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Abstract: There have been few experimental and numerical studies on damping effects in fluid-structure interaction (FSI) 
problems. Therefore, a comprehensive experimental study was conducted to investigate such effects. In experiments, a water 
column in a container was released and hit a rubber plate. It continued its motion until hitting a downstream wall where pressure 
transducers had been placed. The experiments were repeated using rubber plates with different thickness and material properties. 
Free-surface profiles, displacements of the rubber plates, and pressures were recorded. In addition, a numerical model was 
developed to simulate the violent interaction between the fluid and the elastic structure. Smoothed particle hydrodynamics (SPH) 
and finite element method (FEM) were used to model the fluid and the structure. Contact mechanics was used to model the 
coupling mechanism. The obtained numerical results were in agreement with the experimental data. We found that damping is a 
less important parameter in the FSI problem considered.  
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1  Introduction 

 
Many violent fluid-structure interaction (FSI) 

problems involve non-negligible two-way coupling 
effects, and different techniques have been proposed 
to model these FSI problems numerically. Among the 
numerical methods based on a Eulerian framework, 
finite difference (Forsythe and Wasow, 1960) and 
finite volume (Versteeg and Malalasekera, 1995) are 
the most popular. Also popular is the arbitrary La-
grangian Eulerian method (Amsden and Hirt, 1973) in 
which Eulerian approaches are used for fluid medi-

ums and Lagrangian approaches for the structure. 
These Eulerian methods are time-consuming because 
re-meshing is often necessary. Pure Lagrangian 
methods may be more attractive for use in FSI prob-
lems involving large deformations, moving interfaces, 
and complex geometries. In recent years, finite ele-
ment method (FEM) has been coupled with smoothed 
particle hydrodynamics (SPH) to simulate FSI prob-
lems (de Vuyst et al., 2005; Fourey et al., 2010, 2017; 
Groenenboom and Cartwright, 2010; Yang et al., 
2012; Long et al., 2017). 

SPH is a mesh-free Lagrangian technique in 
which the material is replaced by a set of particles to 
obtain numerical solutions. It was originally devel-
oped to simulate astrophysical problems (Gingold and 
Monaghan, 1977; Lucy, 1977) and was then applied 
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to fluid dynamics problems (Monaghan, 1994). Over 
recent decades, SPH has successfully been applied to 
different engineering problems in various fields 
(Dinçer, 2017; Dinçer et al., 2018). 

FEM is an established numerical method used 
for structural analysis problems. It can be used to 
simulate fluids, but then re-meshing is necessary. 
Therefore, FEM is prevalent in the solution of 
structural vibrations where the displacements are 
small compared with those in fluid flows. It was used 
here for the solution of the structural part of the 
problem. 

SPH-FEM was first proposed to investigate 
structure-structure impact problems using master- 
slave algorithms in which the penetration of SPH 
particles into finite-element meshes is prevented via 
calculated contact forces (Attaway et al., 1994). 
Master-slave algorithms are also used in FSI prob-
lems involving SPH-FEM (Groenenboom and Cart-
wright, 2010; Zhang et al., 2011). In these previous 
studies, the contact force was treated as a contact 
potential (de Vuyst et al., 2005; Yang et al., 2012). In 
some studies, finite element nodes are regarded as 
SPH particles (Fernandez-Mendez et al., 2005; Zhang 
et al., 2011). Fourey et al. (2017) studied the robust-
ness of SPH-FEM coupling. They carried out a  
predictive-corrective solution strategy by determin-
ing forces from SPH and applying them to the finite 
element nodes, and then transferring revised coor-
dinates from finite element nodes to SPH. In an ear-
lier study, Fourey et al. (2010) studied the violent 
FSIs. The searching algorithm was a time-consuming 
routine for contact problems. Hu et al. (2014) focused 
on this topic and proposed a novel searching algo-
rithm method. Different SPH improvements have 
been made, and coupling with FEM has been im-
plemented. Long et al. (2016) implemented the 
FEM-ISPH (incompressible SPH) and FEM-WCSPH 
(weakly compressible SPH) for solving FSI 
problems.  

