ is used to control parameter 
growth. Other parameters in Eq. (10) should be adjust‐
able by similar laws in Eq. (12).

The second case is that a simple memristive cir‐
cuit is obtained by applying a charge-controlled mem‐
ristor (CCM), an NR, and an inductor. The correspond‐
ing scheme diagram of the circuit is displayed in Fig. 2 
(Case 2).

In Fig. 2, the voltage of the NR branch in the cir‐
cuit can be estimated by

VNR = rρ (iL -
ρi2

L

V0 )  (13)
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where the parameters (ρ, V0, and r) have the same def‐
initions as in Eq. (1). The physical relation for the 
memristor is

ì

í

î

ïïïï

ïïïï

VM =M ( )q iL = ( )α + 3βq2 iL

dq
dt

= aq + biL.
(14)

The relations between physical variables for the 
memristive circuit in Case 2 are expressed by

ì

í

î

ï
ïï
ï

ï
ïï
ï

L
diL

dt
= rρ ( )iL -

ρi2
L

V0

- ( )α + 3βq2 iL -E

dq
dt

= aq + biL.

(15)

Similar definitions for dimensionless variables 
and parameters are given in

ì

í

î

ï
ïï
ï

ï
ïï
ï

y =
ρiL

V0

 u =
ρ2q
LV0

 τ =
ρt
L
 α′=

α
ρ


β′=
3βL2V 2

0

ρ5
 a′=

aL
ρ
 d =

E
V0

.
(16)

By inserting Eq. (16) into Eq. (15), a new mem‐
ristive oscillator for Case 2 can be obtained by

ì

í

î

ïïïï

ï
ïï
ï

dy
dt

= r ( )y - y2 - ( )α′+ β′u2 y - d

du
dt

= a′u + by.
(17)

The physical field energy for the electric compo‐
nent in Case 2 and the dimensionless energy H2 are 
derived by

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

W2 =
1
2

Li2
L +

1
2

CMV 2
M =

1
2

Li2
L +

1
2

qVM

H2 =
W2

V 2
0

L
ρ2

=
1
2

y2 +
1
2

( )α′+ β′u2 uy. (18)

The Hamilton energy function for Eq. (17) is cal‐
culated by applying Helmholtz’s theorem, and the 
mathematical proof is as follows:

( )ẏ

u̇
= ( )r ( )y - y2 - ( )α′+ β′u2 y - d

a′u + by
=

      Fc +Fd = ( )-0.5by ( )α′+ 3β′u2

by + 0.5b ( )α′u + β′u3
+

      ( )r ( )y - y2 - ( )α′+ β′u2 y ( )1 - 0.5b - d

a′u - 0.5b ( )α′u + β′u3
=

      ( )0 -b
b 0 ( )y + 0.5( )α′u + β′u3

0.5y ( )α′+ 3β′u2
+

      ( )a11 0
0 a22 ( )y + 0.5( )α′u + β′u3

0.5y ( )α′+ 3β′u2


a11 =
r ( )y - y2 - ( )α′+ β′u2 y ( )1 - 0.5b - d

y + 0.5( )α′u + β′u3


a22 =
a′u - 0.5b ( )α′u + β′u3

0.5y ( )α′+ 3β′u2
.

(19)

The Hamilton energy function H2 meets the fol‐
lowing criterion:

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ÑH T
2 Fc =-0.5by ( )α′+ 3β′u2 ¶H2

¶y
+

                 [ ]by + 0.5b ( )α′u + β′u3 ¶H2

¶u
= 0

dH2

dτ
= r ( )y - y2 [ ]y + 0.5( )α′u + β′u3 -

             y ( )α′u + β′u2 [ ]y + 0.5( )α′u + β′u3 -

             d [ ]y + 0.5( )α′u + β′u3 +

             ( )by + α′u [ ]0.5y ( )α′+ 3β′u2 =ÑH T
2 Fd.

(20)

Fig. 2  Simple CCM circuit. M(q) denotes a CCM, L is an 
inductor, and E is a constant voltage source
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Similar linear transformation is used for the sam‐
pled variables in Eq. (17), involving a time step as 
follows:

ì

í

î

ï

ï
ïïï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

wn =
rDτ

1 + rDτ
yn vn =

rDτ
1 + rDτ

un

χ = 1 + rDτ ξ = α′Dτ

ε =
β′( )1 + rDτ 2

r2Dτ
 κ = aDτ + 1

η= bDτ d ′= dDτ

(21)

where Δτ is the time step for the numerical approach 
used in Eq. (17). A new memristive map is given in

ì
í
î

wn + 1 = χ ( )wn -w2
n - ( )ξ + εv2

n wn - d ′
vn + 1 = κwn + ηvn.

