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Abstract: Sensitivity analysis is used to quantify the contribution of the uncertainty of input variables to the uncertainty of systematic
output responses. For tolerance design in manufacturing and assembly, sensitivity analysis is applied to help designers allocate
tolerances optimally. However, different sensitivity indices derived from different sensitivity analysis methods will always lead
to conflicting results. It is necessary to find a sensitivity index suitable for tolerance allocation to transmission mechanisms so
that the sensitivity results can truly reflect the effects of tolerances on kinematic and dynamic performances. In this paper, a
variety of sensitivity indices are investigated and compared based on hybrid simulation. Firstly, the hybrid simulation model of
the crank-slider mechanism is established. Secondly, samples of the kinematic and dynamic responses of the mechanism with
joint clearances and link length errors are obtained, and the surrogate model established using polynomial chaos expansion
(PCE). Then, different sensitivity indices are calculated based on the PCE model and are further used to evaluate the effect of
joint clearances and link length errors on the output response. Combined with the tolerance-cost function, the corresponding
tolerance allocation schemes are obtained based on different sensitivity analysis results. Finally, the kinematic and dynamic responses
of the mechanism adopting different tolerance allocation schemes are simulated, and the sensitivity index corresponding to the
optimal response is determined as the most appropriate index.

Key words: Transmission mechanism; Sensitivity analysis; Tolerance allocation; Hybrid simulation; Polynomial chaos
expansion (PCE)

1 Introduction

The kinematic and dynamic performances of a
transmission mechanism are reflected by its displace‐
ment, speed, acceleration, and other data. For example,
the vibration performance can be expressed as acceler‐
ation fluctuation. These performances of the transmis‐
sion mechanism are significantly affected by the geo‐
metric errors of its parts. The motion stability of the
transmission mechanism, such as the crank-slider
mechanism, is seriously affected by geometric errors
such as joint clearance and link length error. To ensure
the comprehensive performance of the mechanism,

tolerance design is necessary, which can reasonably
control part geometric errors with low cost.

The existing dynamics studies of the mechanism
with clearance mainly focus on the construction
of contact models for the collision of kinematic
pairs (Tian et al., 2018), including the continuous
contact model (Haines, 1980), the “separation-
contact” two-state model (Dubowsky et al., 1987),
the “contact-separation-collision” three-state model
(Soong and Thompson, 1990), and the combined
model of massless link and spring damping (Senev‐
iratne et al., 1996). These methods can numerically
predict kinematic and dynamic performances, con‐
sidering the clearance and length error. However,
there are few studies on tolerance design aiming at
optimizing the kinematic and dynamic performances
of the transmission mechanism. More in-depth studies
are needed.
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Tolerance design includes tolerance specification,
tolerance modeling, and computer-aided tolerance op‐
timization design (Cai et al., 2004; Cao et al., 2006,
2015). As one of the key steps in the tolerance design
process, tolerance allocation has attracted much atten‐
tion. For example, Lin et al. (2018) proposed a method
for motion error analysis of a cycloidal pinion reducer
considering manufacturing tolerances, and explored
tolerance allocation and optimization using the Monte
Carlo method; Dantan et al. (2008) proposed tooth
contact analysis, Monte Carlo simulation, and a ge‐
netic algorithm for gear tolerance allocation to achieve
optimal manufacturing cost; Liu et al. (2019) used the
linear regression method to find the mapping relation‐
ship between the tolerance zone error of the motion
axis and machining accuracy. They carried out a sensi‐
tivity analysis to obtain the contribution of the degree
of tolerance to the machining accuracy, and finally
achieved a reasonable tolerance allocation combined
with the tolerance-cost function.

However, state-of-the-art tolerance allocation
methods mainly focus on the geometric errors of pro‑
ducts rather than their kinematic and dynamic perfor‐
mances, which are very important for the transmis‐
sion mechanism. Moreover, the above methods are dif‐
ficult to use to make reasonable performance-oriented
tolerance allocation due to the nonlinearity of the
kinematic and dynamic models of the transmission
mechanism.

Sensitivity analysis provides a feasible way for
the performance-oriented tolerance allocation of the
transmission mechanism. It is used to quantify the con‐
tribution of input variable uncertainty to model output
response uncertainty (Saltelli et al., 2008). It can de‐
termine the main error affecting the mechanism per‐
formance and can provide a theoretical basis for toler‐
ance allocation. For example, Ziegler and Wartzack
(2015) proposed a global sensitivity analysis method
for convex hull-based tolerance technology to estimate
the impact of single part tolerance on assembly clear‐
ance in a pin-hole connection. Abbiati et al. (2021)
established a sensitivity analysis framework of hybrid
simulation by using the Sobol method in the global
sensitivity analysis method and obtained the sensitivity
of a certain structure response, which reduced the num‐
ber of experimental samples compared with the Monte
Carlo method. Borgonovo et al. (2012) applied the
moment independence method in the global sensitivity

analysis method to the field of environmental science
to evaluate the impact of input values on the model
results. The advantage of the method is that its numer‐
ical estimation method reduces the calculation burden.
Zhou (2019) used the information entropy method in
the global sensitivity analysis method to evaluate the
effect of each parameter on bolt stress. The advantage
is that the output variable is allowed to be a multidi‐
mensional variable.

