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Abstract: The compression modulus (Es) is one of the most significant soil parameters that affects the compressive deformation of 
geotechnical systems, such as foundations. However, it is difficult and sometime costly to obtain this parameter in engineering 
practice. In this study, we aimed to develop a non-parametric ensemble artificial intelligence (AI) approach to calculate the Es of 
soft clay in contrast to the traditional regression models proposed in previous studies. A gradient boosted regression tree (GBRT) 
algorithm was used to discern the non-linear pattern between input variables and the target response, while a genetic algorithm 
(GA) was adopted for tuning the GBRT model’s hyper-parameters. The model was tested through 10-fold cross validation. A 
dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the 
accuracy of the new model’s predictions. The mean squared error and correlation coefficient of the optimum GBRT model applied 
to the testing set were 0.13 and 0.91, respectively, indicating that the proposed machine learning (ML) model has great potential to 
improve the prediction of Es for soft clay. A comparison of the performance of empirical formulas and the proposed ML method 
for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive 
deformation of geotechnical systems. This model, however, cannot be directly applied to the prediction of Es in other sites due to 
its site specificity. This problem can be solved by retraining the model using local data. This study provides a useful reference for 
future multi-parameter prediction of soil behavior. 
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1  Introduction 

 
With the rapid development of high-speed rail-

ways in China, the settlement of high-speed railway 

tracks is of great concern to engineers, as high-speed 
railways are extremely sensitive to foundation set-
tlement which may cause serious accidents (Brabie 
and Andersson, 2008; Huang and Zhang, 2016). 
Therefore, there is a great practical need to effectively 
control ground surface and foundation settlement. 
The settlement of foundations in geotechnical engi-
neering is determined mainly by the properties of the 
surrounding soil (Juang and Wang, 2013; Huang et 
al., 2017; Zhang et al., 2018). Among the soil prop-
erties, the compression modulus (Es) and Poisson’s 
ratio are two of the most significant parameters de-
termining the deformation of soil and foundations 
(Fenton and Griffiths, 2008). Furthermore, the  

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) 

ISSN 1673-565X (Print); ISSN 1862-1775 (Online) 

www.jzus.zju.edu.cn; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 
 

‡ Corresponding author 

* Project supported by the National Natural Science Foundation of 
China (Nos. 51608380 and 51538009), the Key Innovation Team 
Program of the Innovation Talents Promotion Plan by Ministry of 
Science and Technology of China (No. 2016RA4059), and the Spe-
cific Consultant Research Project of Shanghai Tunnel Engineering 
Company Ltd. (No. STEC/KJB/XMGL/0130), China 

ORCID: Hong-wei HUANG, https://orcid.org/0000-0001-6463-7869 
© Zhejiang University and Springer-Verlag GmbH Germany, part of 
Springer Nature 2020 



Zhang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2020 21(6):430-444 431

compression modulus values are believed to show 
large spatial variation in deformation analysis (Fenton 
and Griffiths, 2008; Huang et al., 2017). Therefore, 
the ability to obtain accurate compression modulus 
values for soft clay precisely and efficiently is critical 
to the reliability of foundation design.  

At present, the compression modulus is evalu-
ated mainly in laboratory tests (Lee et al., 2010). 
However, disturbance and moisture loss during the 
process of collection, transportation, storage, and 
manual sample preparation are unavoidable (Sri-
dharan and Nagaraj, 2000). This disturbance would 
affect the accuracy of the estimated value of the 
compression modulus. In addition, laboratory tests 
are relatively costly and time-consuming. The cone 
penetration test (CPT) is commonly used to estimate 
the Es of soil because it can be carried out directly on 
the project site (Kulhawy and Mayne, 1990; Tong et 
al., 2013). Therefore, the geotechnical characteristics 
of the soil in the area of interest can be directly and 
accurately measured. The only requirement is a 
well-established translation from the cone tip re-
sistance (Ps) from the CPT to the target compressive 
modulus Es. In this regard, considerable effort has 
been devoted to establishing the correlation between 
CPT parameters and soil parameters (Kulhawy and 
Mayne, 1990; Lee et al., 2010). Much effort has also 
been devoted to establishing the relationship between 
the compressive modulus and other relatively readily 
available soil parameters, such as the plastic limit 
(wP), liquid limit (wL), plasticity index (IP), and li-
quidity index (IL) (Kulhawy and Mayne, 1990; Sri-
dharan and Nagaraj, 2000). However, a generalized 
relationship between the empirical formula of one 
parameter and Es is difficult to obtain. The parameters 
of different empirical formulas have great uncertain-
ty. Therefore, empirical formulas are not very appli-
cable to practical engineering. However, soil param-
eters are mutually influential (Ching and Phoon, 
2014). Using multiple parameters to predict Es will 
give better results than a single parameter, but this is 
difficult to achieve using traditional empirical for-
mula methods. 