(22)

The Hamilton energy for the memristive map in 
Eq. (22) is estimated by

H ′n =
1
2

wn +
1
2

(ξ + εv2
n) wnvn. (23)

A similar growth criterion for one parameter in 
the map is controlled by the energy level as follows:

ì

í

î

ïïïï

ïïïï

ηn + 1 = ηn + k × θ ( )p -H ′n 

θ ( )× = 1 p ≥ 0

θ ( )× = 0 p < 0

(24)

where ηn is the value for the memristive parameter in 
the nth iteration. The threshold p controls the mode 
transition in the firing modes.

3 Results and discussion 

In this section, we describe how we investigated 
the dynamic behaviors of the memristive maps (mag‐
netic flux-controlled memristor (MFCM) and CCM) 
by changing the map parameters. First, the parameters 
for the memristive map presented in Eq. (10) were 
selected as λ=3.9, γ=0.12, and μ=0.4, and the initial 
values were fixed at (0.1, 0.1). The parameter δ was 
changed from 1.0 to 3.0, and the bifurcation diagram 
and Lyapunov exponents for the map are shown in 
Fig. 3a. By applying the same parameters and initial 
values, the parameter δ=1.5 and the parameter μ in‐
creased from 0.3 to 0.7. The results are displayed in 
Fig. 3b.

We observed that the MFCM map presented in 
Eq. (10) produced complex dynamic characteristics 
when we changed one parameter continuously, for ex‐
ample, the period doubling bifurcation to chaos ap‐
pears. As the parameter values increased, the MFCM 
map in Eq. (10) started from chaos and entered into 
period states through reverse period doubling, and 
some narrow periodic windows appeared. To allow 
readers to more clearly observe the phase trajectories 
corresponding to different parameter values for the 

Fig. 3  Bifurcation diagram and two-Lyapunov exponent (LE) spectrum after changing one parameter: (a) λ=3.9, γ=0.12, 
μ=0.4; (b) λ=3.9, γ=0.12, δ=1.5. The initial values are (0.1, 0.1)

386



J Zhejiang Univ-Sci A (Appl Phys & Eng)   2024 25(5):382-394    |

memristive map, the phase trajectories corresponding 
to different values for parameter δ are shown in Fig. 4.

The results in Fig. 4 show that the MFCM map 
in Eq. (10) can be induced to exhibit complex dynam‐
ic behaviors (periodic, chaotic) by changing parame‐
ter δ, and they are consistent with the dynamics pre‐
sented in Fig. 3a. Furthermore, we analyzed the Ham‐
ilton energy values for different output states. By us‐
ing the same parameters and initial values, the itera‐
tive sequences of variables and Hamilton energy 
could be plotted in Figs. 5 and 6, respectively.

Our findings confirm that the memristive map 
presenting in chaos has a smaller average Hamilton 
energy value, while it retains a higher mean Hamilton 

Fig. 4  Phase diagram with different values for the parameter 
δ when the parameters are fixed at λ=3.9, γ=0.12, and μ=
0.4, and the initial values are (0.1, 0.1)

Fig. 5  Evolution of variables with different values for parameter δ: (a) δ=3.0; (b) δ=2.5; (c) δ=2.2; (d) δ=2.0. Parameters 
are set as λ=3.9, γ=0.12, and μ=0.4, and the initial values are (0.1, 0.1)

Fig. 6  Changes in Hamilton energy with different values for parameter δ: (a) δ=3.0; (b) δ=2.5; (c) δ=2.2; (d) δ=2.0. 
Parameters are set as λ=3.9, γ=0.12, and μ=0.4, and the initial values are (0.1, 0.1). <Hn> denotes the mean value of 
Hamilton energy
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energy value in the periodic state. In addition, the 
mean Hamilton energy of the memristor map decreases 
as the period number increases.

Based on the criterion of growth for the parame‐
ter μ described by Eq. (12), the threshold was fixed at 
p=0.5 and the gain at k=0.005. The parameters were 
kept at λ=3.9, γ=0.12, and δ=2.0, and the initial values 
were (0.1, 0.1). The parameter started its growth from 
μ1=0.3 and the memristive map presented in Eq. (10) 
was iterated 200 times. The iterative sequence for the 
growth of parameter μ, sampled time series for Hamil‐
ton energy, iterative sequence of variables, and phase 
diagram are shown in Fig. 7.

The results, as shown in Fig. 7, revealed that the 
parameter μ of the memristive map reached a stable 
value of 0.71 through 140 iterations. The Hamilton 
energy and the variables were transferred from chaotic 
patterns to periodic states, and a similar shift occurred 
in the phase diagram. This result is consistent with the 
results of dynamic behavior analysis as shown in Fig. 3. 
In addition, the dynamic behaviors in Eq. (22) were 
explored with the same initial values (0.1, 0.1). The 
parameters selected were χ=3.9, ξ=0.01, and ε=0.1. 
Bifurcation analysis and dependence of Lyapunov ex‐
ponents on parameters (d′ , κ, η) in the memristive 
map are plotted in Fig. 8.