The present study focuses on the dynamic anal-
ysis of the structure in a specific FSI problem, using 
SPH-FEM. A comprehensive dynamic analysis was 
performed, which included damping effects. The 
structure and fluid domains were solved together 
using a newly developed computer code. There are no 
available benchmark problems in which FSI is stud-

ied together with the damping properties of the 
structure. Therefore, in the present study, three novel 
experiments were conducted that can be used as 
benchmark problems. A thorough dynamic analysis 
of the elastic structure is presented. This is the first 
time that pressures have been recorded in an FSI 
dam-break experiment containing a highly deforma-
ble rubber plate. In addition, the fluid hits both faces 
of the structure at different times in a single 
experiment. 
 
 
2  Numerical model 

2.1  SPH 

As a Lagrangian particle approach, SPH is used 
to calculate field variables by transforming partial 
differential equations into ordinary differential equa-
tions with the help of kernel functions. It has superi-
ority over mesh-based methods for handling problems 
involving complex geometries, large deformations, 
and free surfaces.  

The Euler equations of fluid dynamics in dis-
crete SPH form can be stated as (Monaghan, 1989, 
1994; Liu and Liu, 2003): 
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where subscripts i and j denote different neighbor 
particles, m is the mass, ρ is the density, ρ0 is the 
initial density, t is the time, V is the velocity vector 

and ,ij i j V V V  P is the pressure, P0 is the initial 

pressure assigned as hydrostatic pressure to all N 
particles, fb is the body force including gravity, Δλ is 
the contact force applied by the structure, as ex-

plained in the following part, (| |, )ij ijW W h r  is the 
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cubic spline kernel, Wij is its gradient, h is the 
smoothing length taken as 1.33 times the initial par-
ticle spacing, and r is the position vector and rij=ri−rj. 
The last term in Eq. (4) was added for the stability. 

In Eq. (2), πij is the artificial viscosity, used to 
stabilize the numerical algorithm and mimic the 
physical viscosity (Monaghan, 1992): 
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where ϕ and φ are empirical coefficients, taken as 1 
and 0.2, respectively.  
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where c is an artificial sound speed, usually taken as 
much lower than the actual speed to limit central 
processing unit (CPU) time. The leap-frog algorithm 
is used for time marching and the maximum time step 
is calculated from the Courant-Friedrichs-Lewy (CFL) 
condition (Hirsch, 1988; Anderson, 1995). The mirror 
particle method is used to impose a free-slip boundary 
condition on the fixed walls where FSI is not im-
portant. The boundary between an elastic structure 
and the fluid is imposed with SPH-FEM, as explained 
below.  

2.2  FEM 

FEM is used to solve the structural part of the 
FSI problem. A dynamic method, in which stiffness 
and mass matrices of SPH particles and FEM meshes 
are solved by the Wilson-θ method, is applied to FSI 
problems using Rayleigh damping. The Wilson-θ 
method (Wilson et al., 1973) is unconditionally stable, 
and is used for time integration. An extended time 
step is used to make the method more stable. Struc-
tural motion in one time step, Δt, is extended to θΔt, 
where θ is a time extension factor greater than 1. 
Chopra (2007) stated that 1.42 is an optimum value 
for θ. 

Corresponding incremental responses are de-
fined for γ=1/2 and β=1/6, which are established time 

integration parameters (Newmark, 1959). Replacing 
θΔt by δt and incremental responses by δu, δ ,u  and 

δu  gives the corresponding equations of motion for 
the extended time step:  
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where tu  and tu  are the velocity and acceleration, 
respectively, at time t. 

Thus, the well-known equation of motion is 
discretized as 

 

δ δ δ δ ,t t t t t t t  M u C u K u F                (10) 

 
where tM, tC, tK are mass, damping, and stiffness 
matrices, respectively, at time t, and tδF is the in-
cremental force vector for the extended time step. 