To solve the above problem with geotechnical 
data analysis, machine learning (ML) algorithms 
recently developed in computer science have attracted 
substantial attention (Arditi and Pulket, 2005, 2010; 
Nejad et al., 2009). Through the application of ML 

algorithms, a system can become “intelligent” in 
self-understanding the relationship between input 
data and output data. ML models can learn the map-
ping correlation between inputs and outputs from the 
datasets. More specifically, these techniques have 
been proved to be practical for cases where the sys-
tem’s deterministic model is computationally expen-
sive or there is no deterministic model to solve the 
problem. Lee et al. (2003) attempted to apply an ML 
algorithm to the prediction of unsaturated shear 
strength. Over the last decade, ML has been applied 
successfully to prediction problem in geotechnical 
engineering (Arditi and Pulket, 2010; Viswanathan 
and Samui, 2016; Tarawneh, 2017). Khanlari et al. 
(2012) implemented a method combining artificial 
neural networks and multivariate regression to predict 
the friction angle and cohesion of soils. Shahin (2016) 
provided a review of some selected artificial intelli-
gence (AI) techniques and their application to pile 
foundations. Although there have been many attempts 
at ML approaches to deal with the prediction prob-
lem, the ML algorithms used were mostly single-base 
models. Ensemble learning algorithms provide a 
promising repertoire of tools in terms of their predic-
tion accuracy. Instead of a single-base model, pre-
dictability can be strengthened by combining the 
outputs from multiple ML models. As a common and 
effective ensemble learning model, the gradient 
boosted regression tree (GBRT) model tends to be 
more stable and accurate than single-base models in 
prediction problems (Roe et al., 2005; Zhou et al., 
2016). It has been demonstrated in several datasets 
that the prediction performance of GBRT is better 
than that of other ML algorithms (Roe et al., 2005; Qi 
and Tang, 2018). This method has been applied to 
various important engineering problems, including 
soil bulk density prediction (Jalabert et al., 2010), 
urban travel time (Gong et al., 2018), slope stability 
(Qi and Tang, 2018), and the strength of cemented 
paste backfill (Qi et al., 2018b). 

Considering the limitations of existing models, 
in this study we develop a novel model by drawing 
upon the GBRT technique so that the prediction of 
compression modulus can consider the combined 
effects of Ps, wP, wL, IP, IL, and depth (H). The main 
contributions of this study can be summarized as 
follows: (1) a large dataset was prepared based on 65 
site investigation reports in Shanghai; (2) a hybrid 
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method was used for relationship modelling that 
combines GBRT and genetic algorithm (GA); (3) 
hyper-parameter tuning was conducted and the pre-
dictive performance was validated; (4) the predictive 
performance of ML methods and empirical formulas 
was compared in calculating the 1D settlement of a 
shallow foundation. 
 
 
2  Data acquisition and analysis 
 

A practical prediction requires the easy input of 
parameters directly from in-situ or laboratory tests. 
Hence, the prediction of the parameter Es in this study 
includes CPT data (i.e. Ps along with soil depth) from 
field investigation, and associated water content data 
from laboratory tests (i.e. wP, wL, IP, and IL).  

2.1  Sampling and origin data acquisition 

In this research, based on 65 site investigation 
reports in Shanghai, China (Fig. 1), Es, wP, wL, IP, IL, 
and Ps values of soil were obtained. The Ps value was 
obtained from a CPT, and the Es, wP, wL, IP, and IL 
values were acquired from borehole information. 
Two points can be considered strongly related when 
the distance between them is relatively small. This 
distance is expected to lie between 30 and 60 m 
(Huang et al., 2015, 2017). Therefore, the distance 
between the CPT and borehole locations was 
controlled within 30 m in this study. For inclusion, a 
sample required the six parameters to exist 
simultaneously. On this basis, a total of 211 samples 
were collected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  Data analysis 