In the above studies, the sensitivity analysis has
shown its value well, but the following problems remain:

(1) The above sensitivity analysis methods can
be applied to a transmission mechanism; however, the
results are not consistent in most cases. This is be‐
cause these methods are different in principle, which
leads to their different objects of application. For
example, Borgonovo (2007) proposed a moment-
independent method that can be defined in the pres‐
ence of correlations among the inputs, whereas the
Sobol method requires independent inputs. Therefore,
it is necessary to find a sensitivity analysis method,
suitable for the performance-oriented tolerance alloca‐
tion of the transmission mechanism, which can truly
reflect the effect of geometric errors on performance.

(2) For many complex nonlinear physical sys‐
tems, the sensitivity index cannot be analytically sol‑
ved and can only be estimated by a numerical method
based on a sample. However, the sample size of physi‐
cal experiments is always limited due to their high cost
and to the inability to modify the size of parts, while
the data obtained by simulation is time-consuming
with low accuracy. Therefore, it is necessary to build
a high-accuracy simulation model to obtain samples
and then to calculate the sensitivity index quickly thr‑
ough surrogate model technology.

In this study, we proposed a comparison method
of the sensitivity indices based on hybrid simulation,
so as to determine the optimal sensitivity index that
accurately reflects the impact of geometric errors on
the kinematic and dynamic performances of the trans‐
mission mechanism as shown in Fig. 1. Firstly, we es‐
tablished a hybrid simulation model including a real
experiment platform and a simulation model, where
the parameters of the simulation model were calibrated
according to the experimental data. Secondly, the com‐
bined sample of clearance and link length was gener‐
ated by a classic sampling method, Latin hypercube
sampling (LHS), which can effectively improve the
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uniformity of sample points in design space. The cor‐
responding kinematic and dynamic performances of
the mechanism were calculated based on the hybrid
simulation model performance. Then, the polynomial
chaos expansion (PCE) method, a method that can
effectively deal with system uncertainty caused by
input random variables, was used to construct the sur‐
rogate model, and the sensitivity of the kinematic and
dynamic performances of the machine to the joint
clearance and link length errors was calculated based
on the surrogate model. Finally, the tolerance was
allocated according to the results of each sensitivity
analysis method combined with the cost-tolerance
function, and the sensitivity analysis method was de‐
termined by comparison.

This paper is organized as follows: Section 2
introduces four popular sensitivity indices; Section 3
shows the proposed hybrid simulation model in de‐
tail; Section 4 proposes the comparison method of
sensitivity indices and gives detailed experimental re‐
sults; Section 5 discusses the limitations of our study
and how future work could be carried out; Section 6
summarizes the whole paper.

2 Introduction of sensitivity indices

The purpose of sensitivity analysis is to explore
the distribution of model output uncertainty with
respect to input uncertainty (Saltelli and Tarantola,
2002). Considering that the experimental purpose is

to research the sensitivity of the kinematic and dy‐
namic performances of the crank-slider mechanism to
errors of clearance and link length, this paper selects
four of the popular sensitivity analysis methods for re‐
search and comparison, as follows: linear regression
method, variance-based method, moment-independent
method, and information-entropy method.

2.1 Linear regression method

Linear regression (Darlington and Hayes, 2016)
is a statistical analysis method that uses regression
analysis in mathematical statistics to determine the
quantitative relationship between two or more vari‐
ables. Linear regression is a powerful tool determin‐
ing relations among system output y and input vari‐
ables X. It focuses on the first-order effects (the main
effects) of X on y, and ignores the higher-order effects
(the nonlinear effects). In most cases, the higher-order
effects are much smaller than the first-order effects.
Therefore, linear regression can be used not only for
sensitivity analysis of linear models, but also for non‐
linear models.

For a linear model, we assume that its expres‐
sion is

y = a0 +∑
i = 1

k

ai xi  (1)

where y is the response value of the model, a0 is the
initial value, X={x1, x2, …, xk} is the set of input vari‐
ables, and ai is the coefficient of each input variable.

The linear regression method first needs to ex‐
periment with the model. Randomly sampling the in‐
put variables gives a matrix M with a sample space of
N rows and k columns. The response y of each row of
the matrix M is obtained experimentally and by get‐
ting an N-row output vector Y, where N is the scale of
the experiment and the number of rows of the matrix
M. In theory, the larger the size of N, the more accu‐
rate the prediction model. After obtaining much exper‐
imental data, we can carry out simple linear regres‐
sion to obtain the expression of the prediction model:

y = b0 +∑
i = 1

k

bi xi  (2)

where b0 and bi are calculated by the least square
method according to the square difference between

Generate initial
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Obtain
performance
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Construct PCE
surrogate model 

Calculate four kinds
of sensitivity index 

Tolerance
cost function

Design four kinds of
tolerance allocation

scheme

Generate
calibration samples

Crank slider device
Dynamic simulation

model

Obtain measured 
data

Optimize simulation
parameters 

Regenerate tolerance
samples of each

scheme

Get the corresponding
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Determine the optimal
sensitivity index
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Fig. 1 Approach framework for comparing sensitivity
indices based on the hybrid simulation model
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the linear regression y and the experimental y. It should
be noted that due to errors in the experimental data,
the prediction model is often different from the actual
model, which is also the reason for using b0 and bi. To
reduce this error, we can increase the size of N or opti‐
mize the loss function.