This equation of motion is redefined by substi-
tuting Eqs. (8) and (9) into Eq. (10): 

 

δ δ ,t t tK u F
 

                             (11) 

 

where t

K  is the effective stiffness matrix and 


F  is 

the effective external force. Solving Eq. (11) gives the 
incremental displacement tδu for the extended time 

step. The incremental velocity δt u  and acceleration 

δt u  for the extended time step are calculated from 
Eqs. (8) and (9), respectively. 

Damping has a role in the motion of structures 
and is included in Eqs. (10) and (11). Rayleigh 
damping is used, which means that the damping ma-
trix is related to the mass matrix and the stiffness 
matrix: 

 

0 1 ,  C M Κ                          (12) 

 
where α0 and α1 are constants. 

Rayleigh constants are determined from speci-
fied damping ratios ζi and ζj of the ith and jth modes of 
vibration, respectively. The relation is given by 
Chopra (2007) as follows: 
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where ωi and ωj are the natural frequencies for the ith 
and jth modes.  

If both modes are assumed to have the same 
damping ratio ζ, the Rayleigh constants are: 

 

0

2
,i j

i j


 

 



                          (14a) 

1

2
.

i j

 
 




                           (14b) 

 
A detailed determination of the natural frequen-

cies of structures is described by Blevins (2016). 
 
 

3  Numerical model 
 

The coupling mechanism is satisfied using con-
tact mechanics (Demir, 2017). Contact mechanics is 
based on taking intersecting domains apart from each 
other. This is done by applying the contact forces to 
the intersecting domains. The potential of contact 
forces is determined and added to the total potential of 
the system. The contact forces and the corresponding 
displacements are calculated by solving the governing 
equations of the system derived from its total  
potential. 

The geometry of contact is illustrated by a con-
tact particle and a target surface (Fig. 1). In this il-
lustration, the target surface is defined with one finite 
line, which can be the surface of any finite element. 

δ ( 1) ,t t i
A

 P  δ ( 1) ,t t i
B

 P  δ ( 1) ,t t i
C

 P  and δ ( 1)t t i
p

 P  are posi-

tion vectors of node A, node B, point C, and particle p, 
respectively, at time t+δt and the (i−1)th iteration. At 

that time, the overlap of a particle is defined as ( 1) .i
p
O  

Nodes A and B are the nodal coordinates of the 
target line, and C is the projection of water particle p 
on the target line. The location of point C, which is the 
contact point, is defined from node A as ξl, where l is 
the length of the target line and ξ is a parameter in-
dicating the location of point C. The contact force 

applied to the water particle is defined as δ ( 1)t t i
p

 λ , 

and is applied to the target surface. SPH defines the 
motion of the water particle from time t to time (t+δt) 
and contact mechanics takes away the water particle 
from the structural domain from time (t+δt) to time 
(t+Δt). This time period (Δt−δt) is called the pseudo 
time interval.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Parameter ξ is defined by 
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where n is the local normal unit vector. 

Reactional forces at nodes A and B can be writ-
ten as 
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Accordingly, the corresponding potential is 
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where ( )Δ ,i
Au  ( )Δ ,i

Bu  and ( )Δ i
pu  are the incremental 

displacements at node A, node B, and particle p,  
respectively. 

Fig. 1  Configuration of a simple contact with fluid at the 
top and solid at the bottom 
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Substituting Eqs. (16) and (17) into Eq. (18),  
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The new δ ( )t t i
p

 λ  is defined as 
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Substituting Eq. (20) into Eq. (19) gives the po-

tential of the contact forces, which was derived by 
Bathe and Chaudhary (1985) for structural problems: 
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The matrix form of the defined potential of 

contact forces with added mass participation is 
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where Δ ( 1)
solid

t t i K  is the tangential stiffness matrix of 

the structure, Δ ( 1)
c

t t i K  is the contact stiffness matrix, 
Δ ( 1)t t i

p
 M  is the mass matrix of fluid particles, ( )Δ iu  

is the incremental displacement vector, ( )Δ iλ  is the 

incremental contact forces vector, Δt t R  is the total 

applied external loads vector, Δ ( 1)t t i F  is the equiv-

alent nodal forces vector, Δ ( 1)
c

t t i R  is the contact 

forces vector for solid, and Δ ( 1)
c

t t i O  is the overlaps 

vector. Addition of the mass matrix of SPH particles 
to Eq. (22) will give the desired unified equation of 
motion for both domains.  