Similar to the results in Fig. 3, the memristive 
map in Eq. (22) started from chaos and entered into pe‐
riodic states through reverse period doubling when the 
parameter values increased, and some narrow periodic 

windows occurred. The phase diagrams for different 
parameters are shown in Fig. 9.

The results shown in Fig. 9 indicate that the dy‐
namics for the memristive map (Case 2) can be adjusted 
by changing the parameters. The evolution of the iter‐
ative sequences of variables and Hamilton energy are 
displayed in Figs. 10 and 11, respectively.

Similar to the case for an MFCM memristive 
map, the CCM-based map has a smaller mean Hamil‐
ton energy value in a chaotic state, but a higher mean 
Hamilton energy value in a periodic state. In addition, 
the mean Hamiltonian energy of the memristive map 
decreases as the period number increases.

According to the criterion of growth for the pa‐
rameter η described by Eq. (24), we set the threshold 
p=0.5 and the gain k=0.005; we kept the parameters 
as χ=3.9, ξ=0.01, ε=0.1, d′=0, and κ=1, and applied 
the same initial values (0.1, 0.1). The parameter be‐
gan its growth at η1=0.1, the memristive map present‐
ed in Eq. (22) was iterated 200 times, and the growth 
of parameter η, changes in Hamilton energy, vari‐
ables, and phase diagram are shown in Fig. 12.

The results confirmed that the parameter η of the 
memristive map relative to CCM reached a stable value 
of 0.73 after 140 iterations. The Hamilton energy and 
the variables began from chaotic patterns and trans‐
formed to periodic states, and a similar shift occurred 
in the phase diagram. This indicates that the dynamics 
for memristive maps can be adapt-controlled by energy 
flow.

Fig. 7  Evolution of variables, parameters, and energy: (a) growth of parameter μ; (b) Hamilton energy; (c) output 
variables; (d) phase diagram. Parameters are set as λ=3.9, γ=0.12, δ=2.0, μ1=0.3, p=0.5, and k=0.005, and the initial 
values are (0.1, 0.1)
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To further verify the application of new memris‐
tive maps in the digital signal process, we implemented 
the two simple memristive maps on a digital signal-
process (DSP) platform. In the tests, the core process‐
ing chip was TMS320F28335, with a 16-bit D/A con‐
vert (DAC8552) and other circuit elements. The hard‐
ware frame diagram is plotted in Fig. 13.

The parameters of the MFCM memristive map 
are λ=3.9, γ=0.12, μ=0.4, and δ=2, and the initial values 

are (0.1, 0.1). The parameters of the MFCM map are 
χ=3.9, ξ=0.01, ε=0.1, κ=1.4, d′=0, and η=0.1, and the 
initial values are (0.1, 0.1). The experimental device 
and results are shown in Fig. 14.

Fig. 14 proved the feasibility of hardware imple‐
mentation of the simple memristive maps.

To summarize, we developed two memristive 
maps from two simple nonlinear memristive circuits, 
and clarified their physical properties (including energy 
level and adaptive controllability by parameter and 
mode selection). The memristive maps with simple 
forms exhibit rich dynamic behaviors, and their mean 
Hamiltonian energy value decreases as the period 
number increases. Similar to nonlinear oscillators, the 
Hamilton energy functions for discrete maps depend 
on the maps’ parameters and output variables. When 
the firing mode is switched, energy shift is induced by 
detecting the average energy levels. The adaptive 
growth law of bifurcation parameters accounts for the 
role of energy regulation. The simple memristive 
maps investigated here can be implemented on a DSP 
platform. In most previous studies, dynamics of mem‐
ristive oscillators were investigated (Chen et al., 2020; 
Liu et al., 2021; Bao et al., 2022; Wu et al., 2023; Wu 

Fig. 8  Bifurcation diagram and Lyapunov exponent spectrum with adjustment of one parameter: (a) χ=3.9, ξ=0.01, ε=
0.1, η=0.1, κ=1; (b) χ=3.9, ξ=0.01, ε=0.1, d′=0, η=0.1; (c) χ=3.9, ξ=0.01, ε=0.1, d′=0, κ=1