The sensitivity of y to xi is

βxi
=

bi

∑
i = 1

k

bi

. (3)

2.2 Variance-based method

The Sobol method is a widely used sensitivity
analysis method (Sobol, 1993). It uses variance to de‐
scribe the uncertainty between input variables and the
output response of the model and considers the inter‐
actions between input variables.

For a model, we assume that its expression is

Y = g ( X ) . (4)

Assume that the spatial domain of X is ΩX.
The input variables are independent of each other
and follow a joint probability density function
(PDF):

fX ( X ) =∏
i

k

fxi
( )xi  (5)

where fxi
is the PDF of xi.

The Sobol method holds that for any square-
integrable function g(X), the function can be decom‐
posed into the sum of its sub-terms:

Y = g0 +∑
i = 1

k

gi( )xi + ∑
1 ≤ i ≤ j ≤ k

gij( )xi xj + + g12k( X ) 

(6)

where g0 is the expectation of Y, and gi, gij, and g12k

are the coefficients for each item. Eq. (6) can also be
written as

Y = g0 +∑
u ¹Æ

gu( Xu)  (7)

where u ={i1 i2  is }Ì{1 2  k} are index sets,
gu is the coefficient of each item, and Xu is a sub-vector

of X. In the above equation, the number of summation
terms is 2k−1.

The Sobol decomposition is unique under the
condition:

∫
ΩX

gu( Xu) fxm
( xm) dxm = 0 mÎ u. (8)

This condition means that the mean of each term
is 0, which means that all the terms in the expansion
are orthogonal to each other. Uniqueness and orthogo‐
nality allow the variance D of Y to be decomposed as
follows:

D =Var[ g ( X ) ] =∑
u ¹Æ

Du  (9)

where Du denotes the partial variance:

Du =Var [ gu( Xu) ] =E [ g 2
u ( Xu) ]. (10)

Since the mean of each term in the expansion is
0, the variance of each term is the expectation of each
term squared. The Sobol index Su is

Su =
Du

D
 (11)

where∑
u ¹Æ

Su = 1.

The first-order index S ( )1
i describes the effect of

an input variable xi. The second-order index S ( )2
ij de‐

scribes the interactions of {xi, xj}. The higher-order
sensitivity quantifies the interactions of more input
variables. The total sensitivity index S ( )tot

i represents
the total effect of an input variable xi and explains the
interaction between its main effect and all other input
variables. Its expression is

S ( )tot
i = 1 - S~i (12)

where S~i is the sum of all Su with u not including i.
There are mainly three methods to calculate

Sobol indices: Monte Carlo simulation method (Sobol,
2001), Fourier amplitude sensitivity test (Cukier et al.,
1973), and proxy model method (Sudret, 2008). The
proxy model constructed by PCE can directly obtain
Sobol indices and requires fewer samples than the
Monte Carlo simulation method.
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2.3 Moment-independent method

The moment-independent method (Borgonovo,
2007) is a sensitivity analysis method based on proba‐
bility distribution, which can reflect the effects of ran‐
dom variables on the entire probability distribution
function of the output response. It can reflect the un‐
certainty of random variables more comprehensively.

Assuming that X is a set of k independent input
variables when each input variable obeys a certain dis‐
tribution, its uncertainty will be passed to the output
response Y through g(X), so that Y also obeys a certain
distribution.

The PDF and cumulative distribution function
(CDF) of Y are fY(y) and FY(y). When xi is a definite
value x( )j

i , the conditional PDF and the conditional

CDF of Y can be expressed as f
Y | xi = x( )j

i

( y) and

F
Y | xi = x( )j

i

( y). Fig. 2 shows the curves of the above

functions.

When xi is x( )j
i , the area difference of fY(y) can be

expressed as

α ( xi) = ∫ |
|

|
| fY( )y - f

Y|xi = x( )j
i

( )y dy. (13)

When x( j)
i changes in the entire distribution range,

the mean of the above area difference can be ex‐
pressed as

Exi
[α ( xi) ] = ∫α ( )xi fxi

( xi) dxi. (14)

The moment-independent sensitivity index based
on a PDF is

S ( )PDF
i =

Exi
[ ]α ( )xi

2
 (15)

where Exi
[α ( xi) ] divided by two is for normalization.

2.4 Information-entropy method

Information-entropy (Shannon, 1948) is a concept
in information theory describing the degree of uncer‐
tainty of information sources, and is deduced from the
definition of entropy in thermodynamics. It can repre‐
sent the disorder degree of the system. The greater the
entropy is, the more chaotic the system is, which
makes prediction more difficult. When the entropy is
zero, the system eliminates the effects of uncertain
factors, and the output is a deterministic result. The
information-entropy method is a new global sensitivity
analysis method, which uses the change of entropy to
predict the importance of input variables to output
response.