The contact force between SPH particles and the 

structure ( )Δ ,iλ  the displacement of the structure 
( )
solidΔ ,iu  and the displacement of the fluid particles 
( )Δ i
pu  are determined from Eq. (22). Calculated con-

tact forces and displacements ( )
solidΔ iu  are applied to 

the structure directly. In contrast, displacements ( )Δ i
pu  

are not applied to SPH particles so as not to violate the 
continuity of the SPH method. Instead, contact forces 

( )Δ iλ  are applied to the invading SPH particles as 
external boundary forces. 

 
 

4  Experimental setup 
 
A series of experiments was carried out to in-

vestigate the structural damping effect. The setup 
was similar to the one used by Koshizuka et al. 
(1995). The main improvement of this experimental 
setup was that the pressures at the downstream wall 
were recorded. Experiments were carried out using 
rubber plates with different material and geometric 
properties. In addition, complete water surface pro-
files and tip displacements of rubber plates were 
provided. Fig. 2 is a 2D illustration and Fig. 3 a 
photograph of the experimental setup. 

A rubber plate was fixed in the middle of the 
bottom of the container. A water column was placed 
at the left of the container. A leak-proof knife gate 
was used to quickly release the water column. The 
motion of the knife gate was started by releasing an 
8 kg weight tied to the gate by a steel rope. The av-
erage velocity of the knife gate was measured as 
2.5 m/s and the corresponding lift time was 0.12 s. 
According to Lauber and Hager (1998), this gate 
opening can be considered as instantaneous since the 

lift time was less than 02 0.8 s,H g   where H0 is 

the height of the water column and g is the gravita-
tional acceleration.  

Released water hit the rubber plate and found its 
way towards the downstream wall of the container, 
which was assumed to be fixed and rigid. To capture 
the location and magnitude of the peak pressure, 
transducers were placed every 2 cm on the down-
stream wall (Fig. 2). Data recording for the trans-
ducers was activated by the movement of an  
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accelerometer located on the knife gate. Dynamic 
pressure transducers with built-in unity gain voltage 
amplifiers were used. These units were selected  
because of their high resonant frequency and  
acceleration-compensated quartz element, and be-
cause their signal quality is almost independent of the 
cable length and motion. The calibration procedure 
as supplied by the manufacturer was in compliance 
with ISO 10012-1 (ISO, 1992) and the former MIL- 
STD-45662A. The sampling rate was 1000 Hz. 

Three different rubber plates were used to in-
vestigate the damping effect. Each plate had a dif-
ferent thickness, modulus of elasticity, and damping 
ratio (Table 1). The modulus of elasticity of the 
rubbers was determined using a tensile testing 
machine (Fig. 4). Acquired data were linearized 
(Table 1). 

The damping ratios of the rubber plates were 
determined experimentally. In brief, in the experi-
ments, each rubber plate was fixed at its bottom as in 
the main setup. A known displacement, consistent 
with the maximum displacements in the main ex-
periment, was applied to the rubbers. Energy  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

dissipation was calculated from the oscillation of the 
rubber plates using  

 
2 24π ,                             (23) 

 
where η=ln(x0/x1), x0 is the first peak displacement, 
and x1 is the second peak displacement. These 
variables were read from Fig. 5 which shows the 
oscillations of the rubber plates after an initial 
displacement.  