Fig. 9  Phase diagram with different parameters κ. Parameters 
are set as χ=3.9, ξ=0.01, ε=0.1, d′=0, and η=0.1, and the 
initial values are (0.1, 0.1)
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Fig. 12  Evolution of variables, parameters, and energy: (a) parameter η; (b) Hamilton energy; (c) output variables; (d) 
phase diagram. Parameters are set as χ=3.9, ξ=0.01, ε=0.1, κ=1, d′=0, η1=0.1, p=0.5, and k=0.005, and the initial values 
are (0.1, 0.1)

Fig. 11  Evolution of Hamilton energy with different values of parameter κ: (a) κ=2.00; (b) κ=1.80; (c) κ=1.64; (d) κ=1.40. 
Parameters are set as χ=3.9, ξ=0.01, ε=0.1, d′=0, and η=0.1, and the initial values are (0.1, 0.1). <H′n> denotes the mean 
value of Hamilton energy

Fig. 10  Changes in variables with different values of parameter κ: (a) κ =2.00; (b) κ =1.80; (c) κ =1.64; (d) κ =1.40. 
Parameters are set as χ=3.9, ξ=0.01, ε=0.1, d′=0, and η=0.1, and the initial values are (0.1, 0.1)
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and Yao, 2023). Meanwhile, dynamics of memristive 
maps have been explored in terms of mathematical 
definitions and with a numerical approach, accom‐
panied by suitable implementation of analog circuits 
(Deng and Li, 2021; Ma et al., 2022; Zhong et al., 
2022; Bao H et al., 2023; Hou et al., 2023). Based on 
our suggested memristive maps, more memristive 
neurons in map form can be examined to explore the 
DSP and logic operation. In particular, these maps, 
which have clear physical descriptions, can be used 
for computational neuroscience and functional brain 
networks to predict neural disease (Liu et al., 2022a, 
2022b; Yu et al., 2023).

From a dynamic viewpoint, both nonlinear oscil‐
lators and maps can be tamed to prevent spiking and 

bursting behaviors, and some of them can be produced 
with analog circuits or digital circuits. For oscillator-
like neurons, equivalent neural circuits can be designed 
by connecting capacitive, inductive, and memristive 
elements in some loops. Map-based neurons (Luo and 
Flanagan, 2007; Ibarz et al., 2011; Zandi-Mehran et al., 
2020; Ramakrishnan et al., 2022; Cao et al., 2024) are 
often described as mathematical forms, and digital cir‐
cuits could also be built for further verification. In‐
deed, these discrete memristors have an important im‐
pact on the dynamics of neural circuits (Njitacke 
Tabekoueng et al., 2022; Bao BC et al., 2023; Shatnawi 
et al., 2023), and they have potential applications in 
signal processing and image encryption. When more 
neurons in map or oscillator form are clustered in a 
network (Majhi et al., 2022; Ji et al., 2023; Xie et al., 
2023), the collective behaviors show complex charac‐
teristics and synchronization control becomes a chal‐
lenge. Higher coupling between neurons leads to simi‐
lar properties to those displayed by field coupling via 
hybrid synapse, and readers can find possible guidance 
in relevant reviews and studies (Parastesh et al., 2022; 
Guo et al., 2023a; Li et al., 2023; Ma, 2023). The 
scheme suggested here provides a theoretical approach 
for setting functional maps with clear definition of en‐
ergy function.

Fig. 14  Chaotic sequences of memristive maps implemented on a DSP platform of hardware device (a, c) and chaotic 
sequences (b, d) generated by the memristive maps presented in Eqs. (10) and (22), respectively

Fig. 13  Hardware frame diagram of DSP implementation. 
TMS320F28335 is a 32-bit floating point DSP processor, 
and the maximum clock frequency is 150 MHz

391



|    J Zhejiang Univ-Sci A (Appl Phys & Eng)   2024 25(5):382-394

4 Conclusions 

In this study, two simple memristive circuits 
were built to develop different memristive oscillators 
and discern the effect of the magnetic field and elec‐
tric field. The energy functions for the memristive os‐
cillators were obtained theoretically, and we discussed 
the relation to mode selection in detail. By applying 
linear transformation on the sampled variables for 
memristive oscillators, we were able to design two 
different memristive maps with clear definition of en‐
ergy function. An adaptive growth law for parameters 
was proposed to explain the intrinsic self-adaptive pro‑
perty of neurons. The results indicate that both mem‐
ristive maps have rich dynamic behaviors, and the 
dynamics can be adjusted in an adaptive way under 
energy flow. The maps have a smaller mean Hamilton 
energy value in a chaotic state, but maintain a higher 
mean Hamilton energy value in a periodic state. In ad‐
dition, the mean Hamilton energy value of the mem‐
ristive maps decreases as the period number increases. 
We implemented both memristive maps on a DSP 
platform. The results illustrate the effectiveness of dis‐
crete maps. In addition, these simple maps can be 
used for image-encryption fields and pseudo-random 
sequence generation.
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