The output response Y of the model is divided
into one and multi-dimensional vectors, and there are
two types: continuous and discrete. When Y is a 1D
continuous variable, its spatial domain is ΩY, its PDF
is fY(y), and the information entropy of Y can be
expressed as

H (Y ) =- ∫
ΩY

fY( y) logr fY( y) dy (16)

where r is the base of the logarithm function, generally
not less than 2.

X is the set of input variables corresponding to Y.
When a certain input variable is fixed, such as xi = x( )j

i ,
the PDF of Y changes from fY(y) to the conditional PDF
f

Y | xi = x( )j
i

( y), and the conditional information entropy of

Y at x( )j
i can be obtained, which can be expressed as

H (Y | xi = x( )j
i ) =- ∫

ΩY

f
Y | xi = x( )j

i

(Y ) logr f
Y | xi = x( )j

i

(Y ) dY.

(17)

To calculate H (Y ) -H (Y | xi = x( )j
i ) of xi overall

range, their mean is the effect of xi on the overall
uncertainty of output response Y. Multiple values
{x( )1

i  x( )2
i   x(l)

i } in the value range of xi are sampled
to calculate the global sensitivity index Sxi

, which is

expressed as
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Fig. 2 Unconditional and conditional CDF and PDF for Y
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Sxi
=
∑
k = 1

l

[ ]H ( )Y -H ( )Y | xi = x( )k
i

l
. (18)

The larger Sxi
is, the greater the change of infor‐

mation entropy of Y will be after the uncertainty of xi

is eliminated, which indicates that the sensitivity of Y
to X is higher.

3 Hybrid simulation model enhanced by
measured data

In this section, we propose a hybrid simulation
model of a crank-slider mechanism. Limited physical
experiment data was used to support the verification
and calibration of the simulation model, which could
guarantee its accuracy.

3.1 Crank-slider experiment platform

The crank-slider experiment platform is composed
of an actuator, a motor drive device, and a data acqui‐
sition (DAQ) system. The actuator includes a crank
disc, connecting rod, slider, connecting shaft, and other
supporting parts. A rigid connection is adopted be‐
tween the experimental platform and the experimental
table. The experimental platform is shown in Fig. 3,
and the schematic plot of the experimental platform is
shown in Fig. 4.

The DAQ system includes a pull rod displace‐
ment sensor and a triaxial acceleration sensor. The dis‐
placement sensor sends the displacement information
of the slider to the DAQ card by voltage, and then the
data is transmitted to the computer at a certain sam‐
pling frequency by the DAQ card. The voltage signal
of the acceleration sensor is small and easily interfered
with, so a constant current adapter is installed between
it and the DAQ card to filter and amplify the signal.
Displacement data and acceleration data can be con‐
verted into velocity data by differential and integral
processing respectively, and they can be cross-verified
to improve the reliability of experimental data. Each
device is shown in Fig. 5.

The crank-slider mechanism has a fixed crank
length, connecting rod length, and aperture size at
both ends of the connecting rod. By changing the con‐
necting shaft with different diameters, impact dynam‐
ics experiments under different gaps were carried out,
and the kinematic and dynamic performances of the
mechanism were obtained. The clearance between the
connecting shaft and the connecting rod is shown in
Fig. 6, and the dimension parameters are shown in
Fig. 7.

In Fig. 7, half the difference between the left ap‐
erture of the connecting rod HL and the left connect‐
ing shaft diameter SL is the radius clearance ΔRL, and
half the difference between the right aperture of the
connecting rod HR and the right connecting shaft di‐
ameter SR is the radius clearance ΔRR. That is because,
when there is clearance at both ends of the connecting
rod, the connecting rod lacks axial fixing, so only one
end of the test is allowed to have clearance, and the
other end is axially fixed by a rolling bearing, where
the clearance is approximately zero. The three connec‐
tion modes in the experiments are shown in Fig. 8.

Fig. 3 Crank-slider experiment platform

Crank disc Motor Slider
Acceleration

sensor
Displacement

sensor

Connecting
shaft

Connecting
rod Base

Connecting
shaft

Fig. 4 Schematic plot of the experimental platform

(a)

(b) (c) (d)

Fig. 5 DAQ system: (a) displacement sensor; (b) acceleration
sensor; (c) constant current adapter; (d) DAQ card
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Through different combinations, the experimen‐
tal data of the crank-slider mechanism with different
joint clearances at various speeds can be obtained by
this experimental platform, which contains 40 sam‐
ples. Some specific parameters are shown in Table 1.

Experimental data corresponding to each param‐
eter and reflecting the kinematic and dynamic perfor‐
mances of the mechanism were obtained. Partial exper‐
imental results are shown in Figs. 9 and 10.