2.2.1  Model inputs and output 

To obtain an accurate prediction, a thorough 
understanding of the factors influencing soil Es is 
needed (Kulhawy and Mayne, 1990). Currently, most 
traditional prediction methods for Es are empirical 
formulas with a single variable, such as wP, wL, IP, or 
IL (Kulhawy and Mayne, 1990). Previous studies (Lee 
et al., 2010; Tong et al., 2013) have shown that the Es 
of soil can be estimated from Ps with reasonable ac-
curacy. Prediction would be more effective using 
multiple measurement parameters than a single pa-
rameter (Ching and Phoon, 2014). Therefore, the 
input variables of the prediction model are Ps, H, wP, 
wL, IP, and IL. Es is the single output variable in this 
study.  

2.2.2  Original data analysis 

The distributions of the six variables used in the 
prediction of Es are illustrated in the diagonal line of 
Fig. 2. The vertical axis of the diagonal histogram 
represents the frequency. The upper triangle reveals 
the pairwise correlation of the model input variables. 
The correlation coefficients (R) are reported in the 
lower triangle. Most of the parameters are distributed 
in a concentrated manner. According to Koo and Li 
(2016), R values less than 0.5, between 0.5 and 0.75, 
between 0.75 and 0.9, and greater than 0.90 are 
indicative of poor, moderate, good, and excellent 
reliability, respectively. There were relatively poor 
correlations between most input parameters (R<0.5). 
There was little correlation between depth and other 
model input variables. 
 

 

3  ML and GA-GBRT modelling 
 

In this study, the GBRT was employed as the ML 
algorithm to learn the non-linear pattern between 
compression modulus Es and its influencing variables. 
The hyper-parameters need to be optimized to im-
prove prediction performance. GA is considered an 
effective hyper-parameter optimization algorithm 
(Johari et al., 2011). Therefore, the GBRT hyper- 
parameters are tuned using GA. In this study, the 
GA-GBRT method was implemented by using Python 
Programming. Fig. 1  Location of sampling sites in Shanghai, China 
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3.1  GBRT 

As an ensemble learning model, the GBRT model 
tends to be more stable and accurate than single-base 
models (Zhou et al., 2016). The base learner of the 
GBRT model is a decision tree (DT). A DT is an al-
gorithm that classifies and predicts new data by 
measuring historical data. The DT is also known as a 
regression tree (RT) for regression problems. 

An RT consists of three main components: root 
decision nodes, intermediate nodes, and leaf nodes. 
These nodes are connected by branches. The structure 
of a typical RT is shown in Fig. 3. An RT can be used 
to make predictions by dividing the feature space into 
several regions and making predictions for each of 
them. Take Fig. 3 as an example with two influencing 
variables, namely X and Y. Based on these two vari-
ables, the dataset can be easily divided into four areas. 
Each of the four subsets has a central point or an 
average value: (1, 1), (1, 4), (4, 4), and (4, 1). In  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

forecasting a new sample, the center point of the 
subset in which the sample falls is used as its pre-
dicted value. The training of an RT usually involves 
growth and pruning. The essence of the RT growth 
process lies in the process of repeated branching on 
the training set. Growth will stop when the data 
branching is no longer significant or the maximum 
tree depth is reached. Therefore, RT growth is chiefly 
controlled by branching criteria. Over-fitting can be 
avoided through a pruning process in which the 
weakest branches with little potential to improve the 
generalization capability are collapsed. 

The core idea of the gradient boosting algorithm 
is that each tree can learn from the residuals of all 
previous trees. The negative gradient value of the loss 
function in the current model is used as an approxi-
mation of the residual in the boosting tree algorithm 
to fit an RT. Recently, this approach has gained in-
creasingly popularity in various scientific and  

Fig. 2  Distributions and correlation coefficients of model input variables in the dataset 
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engineering fields, such as energy consumption 
(Persson et al., 2017; Touzani et al., 2018), transpor-
tation (Gong et al., 2018), and civil and industrial 
engineering (Qi and Tang, 2018; Qi et al., 2018a, 
2018b).  

3.2  GA 

A GA, also known as a genetic evolution algo-
rithm, is a modern intelligent algorithm that simulates 
the survival of the fittest natural genetic mechanism in 
the biological universe. Local convergence can be 
overcome by using a GA method. In recent years, this 
method has been increasingly applied to various 
optimization problems (Johari et al., 2011; Juang and 
Wang, 2013; Tun et al., 2016; Yin et al., 2016).  