In this study, our aim was to investigate the 
damping effect. Therefore, two numerical analyses 
were carried out for each rubber plate. The first 
analysis included the real damping coefficient and 

Table 1  Properties of the rubber plates 

Thickness 
(mm) 

Modulus 
of elasticity 

(MPa) 

Density 
(kg/m3) 

Damping 
ratio (%) 

5 20 1250 25 

10 5 1300 12 

15 14 1275 37 

Fig. 2  A 2D illustration of the experimental setup

Fig. 4  Tensile testing of rubbers 

Fig. 3  Photograph of the experimental setup 
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the second was the no damping case. Thus, the ef-
fect of damping could be observed for each rubber 
plate. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Numerical setup 
 
Simulations of the experiments were obtained 

using a computer tool developed according to the 
proposed numerical models. The fluid domain was 
simulated with SPH and the structure domain with 
FEM. The interaction between the fluid and the 
structure was modelled by contact mechanics. A total 
of 20 000 SPH particles were used to represent the 
water column. Sixty finite elements were used for the 
5-mm rubber plates, and 120 for both the 10-mm and 
15-mm plates. Dividing the thickness of the plate into 
4 and the height into 30, gave 120 elements. The 
walls of the container were simulated using the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Experimental oscillations of the rubber plates of 
different thickness 

Fig. 6  Free-surface profiles of experiment with 5-mm rubber plate together with the numerical results 
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mirror particle method with a free-slip boundary 
condition.  

In the simulations, the length of the time step 
was taken as 2.10−5 s for both the fluid and the 
structure. In addition, the time step extension con-
stant θ was taken as 1.42 (Chopra, 2007). The 
modulus of elasticity of the rubber was taken as 
constant throughout the simulation, because it was 
assumed to be within the elastic range during the 
experiments. Although material nonlinearity was 
not taken into account, geometric nonlinearity was 
considered. In the theory of Rayleigh, the damping 
ratios for two different modes of vibration are as-
sumed to be the same for the calculation of the 
constants α0 and α1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Results and validation 
 
A set of experiments was carried out for different 

rubber plates using the experimental setup defined 
above. The free-surface profiles of water, displace-
ments of rubber, and pressures recorded on the right 
wall of the container are presented. The free-surface 
profiles and displacements of rubber were recorded 
by a high-definition camera supporting 25 frames per 
second. 

6.1  Free-surfaces 

Free-surface profiles are shown for each set of 
experiments for 5-mm, 10-mm, and 15-mm rubber 
plates in Figs. 6, 7, and 8, respectively, together with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Free-surface profiles of the experiment with a 10-mm rubber plate together with the numerical results
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the numerical results. Calculated and measured free 
surfaces show good agreement in view of the violence 
of the flow. 

6.2  Displacement of rubber plate 

Tip displacements of the rubber plates with 
thickness of 5 mm, 10 mm, and 15 mm are given in 
Figs. 9, 10, and 11, respectively. In addition, simula-
tion results for the actual damping coefficient and 
zero damping coefficient are presented to reveal the 
damping effect.  

Experiments were carried out in 3D and simu-
lated in 2D. Although it was assumed that the geo-
metric and flow properties were uniform through the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
width of the water tank (0.2 m), there were some 
inevitable irregularities. These irregularities resulted 
in differences in pressure distributions on the rubber 
plate across its width. Therefore, additional oscilla-
tions were observed in the experiment. 

Although measured and simulated peak tip dis-
placements were similar, the times of occurrence 
were different. This was mainly because of the up-
ward motion of the knife gate, even though the motion 
was considered instantaneous according to Lauber 
and Hager (1998). 

Although damping had an effect on the structural 
analysis, the current experimental and numerical 
results show that its effect was not significant in this  

Fig. 8  Free-surface profiles of the experiment with a 15-mm rubber plate together with the numerical results
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type of FSI problem. To illustrate its effect on struc-
tural mechanics, a constant 50 N force was suddenly 
applied to the tip of the 10-mm rubber plate. Corre-
sponding tip displacements for the real damping co-
efficient and no damping are given in Fig. 12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Damping affected the behavior of the structure sig-
nificantly. A damped motion always has smaller dis-
placements than undamped motion in the case of 
constant force. The reason is the transfer of energy to 
the rubber plate. The energy transferred to the 10-mm 