Based on all the experimental data, several facts
were observed:

Table 1 Experimental parameters

Trial
1

2

3

4

5

6

︙
14

15

︙
39

40

ΔRL (mm)
0.2

0.4

0.6

0.8

1.0

0.2

︙
0.8

1.0

︙
0.0

0.0

ΔRR (mm)
0.0

0.0

0.0

0.0

0.0

0.0

︙
0.0

0.0

︙
0.8

1.0

Speed (r/min)
180

180

180

180

180

240

︙
300

300

︙
360

360

Fig. 9 Experimental slider displacement data
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Fig. 10 Experimental slider acceleration data

(a) (b)

(c) (d)

Fig. 6 Radius clearance (ΔR) between the connecting shaft
and connecting rod: (a) ΔR=0.0 mm; (b) ΔR=0.2 mm; (c) ΔR=
0.6 mm; (d) ΔR=1.0 mm

SR

HR

HL

LR

LL
SL

Fig. 7 Dimension parameters of the crank-slider mechanism
parts (LL is the length of the crank, and LR the length of
the connecting rod)

(a)

(b)

(c)

Fig. 8 Three connection modes in the experiments: (a) no
joint clearance at both ends; (b) joint clearance on the left;
(c) joint clearance on the right
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(1) With the increase of the joint clearance, the
deviation of the slider displacement curve near the
motion pole of the mechanism increases.

(2) The acceleration curve of the slider shows
significant oscillation near the pole position of the
mechanism, and the larger the joint clearance is, the
larger the oscillation amplitude is.

(3) Under the same joint clearance, the higher
the motor speed, the greater the oscillation amplitude
of the slider acceleration curve near the pole position
of the mechanism.

(4) Compared to the acceleration of the slider,
the joint clearance has little effect on the displacement
of the slider.

Therefore, the joint clearance indeed seriously
affects the dynamic performance, and the variance of
the slider acceleration data is considered as the output
response to reflect the kinematic and dynamic perfor‐
mances of the mechanism.

3.2 Simulation model enhanced by physical
experiment

To establish the simulation model of the crank-
slider mechanism and obtain the acceleration data of
the slider, we used MSC ADAMS to simulate the
mechanism. The functions of MSC ADAMS are fo‐
cused on the modeling, analysis, and optimization of
multi-body mechanical systems (Ambaye and Lemu,
2021), which can be used to predict the performances
of mechanical systems, motion range, and collision
detection. The simulation model of the no-clearance
crank-slider mechanism is shown in Fig. 11.

The geometric and material parameters of the sim‐
ulation model are the same as those of the real model.

To extract the variance reflecting the fluctuation degree
of the slider acceleration, it is necessary to first obtain
the slider acceleration data under the ideal no-clearance
condition. Simulation and experimental data for the
no-clearance acceleration at four different speeds are
shown in Fig. 12.

Secondly, the acceleration performance of the
slider is mainly related to the impact at the joint clear‐
ance. To make the simulation model reflect the colli‐
sion situation of the physical model, it is very impor‐
tant to set the contact parameters reasonably. In MSC
ADAMS, the parameters affecting contact collision
include stiffness, force exponent, damping, and pene‐
tration depth. We used the method of comparison with
the experimental platform data, took the acceleration
as the measurement index, constantly adjusted these
four parameters, and finally got a reasonable parame‐
ter. By changing the clearance and speed of the simu‐
lation model, the same experiment as the experimen‐
tal platform was carried out, and 40 sets of simulation
data were obtained. The simulation results were com‐
pared with the experimental platform data, and part of
the comparison is shown in Fig. 13.

According to Fig. 13, the simulation data are in
good agreement with the physical experiment data. To
quantify the accuracy of the simulation data, the vari‐
ance of the difference between the simulation acceler‐
ation data and the ideal no-clearance acceleration data
and the variance of the difference between the experi‐
mental acceleration data and the ideal no-clearance ac‐
celeration data were calculated. The magnitude of the
variance reflects the fluctuation degree of the slider ac‐
celeration. Some calculated values are shown in Table 2.

The calculated results were classified according
to the speed, and the average errors between simula‐
tion variance and experimental variance at 180, 240,
300, and 360 r/min are 9.86%, 11.86%, 7.98%, and
9.55%, respectively. Analysis shows that at all four
different speeds, the best speed for the simulation
model to simulate the kinematic and dynamic perfor‐
mances of the crank-slider mechanism is 300 r/min.

3.3 Random sampling of input variables

For the hybrid simulation model of the crank-
slider mechanism, its input variables include ΔRL, ΔRR,
the length of the crank LL, and the length of the con‐
necting rod LR (Fig. 7). According to the central limit
theorem, when the number of samples is large, the

Fig. 11 Simulation model of the ideal crank-slider mechanism

534



J Zhejiang Univ-Sci A (Appl Phys & Eng) 2022 23(7):527-542 |

sum of multiple random variables obeying arbitrary
distribution tends to a normal distribution. Therefore,
random variables in engineering are often assumed to
obey normal distribution. We assume that each input
variable is a random number that obeys a normal dis‐
tribution in each tolerance zone or limit clearance.

The range of tolerance zone and limit clearance
increases with the reduction of tolerance class. To max‐
imize the scope of the experiment and provide more
comprehensive experimental data, we selected the
tolerance grade of IT12. The value range and nor‐
mal distribution of each input variable are shown in
Table 3.

The normal distribution of each input variable
was determined and random sampling was carried out.
The PCE surrogate model requires fewer sample data
and, among the existing sampling methods, LHS
(McKay et al., 2000) has the advantages of both Monte
Carlo random sampling and stratified sampling. The
LHS method ensures the uniformity of a small num‐
ber of samples and is one of the best small sample

simulation methods (Helton and Davis, 2003). There‐
fore, the LHS method was used to sample input vari‐
ables and obtain 100 groups of sample data, some of
which are shown in Table 4.