A global and robust solution can be obtained by 
using the GA due to its global search strategy and 
optimization search method (Goldberg, 1989). As 
illustrated in the flowchart of Fig. 4, the GA proce-
dure contains the following steps: (1) creation of 
initial individuals; (2) evaluation based on a fitness 
function; (3) creation of the next generation through 
selection, crossover, and mutation. The iterations are 
repeated until a specified stopping criterion is satis-
fied. A typical stopping criterion in a GA is a prede-
fined maximum number of generations. 

3.3  GA-GBRT modelling 

3.3.1  Data division 

Before modelling, the whole dataset is divided 
into two subsets, namely the training and testing sets. 
The training set is used to train the model, and the 
testing set is applied to assess the generalization 
performance of the trained model. In practice, how to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
divide the data into the training and testing sets is 
often determined by an optimization analysis (Qi et 

Fig. 3  An example of basic rules of the RT algorithm (a and b mean two intermediate categories) 

Y

Fig. 4  Generic framework for a simple GA 
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al., 2018a). In this study, a trial-and-error method was 
used to determine the percentage sizes of the training 
set and the testing set. More specifically, the training 
set size was increased from 30% to 90%, and the 
prediction performance was recorded. The optimum 
percentages of the training set and the testing set were 
determined to be 80% and 20%, respectively, after the 
trial-and-error analysis. The numbers of training and 
testing data points were 177 and 44, respectively. 
Generally, the testing set should be as mutually ex-
clusive of the training set as possible. The training and 
testing subsets should have similar statistical charac-
terizations since they are drawn randomly from the 
whole dataset (Shahin et al., 2004). A quick check can 
be done by examining important statistics of the input 
and output variables, including the mean, standard 
deviation, minimum, maximum, median, skewness, 
and kurtosis (Shahin et al., 2004; Nejad et al., 2009; 
Qi et al., 2018b). The skewness and kurtosis are de-
fined by Eqs. (1) and (2), respectively. The statistics 
of the training and testing sets were generally very 
consistent (Table 1) and all the datasets could be 
considered to represent the same population. 
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where xi means the value of each point, x  represents 
the mean value, xmedian means the median value, n 
means the number of data points, and STD indicates 
the standard deviation of the data. 

3.3.2  Performance measures 

In this study, the predictive performance of the 
GBRT model was evaluated using the mean squared 
error (MSE) and the correlation coefficient R. The 
MSE is the mean value of the squares of error be-
tween the predicted data and the original data. The R 
value is an indicator of the degree of correlation be-
tween variables. A positive R value means that the 
dependent variable increases with the independent 
variable, and the fitted straight line rises from left to 
right. Conversely, a negative value of R shows a pat-
tern declining from left to right. The prediction per-
formance is better when the R value is close to +1. 
The MSE and R values can be calculated by:  
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where n is the number of samples, xi and yi are the 
experimental and predicted Es values, respectively, 
and x  and y  represent the mean values of the ex-

perimental and predicted data, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1  Statistical description of inputs and outputs 

Variable Type Maximum Minimum Mean Median STD Skewness Kurtosis

Ps (MPa) 
Input-training 3.0 0.3 0.681 0.600 0.282 0.289 32.875 

Input-test 4.20 0.40 0.798 0.600 0.641 0.310 21.236 

H (m) 
Input-training 26.0 7.1 12.864 12.850 2.748 0.005 1.816 

Input-test 17.70 7.00 13.021 13.100 2.799 −0.028 −0.958 

wP (%) 
Input-training 48.2 18.6 23.983 23.500 3.327 0.145 32.497 

Input-test 26.60 18.40 23.344 23.700 1.871 −0.190 0.001 

wL (%) 
Input-training 48.7 24.2 43.064 44.050 4.026 −0.245 6.267 

Input-test 47.30 30.90 42.330 42.900 3.772 −0.151 1.459 

IP (%) 
Input-training 23.9 12.7 19.811 19.600 2.291 0.092 0.438 

Input-test 23.50 12.20 18.986 18.800 2.510 0.074 0.842 

IL 
Input-training 1.79 0.81 1.278 1.270 0.161 0.051 0.843 

Input-test 1.57 0.84 1.279 1.290 0.156 −0.068 0.750 

Es (MPa) 
Output-training 6.27 1.50 2.340 2.210 0.635 0.212 10.897 

Output-test 5.91 1.61 2.461 2.280 0.787 0.231 9.950 
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3.3.3  k-fold cross validation 
 