3.4 Experiment based on the hybrid simulation
model

The hybrid simulation model is a simulation
model obtained through the verification and calibration
of physical experimental data, as shown in Fig. 14.

The simulation effect of this model was better at
300 r/min, so the experiment was carried out at this
speed. One hundred sets of sample data were input to
obtain the slider acceleration data of five cycles in the
process of uniform rotation of the corresponding hy‐
brid simulation model. After subtracting them from the
acceleration data of the slider of the ideal no-clearance
mechanism at the same speed, the variance of the dif‐
ference value was obtained to reflect the kinematic
and dynamic performances of the mechanism. The
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Fig. 12 Simulated and experimental slider acceleration data under the no-clearance condition at four different speeds:
(a) 180 r/min; (b) 240 r/min; (c) 300 r/min; (d) 360 r/min

535



| J Zhejiang Univ-Sci A (Appl Phys & Eng) 2022 23(7):527-542

corresponding variance of each sample is shown in

Fig. 15.

4 Comparison method of sensitivity indices

based on PCE surrogate model

The purpose of sensitivity analysis is to guide tol‐

erance allocation and satisfy kinematic and dynamic
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Fig. 13 Comparison of simulation and experimental data on slider acceleration: (a) ΔRL=0.2 mm, 180 r/min; (b) ΔRR=1.0 mm,
240 r/min; (c) ΔRL=0.8 mm, 300 r/min; (d) ΔRL=0.4 mm, 360 r/min

Table 3 Value range and normal distribution of each input variable

Item
Value range

Normal distribution

ΔRL (mm)
[0, 0.21]

N(0.105, 1.15×10−3)

ΔRR (mm)
[0, 0.21]

N(0.105, 1.15×10−3)

LL (mm)
[49.875, 50.125]

N(50, 1.64×10−3)

LR (mm)
[299.74, 300.26]

N(300, 7.08×10−3)

Table 2 Comparison among simulation, experiment, and ideal data

Speed (r/min)
180

240

300

360

ΔRL (mm)
0.2

0.0

0.8

0.4

ΔRR (mm)
0.0

1.0

0.0

0.0

Variance of simulation
13.77

35.45

204.81

432.87

Variance of experiment
15.22

40.11

223.66

398.06

Error (%)
9.53

11.62

8.43

8.74

Table 4 Partial random sampling data

Sample
1

2

3

4

5

︙
99

100

ΔRL (mm)
0.092

0.098

0.069

0.077

0.085

︙
0.130

0.046

ΔRR (mm)
0.128

0.079

0.138

0.061

0.081

︙
0.096

0.065

LL (mm)
49.93

50.06

50.01

49.95

50.04

︙
49.97

50.08

LR (mm)
299.95

300.12

300.06

300.00

299.97

︙
300.01

300.01
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performances. Therefore, we defined the basis for eval‐
uating the sensitivity indices by whether the tolerance
scheme guided by each sensitivity could better meet
the performance requirements. We also proposed a
comparison method of sensitivity indices for kinematic
and dynamic performances. Firstly, the sensitivity
indices were calculated based on the PCE surrogate
model, which was built based on the experimental data
of the hybrid simulation model. Secondly, using the
constraint function of cost-tolerance, the tolerance
allocation scheme corresponding to each sensitivity
index was solved according to the sensitivity results.
Finally, each tolerance scheme was imported into the
hybrid simulation model and the corresponding kine‐
matic and dynamic performances were compared to
determine the best sensitivity index for the transmis‐
sion mechanism.

4.1 Surrogate model based on the PCE method

The PCE method is a very effective analysis
method based on random uncertainty. It arises from the

theory of the Wiener homogeneous function (Wiener,
1938; Wiener and Teichmann, 1959).

The PCE method can be roughly divided into
two steps:

(1) Construction of the PCE model. The input and
output random variables are expressed as weighted
linear combinations of a set of orthogonal polynomial
basis functions.

(2) Calculation of the PCE coefficient. The wei‑
ghts of each orthogonal polynomial basis function are
calculated.

We used the non-interference polynomial chaos
expansion (NIPCE) method (Acharjee and Zabaras,
2007) of the PCE method to establish the surrogate
model, which is widely used in engineering problems.
For NIPCE, the PCE coefficient can be obtained
by the stochastic response surface method (SRSM)
(Isukapalli, 1999; Isukapalli et al., 2000).

The PCE surrogate model was built based on the
experimental data of the hybrid simulation model.
The specific process is as follows:

(1) The PCE model was constructed according
to the mathematical model. Appropriate orthogonal
polynomial basis functions were selected and com‐
bined according to the rules. The specific form de‐
pended on the set order.

(2) The PCE coefficient was calculated by the
SRSM. We input 100 groups of sample data, includ‐
ing input variable values and output variance values.
Part of the sample data was used for the PCE coeffi‐
cient calculation, and the number of groups required
also depended on the set order, while the other part of
the sample data was used for model testing.

(3) The obtained PCE surrogate model was used
to calculate the output variance corresponding to the
original 100 groups of input variables, and the per‐
centage error and standard error (RMSE) between the
original variance and the output variance were calcu‐
lated. The different-order PCE surrogate models were
evaluated, and the third-order one was the optimal or‐
der. The percentage error in the third order is shown
in Fig. 16.

Furthermore, the RMSE of the third-order PCE
is 1.132. It was proved that this model could effec‐
tively restore the numerical relationship between out‐
put variance and input variables in the hybrid simula‐
tion model.
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Fig. 15 Variance data of slider acceleration based on the
hybrid simulation model

Fig. 14 Hybrid simulation model of the crank-slider
mechanism
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4.2 Sensitivity calculation based on the PCE model

For the above four sensitivity indices, the PCE
surrogate model is used to obtain the output response
corresponding to specific input variables, so as to
calculate their sensitivity. The specific process is as
follows:

(1) Linear regression method
The PCE surrogate model is used to expand the

sample size, and linear regression calculation is per‐
formed directly to obtain the expression as follows:

y = 14161 + 1296.6x1 - 680.3x2 + 107.1x3 - 63.9x4

where y is the difference variance, x1 is the value of
ΔRL, x2 is the value of ΔRR, x3 is the value of LL, x4 is
the value of LR, and their units are all mm.

In this expression, the coefficients of x2 and x4

are negative, which is inconsistent with the actual situ‐
ation of the model. Using multiple groups of sample
sizes to re-calculate the linear regression, the obtained
expression resembles the above. This model is not lin‐
ear, and its higher-order effects are large enough that
linear regression cannot be used to calculate the sensi‐
tivity of its output response to its input variables.

(2) Sobol method
The Sobol method is used to calculate the first-

order sensitivity of the variance of the slider accelera‐
tion difference, which reflects the kinematic and dy‐
namic performances of the mechanism, to each input
variable (Saltelli et al., 2008). The calculation method
is as follows: set two input sample matrices A and B
with the same size N; take B as the original matrix
and replace the ith column with the ith column of A to
get matrix C; the corresponding output response

column vectors yA, yB, and yCi
of each input sample

matrix are obtained. The first-order sensitivity index
can be calculated by

S (1)
i =

1
N∑j = 1

N

y( )j
A y( )j

Ci
- f 2

0

1
N∑j = 1

N ( )y( )j
A

2

- f 2
0

 (19)

where

f 2
0 =

1
N∑j = 1

N

y( )j
A . (20)

The convergence value is shown in Fig. 17 as
the sample size changes.

(3) Moment-independence method
The PCE surrogate model is used to calculate the

output response corresponding to a specific input sam‐
ple. Eqs. (13)–(15) are used to calculate the moment-
independent sensitivity index S (PDF)

i based on the PDF.
The convergence value is obtained by changing the
sample size, as shown in Fig. 18.

(4) Information-entropy method
The method of information-entropy is like the

method of moment-independence. Eqs. (16)–(18) are
used to calculate the global sensitivity index Sxi

of

information-entropy. The convergence value is obtained
by changing the sample size, as shown in Fig. 19.

4.3 Tolerance allocation based on the sensitivity

In this study, sensitivity and cost-tolerance func‐
tions are combined to allocate tolerance. Given a total
cost value, the cost was allocated according to the
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Fig. 16 Approximation error of the PCE surrogate model
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Fig. 17 First-order Sobol sensitivity indices
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proportional relationship between the sensitivity indi‐
ces of the input variables. Then, the tolerance range of
each mechanism part size corresponding to the input
variable was calculated by combining the cost-tolerance
functions. The tolerance allocation scheme correspond‐
ing to each sensitivity index was obtained.

The cost-tolerance function (Mo et al., 2011)
used is as follows:

(1) Machine cost-tolerance model of the outer
circle feature size:

C (T ) = 15.1138e-42.2874T +
T

0.8611T + 0.01508
 (21)

where T is the dimensional tolerance, and its unit is
mm.

(2) Machine cost-tolerance model for locating
feature size:

C (T ) =
ì
í
î

ïï
ïï

8.2369e-35.8049T+1.3071
-0.0083

T  T≤0.13
1.23036 T>0.13.

(22)

We assume that the total cost is 5, and the reasons
are as follows: the input samples of the hybrid simula‐
tion model are sampled based on the tolerance grade
of IT12, so the tolerance allocation should be within
this tolerance grade, and the fit limit clearance of con‐
necting shaft in tolerance grade of IT12 is 0.42 mm;
the tolerance allocation is determined by the cost allo‐
cation, which is based on the sensitivity index, and
the sensitivity index of each mechanism part is not
very different. The tolerance cost and tolerance range
of each mechanism part size of the mechanism corre‐
sponding to the input variables are shown in Table 5.

4.4 Comparison of sensitivity indices based on
kinematic and dynamic performances

Based on obtaining the tolerance scheme of each
sensitivity index, it was assumed that the size of parts
obeys normal distribution within the tolerance range.
The LHS method was used to sample each part size,
and the sample size of each tolerance scheme was 40
groups. The sample data were input into the hybrid
simulation model in turn, and the slider acceleration
data of two cycles at 300 r/min were obtained. Sum‐
mary data of slider acceleration corresponding to each
sensitivity index are shown in Figs. 20‒22.