To improve evaluation of the performance of the 

prediction model, it is essential to select appropriate 
validation methods carefully during hyper-parameter 
tuning. k-fold cross validation (CV) is the most pop-
ular method used to overcome a scarcity of data 
(Braga-Neto et al., 2004). The k-fold CV reduces the 
variance by averaging the results of k different folds 
of the training set. In this study, the k value was set to 
10, based on the recommendation of Rodriguez et al. 
(2010). The 10-fold CV flow chart used in this study 
was as follows. First, the training set was randomly 
split into 10 equal-sized folds. Next, one-fold was 
selected as the validating fold and the remaining nine 
were used as the training folds. The training- 
validating process was then carried out 10 times so 
that each fold had an opportunity to serve as the val-
idating fold. Performance evaluation indicators of the 
model (e.g. MSE and R) were calculated each time. 
Finally, the average performance of the 10 iterations 
was taken as the overall performance indicator for the 
model on the training set. 

3.3.4  Hyper-parameter tuning 

The hyper-parameters of the GBRT model must 
be pre-determined before its implementation. Per-
formance may differ under a different combination of 
hyper-parameters. Therefore, hyper-parameter tuning 
is crucial for successful GBRT modelling. In this 
study, the GA was used to tune the hyper-parameters 
of the GBRT algorithms. The GA parameters used for 
hyper-parameter tuning of the GBRT are shown in 
Table 2.  

 
 
 
 
 
 
 
 
 
 
 
The tuned hyper-parameters of the GBRT are 

shown in Table 3, together with their tuning ranges. 
An appropriate tuning range of hyper-parameters 

greatly improves the efficiency and accuracy of 
training. The range was determined in accordance 
with trial tests, modelling experience, and suggestions 
from previous studies (Qi et al., 2018a, 2018b). The 
whole procedure for the application of GA-GBRT 
approach to predict the compression modulus is 
summarized in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4  GA-GBRT results and discussion 

4.1  Results of hyper-parameter tuning 

To evaluate the capability of the GA in the tun-
ing of GBRT hyper-parameters, the maximum and 
average R values of each generation were monitored 
during the evolution. Fig. 6 shows the maximum and 
average R values from the first sixteen generations of 
the GA evolution. There was no evident increase in 
the maximum R value after the sixth generation 
(Fig. 6a). Similarly, the average R value remained 
stable, though with small fluctuations, after the 12th 
generation (Fig. 6b). 

The maximum and average R values eventually 
approached 0.816. The average R value increased 
from 0.700 to 0.816 during the hyper-parameter tun-
ing. From the first iteration to the 12th iteration, the 
average R value increased by 0.116. In contrast, the 
improvement in the maximum R value (0.007) was 
not as significant. An increase of 16.6% in average R  

Table 2  GA parameters used for hyper-parameter tuning

GA parameter Description 

Fitness function Correlation coefficient 
Selection method Tournament (size=3) 
Genetic possibility Crossover (80%),  

mutation (5%) 
Number of chromosomes 1000 
Number of generations 200 

 

Table 3  Explanation of hyper-parameters and tuning 
range 

Hyper- 
parameter 

Explanation Type 
Tuning 
range

Max_depth The maximum depth  
of the RT 

Integer 1–20 

Min_samples
_split 

The minimum number 
of samples required 
to split an internal 
node 

Integer 2–10 

Min_samples
_leaf 

The minimum number 
of samples at the leaf 
node 

Integer 1–20 

Max_RT The maximum number 
in the AdaBoost.R2 
algorithm 

Integer 50–1000

Learning rate Learning rate shrinking 
the contribution of 
each RT model 

Float 0.01–1
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value was achieved in the first six iterations. The 
largest R value was gained before the 12th generation 
and a rapid increase was achieved in the first six 
generations, indicating that the use of GA in GBRT 
hyper-parameter tuning was valid. The optimum  
hyper-parameters for the GBRT models are general-
ized in Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Results of the optimum GBRT model 

MSE and R were selected as evaluation indexes. 
The evaluation of the GBRT model was performed on 
both the training set and the testing set. The general 
predictive performance of the GBRT model with 
optimum hyper-parameters on the training set was 
quite acceptable (Fig. 7). Fig. 7a provides a visual 
comparison of predicted and experimental Es values. 
Regardless of the Es value, the predicted value was 
relatively consistent with the experimental value. 
Therefore, the successful modelling of the soil Es 
using the optimum GBRT model indicated that 
GBRT modelling has great potential for making more 
reliable predictions.  