After subtracting each acceleration term from
the acceleration degree of the slider of the ideal non-
clearance mechanism at the same speed, the variance
of the difference value is obtained. Each sensitivity in‐
dex has 40 variances, the average of which is shown
in Table 6.
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Table 5 Tolerance cost and tolerance range of each mechanism part size

Variable

SL

SR

LL

LR

Tolerance cost

Sobol
method

1.0751

1.6515

1.1557

1.1177

Moment-independence
method

1.2090

1.5043

1.1057

1.1810

Information-entropy
method

1.2855

1.1051

1.1048

1.5045

Tolerance range (mm)

Sobol
method

0.2100

0.0721

0.1075

0.1146

Moment-independence
method

0.1000

0.0781

0.1173

0.1036

Information-entropy
method

0.0919

0.3505

0.1175

0.0765
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The curve in Fig. 20 is more concentrated near
the ideal curve than those in Figs. 21 and 22. Among
all the mean-variance of sensitivity indices, the mean-
variance of the Sobol index is the smallest. Therefore,
it can be considered that the Sobol index is the most
appropriate sensitivity index for the transmission
mechanism. When the researcher allocates tolerances
to the transmission mechanism, the Sobol sensitivity
analysis method can be used to assist the tolerance de‐
sign, which can help the researcher determine the
main effect of each input variable on the output re‐
sponse and optimize the kinematic and dynamic per‐
formances of the transmission mechanism.

5 Discussion

Compared with the other sensitivity analysis
methods in this study, the Sobol sensitivity analysis
method can better optimize the kinematic and dynamic
performances of the crank-slider mechanism for toler‐
ance allocation because the first-order Sobol index can
effectively extract the main effect of each input vari‐
able in the nonlinear model on the response, but not
the total effect. This is very important for sensitivity
analysis of complex models such as transmission mech‑
anisms because the total effect of each input variable
on the response includes redundancy. The more com‐
plex the model is, the more attention should be paid
to the redundancy, which will enlarge the effects of
some input variables on the model response.

By comparing Figs. 17‒19, it can be found that
in the first-order Sobol index, the joint clearance ΔRR

has the largest proportion of sensitivity, while in the
information-entropy index, ΔRR has the smallest pro‐
portion of sensitivity. Therefore, the first-order Sobol
index is more reasonable, because the slider is jointed
with the right end of the connecting rod, where ΔRR

has the greatest effect on the kinematic and dynamic
characteristics of the slider. What makes Fig. 19 so
unusual is that it over calculates the total effects of
some input variables on the model response.

Although this study is based on the comparative
study of sensitivity analysis methods of typical trans‐
mission mechanisms, the best sensitivity analysis me‑
thod obtained by comparison is not suitable for all trans‐
mission mechanisms. This is because the kinematic and
dynamic performances of the transmission mechanism
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Fig. 20 Slider acceleration data based on the Sobol index

0.0 0.1 0.2 0.3 0.4
Time (s)

-250

-200

-150

-100

-50

0

50

100

150

200

250

S
lid

in
g
 b

lo
c
k
 a

c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

Fig. 21 Slider acceleration data based on the moment-
independence index
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Fig. 22 Slider acceleration data based on the information-
entropy index

Table 6 Sensitivity indices corresponding to the mean-variance

Index
Sobol index

Moment-independence index

Information-entropy index

Mean-variance
807.90

1112.12

1369.98
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are affected by the transmission type, and the Sobol
method has requirements for independent inputs,
which not all transmission mechanisms can meet.
However, when the transmission form studied by the
researcher resembles the crank-slider mechanism, this
research is of value. At the same time, this study also
points out the necessity for researchers to consider the
total effect redundancy when performing sensitivity
analysis on complex mechanisms.

In future research, we will propose a new sensi‐
tivity index, which will be suitable for more types of
transmission mechanism and can be used in the pres‐
ence of correlations among the inputs.

6 Conclusions

The kinematic and dynamic performances of the
transmission mechanism are significantly affected by
the geometric errors of the parts, and the tolerance
design can make a reasonable geometric errors alloca‐
tion of the parts while controlling the production cost.
In this study, the crank-slider mechanism was used as
the research object. Based on the proposed hybrid
simulation model, the optimal sensitivity index for the
transmission mechanism was determined by compar‐
ing multiple sensitivity indices and helped to achieve
better tolerance design by assisting tolerance allocation.

(1) A hybrid simulation model was established
based on the experimental data of the crank-slider
experiment platform. The accuracy and reliability of
simulation data are ensured when the experiment cost
is reduced and the input variables are freely controlled.

(2) Based on the experimental data of the hybrid
simulation model, a surrogate model based on the PCE
method was established for the sensitivity calculation.
It simplifies the calculation significantly.

(3) The tolerance was allocated based on the sen‐
sitivity and cost-tolerance function, and the tolerance
scheme corresponding to each sensitivity index was
obtained. Based on the kinematic and dynamic perfor‐
mances of the mechanism of each tolerance scheme, a
new sensitivity evaluation method with engineering
value is proposed.
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