The results of regression analysis of predicted 
and experimental Es values are shown in Fig. 7b. 
Most points fell around the ideal fitting line, and the R 
value between the experimental and predicted Es 
values was 0.82, which was consistent with the 
analysis result in Section 4.1. As suggested in previ-
ous studies, a GBRT model with R values larger than 
0.8 can be regarded as acceptable (Roy and Roy, 2008; 
Qi et al., 2018b). The MSE of the GBRT model with 
optimal hyper-parameters was 0.15 MPa2, also indi-
cating that a relatively good GBRT model had been 
achieved on the training set.  

Table 4  Optimal hyper-parameter results 

Max_
depth

Min_samples
_split 

Min_samples
_leaf 

Max_
RT 

Learning 
rate 

1 6 4 374 0.3967 

Fig. 5  Procedure for using GA-GBRT approach for compression module prediction 
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Fig. 8 compares the experimental and predicted 

Es values on the testing set. The prediction perfor-
mance of the testing set was mostly excellent except 
for some extremely large or small samples (Fig. 8a). 
The MSE and R values of the optimum GBRT model 
on the testing set were 0.13 MPa2 and 0.91, respec-
tively (Fig. 8b), indicating excellent prediction per-
formance of the optimum GBRT model (Koo and Li, 
2016). The optimum GBRT model on the testing set 
had a higher prediction performance because more 
samples were observed during its training. 

4.3  Relative importance of influencing variables 

The ability to investigate the relative importance 
of the influencing variables is another crucial reason 
why the GBRT model is widely used in prediction 
problems. It can be used to rank the influencing var-
iables according to their contribution to the perfor-
mance of the prediction model. To reveal the effect of 

influencing variables on the predicted Es values of 
soft clay soil, a sensitivity analysis was conducted for 
these influencing variables. 

The importance of variables for Es previously 
obtained from the optimum GBRT model is summa-
rized in Fig. 9. The sum of all importance scores was 
scaled to 1 for ease of interpretation. IL (liquidity 
index) was the most sensitive variable for predicting 
Es with a relative importance score of 0.313. This 
score is defined as the ratio of the difference between 
the natural moisture content (w) and the plastic limit 
wP to IP (Eq. (5)). IL is meant to capture the relative 
relationship between the natural moisture content and 
the boundary water content. The influence of mois-
ture content on the Es of soil has been extensively 
studied (Kulhawy and Mayne, 1990; Fan et al., 2006). 
IL reflects the hard or soft natural state of clay soil. 
The greater the IL, the softer the soil and the smaller 
the corresponding Es. Therefore, IL has a significant 
effect on the Es of soil compared to other factors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 7  Experimental versus predicted Es for the GBRT 
model with the optimum hyper-parameters on the train-
ing set: (a) comparison of experimental and predicted Es; 
(b) regression 
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Fig. 8  Experimental versus predicted Es for the GBRT 
model with the optimum hyper-parameters on the testing 
set: (a) comparison of experimental and predicted Es; (b) 
regression 

1 2 3 4 5 6 7
1

2

3

4

5

6

7
MSE=0.13 MPa2

R=0.91

P
re

di
ct

ed
 E

s 
(M

P
a)

Experimental E
s
 (MPa)

Ideal fit

(b) 



Zhang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2020 21(6):430-444 439

 
 
 
 
 
 
 
 
 
 
 
 

 

P P
L

P L P

.
w w w w

I
I w w

 
 


                       (5) 

 
The importance scores for wL, wP, and IP were 

0.201, 0.198, and 0.195, respectively. Therefore, 
these variables are also important predictors. wL and 
wP are moisture content indicators which can deter-
mine the physical state of the clay soil. IP is an 
important index for measuring the plasticity of soil 
and can fully reflect its material composition. Ps and 
H had relatively low importance scores in this pre-
diction model. Note that different importance scores 
may be obtained when using different datasets and 
ML models (Qi and Tang, 2018). 
 
 
5  Application to a 1D settlement 
 

To verify whether the performance of the GA- 
GBRT model is better than that of the existing em-
pirical formulas, the predicted Es was applied to the 
calculation of foundation settlement.  

5.1  Comparison of empirical formulas and ML 
training effects 

According to Clayton et al. (1995), the rela-
tionship between Es and the compression index (Cc) is 
shown as  
 

1
s

c

1
,

10 lg 2

e
E

C




                            (6) 

 

where e1 is the void ratio at a pressure of 0.1 MPa. 
The oedometer testing requires undisturbed samples 

and is quite time-consuming and expensive. For this 
reason, many previous studies correlated compressi-
bility characteristics with other soil properties. Sri-
dharan and Nagaraj (2000) correlated the compres-
sion index with various other individual soil param-
eters. For example, the relationships between Cc and 
wL, and Cc and IP are shown in the corresponding 
Eqs. (7) and (8). The empirical formula was obtained 
from 10 kinds of soil, including silty soil and clay. 
The dataset was mainly from Shanghai’s clay soil, 
which is suitable for this formula.  
 

c L0.008 ( 12),C w                          (7) 

c P0.014 ( 3.6).C I                          (8) 
 

Based on Eqs. (6)–(8), the relationships between 
Es and wL, and Es and IP are shown in the corre-
sponding Eqs. (9) and (10). In this study, wL and IP 
were selected for comparing the results obtained by 
the optimum GA-GBRT in testing results. 
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e
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                   (10) 

 

The performance of the various prediction 
methods was compared using the testing set, and the 
results are shown in Fig. 10. The present ML method 
applied to the testing set was more accurate than the 
empirical formulas. For convenience of expression, 
the empirical formulas of Es obtained by wL and IP are 
simply referred to as empirical formulas wL and IP. 
From Fig. 10a, the predicted Es values from empirical 
formula wL were generally greater than the experi-
mental value. The predicted Es values from empirical 
formula IP were relatively good when the experi-
mental values were small. However, the predicted 
results were relatively poor when the experimental 
values were large. Lower MSE and higher R values 
were achieved by the proposed ML model than the 
empirical formulas (Fig. 10b), showing that the pro-
posed ML model was significantly better than the 
empirical formulas at predicting the soil Es. 

5.2  Comparison of foundation settlement  

The method used in this study to calculate 
foundation settlement was a layer-wise summation  
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method. The results of the calculation are shown in 
Fig. 11 and Table 5. The results from a comparison of 
the performance of the empirical formulas and the 
ML method in predicting foundation settlement are 
shown in Fig. 12. Six aspects of performance were 
compared: the maximum, minimum, mean, STD, R 
value, and the Mann-Whitney test. Fig. 12a shows the 
comparison between the calculated foundation set-
tlement from the experimental Es and predicted Es 
using the empirical formula wL. The predicted result 
distribution is more concentrated and the mean value 
of settlement much smaller. The R value was 0.69, 
indicating a relatively moderate prediction perfor-
mance (Koo and Li, 2016). The null hypothesis that 
the two sets of samples came from the same proba-
bility distribution can be rejected at the customary 5% 
level of significance because the p-value was 0.00< 
0.05. The poor consistency also implies a limitation of 
the empirical formula wL for practical cases.  

The prediction performance of the empirical 
formula IP method is shown in Fig. 12b. Although the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p-value of the Mann-Whitney test was 0.51>0.05, the 
distribution range was significantly narrower, espe-
cially without some small settlement. This means that 
in practice this method will overestimate the settle-
ment of the foundation. The results obtained by the 
present ML method were more satisfactory than those 
from the empirical formulas (Fig. 12c). The distribu-
tion range, mean value, and STD value from the ML 
method were similar to the corresponding actual re-
sults. The R value was 0.81, indicating a relatively 
good prediction performance (Koo and Li, 2016). In 
addition, the p-value of the Mann-Whitney test was 
0.77>0.05, which means that the possibility that the 
two sets of samples came from the same probability 
distribution cannot be rejected at the customary 5% 
level of significance. The high level of agreement also 
validates the rationality of the proposed ML model 
and its applicability to practical cases. 

Table 5  Calculation of the foundation settlement by layer-
wise summation method 

Layer
number

Depth 
Hi (m)

Geostat-
ic stress  

(kPa)

Addi-
tional 
stress 
(kPa) 

Average 
additional 
stress Δpi 

(kPa) 

Stratified 
compres-
sion Δsi 
(mm) 

– 0.0   27.0 120.2 – – 

1 1.2   48.6 106.9 113.6 Δp1H1/Es1

2 2.4   70.2   69.8   88.4 Δp2H2/Es2

3 3.6   91.8   44.8   57.3 Δp3H3/Es3

4 4.8 113.4   29.3   37.1 Δp4H4/Es4

5 6.0 135.0   21.0   25.2 Δp5H5/Es5

Esi indicates the compression modulus of the ith soil layer 
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Fig. 11  Foundation soil stratification, geostatic stress, and 
additional stress 
F is the central load; γ is the unit weight of soil 

Fig. 10  Comparison of performance between empirical 
formulas and the proposed ML method for predicting Es: 
(a) experimental and predicted Es; (b) regression  
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6  Conclusions 
 

In this study, an integrated GA-GBRT model 
was constructed to predict the Es of soil and founda-
tion settlement. A total of 221 soil samples from 65 

engineering survey reports of Shanghai infrastructure 
projects were collected for preparation of the dataset. 
The input variables considered by the prediction 
model were Ps, H, wP, wL, IP, and IL, and the output 
variable was the Es. A 10-fold CV was used as the 
validation method, and MSE and R values as the 
performance measures. The relative importance of 
influencing variables was investigated using the re-
sults from the optimum GA-GBRT model. Based on 
the results of the analysis, the following conclusions 
can be drawn: 

1. A GA can effectively assist the hyper- 
parameter tuning of ML algorithms, as the optimum R 
value was obtained within the first 12 iterations. 

2. The optimum GA-GBRT model performed 
quite well on both the training and testing sets. The R 
values between the predicted and experimental Es 
values were 0.82 and 0.91 on the training and testing 
sets, respectively, indicating that an accurate predic-
tion was achieved by the optimum GA-GBRT model.  

3. The relative importance of the influencing 
variables was studied, and the liquidity index was 
found to be the most important variable in this study, 
achieving an importance score of 0.313 out of 1. 

4. For predicting the settlement of a foundation, 
the proposed ML method performed better than em-
pirical formulas in terms of both the R value and 
Mann-Whitney test results. The results of this study 
can serve as a benchmark for further research, and the 
proposed GA-GBRT model can be used to obtain a 
more cost-effective and faster prediction of the Es of 
soil. 
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Fig. 12  Comparison of performance between empirical 
formulas and present ML method for predicting founda-
tion settlement: (a) empirical formula wL; (b) empirical 
formula IP; (c) present ML method  
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中文概要 
 

题 目：基于机器学习的土体压缩模量预测及一维基础沉

降应用 

目 的：土体压缩模量是影响岩土体结构变形的重要参数

之一。本文旨在通过机器学习的方法实现对压缩

模量的预测，并通过构建一个机器学习模型，得

到塑限、液限、塑性指数、液性指数、比贯入阻

力以及埋深这 6 个输入参数与压缩模量预测值之

间的关系。 

创新点：1. 构建一个机器学习算法框架以实现对土体压缩

模量的预测；2. 此框架包括梯度提升回归树

（GBRT）和遗传算法（GA），并采用 GA 对 GBRT

超参数进行获取。 

方 法：1. 通过收集整理工程报告获取本次预测的数据集

（样本 211 个）；输入参数有 6 个，分别为塑限、

液限、塑性指数、液性指数、比贯入阻力以及埋

深；输出参数为压缩模量。2. 采用 GBRT 算法识

别输入变量与目标响应之间的非线性规律，并采

用 GA 调整 GBRT 模型的超参数。3. 模型训练完

成后，对压缩模量进行预测。4. 将测试集上的预

测结果和传统方法进行对比分析并应用到一维

基础沉降中。 

结 论：1. 本文提出的 GA-GBRT 模型可以较好地实现对
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土体压缩模量的预测；GA 可以对 GBRT 算法的

超参数进行有效标定。2. 训练后的 GA-GBRT 模

型在训练集和测试集上都表现良好；在训练集和

测试集上的相关系数 R 值分别为 0.82 和 0.91，说

明模型可以对压缩模量进行准确预测。3. 对输入

变量相对重要性的研究发现，液性指标是本研究

中最重要的变量，其重要性得分为 0.313（总数

为 1）；其他指标的重要性排序依次为：液限、塑

限、塑性指数、比贯入阻力和埋深。4. 对于地基

沉降的预测，本文提出的模型在相关系数 R 值和

Mann-Whitney 检验结果上均优于经验公式。5. 本

文提出的 GA-GBRT 模型可以更经济、更快速地

预测土壤压缩模量。 
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