Fig. 10  Tip displacements of the 10-mm rubber plate

 No damping 

Fig. 9  Tip displacements of the 5-mm rubber plate 

 No damping 

 No damping 

Fig. 11  Tip displacements of the 15-mm rubber plate 
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rubber plate by a constant 50 N force is given in 
Fig. 13. The energy transferred to the undamped 
rubber plate was more than that transferred to the 
damped plate. It is also obvious from Fig. 12 that the 
undamped structure had a higher displacement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In contrast to the results with the constant force, 
tip displacements were slightly greater or the same for 
damped and undamped cases in the FSI problem. The 
reason is that the force is not foreknown, but gener-
ated by the continuous interaction between the fluid 

and the structure. The time history of energy transfer 
to the structure from the fluid is given in Fig. 14. If the 
total energies (from the beginning to maximum tip 
displacement) of undamped and damped cases for 
each rubber plate are compared, it can be seen that 
slightly more energy is transferred in the damped case. 
This can be explained by the concept of energy dis-
sipation. Energy dissipation is related to the rigidity 
of the dissipater. When the dissipater/structure is 
more rigid, more energy is dissipated. A structure 
behaves more rigidly by including the damping term 
in Eq. (10). Therefore, energy dissipation, most of 
which is the energy transferred to the structure, is 
higher for the damped case.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, almost the same tip displacements are 

achieved. 

6.3  Pressures 

Peak pressures and their locations on the right 
rigid wall are given in Table 2 for each rubber plate. 
The pressure histories (Figs. 15–17) show that water 

No damping

Fig. 12  Tip displacements of the 10-mm rubber plate 
under a suddenly applied constant 50 N force 

Fig. 14  Total energy (a) and energy transferred to the 
plate in a single time step (b) in the 10-mm rubber plate 
during the FSI experiment 

 No damping 

(a) 

 No damping 

(b) 

Fig. 13  Total energy (a) and energy transferred to the 
plate in a single time step (b) in the 10-mm rubber plate, 
due to a suddenly applied constant force of 50 N 

 No damping

(a) 

 No damping 

(b) 
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hit the right rigid wall slightly earlier in the numerical 
simulations. Otherwise, the calculated pressures were 
in good agreement with the measured ones.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7  Conclusions 
 
A series of experiments has been carried out to 

investigate the effects of damping in FSI problems.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An SPH-FEM-based numerical model was developed 
in which contact mechanics is used for FSI coupling. 
Damping ratios of rubber plates were measured and 
used in the numerical model. This is the first time that 
impact pressures have been recorded in an FSI ex-
periment containing a highly deformable rubber plate. 
Also, water hit both sides of the rubber plate at dif-
ferent times in a single experiment and the corre-
sponding water flow and displacements of the rubber 
plate were presented. 

The free-surface profiles, displacements of 
rubber plates, and pressures on the right wall of the 
container were successfully simulated with the SPH- 
FEM-based FSI model. The obtained results show 
that damping is not effective in this type of FSI 
problem and is not essential to be used in inertia- 
driven problems containing continuous interaction. 

Table 2  Peak pressures for each experiment

Rubber 
plate thick-
ness (mm) 

Location of 
transducer* 

(mm) 

Peak pressure (kPa) 

Measured Calculated

  5 32 15.2 14.2 

10 28 16.1 15.7 

15 32 12.0 11.3 
* Distance between the transducer reading the peak pressure and 
the bottom wall 

Fig. 15  Measured (solid line) and calculated (dashed line) 
pressure readings for the 5-mm rubber plate at 30 cm (a), 
32 cm (b), and 34 cm (c) from the bottom wall 

(a) 

(b) 

(c) 

Fig. 16  Measured (solid line) and calculated (dashed line) 
pressure readings for the 10-mm rubber plate at 26 cm 
(a), 28 cm (b), and 30 cm (c) from the bottom wall 

(a) 

(b) 

(c) 
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中文概要 
 

题 目：与流固耦合相关的溃坝问题中阻尼的数值及实验

研究 

目 的：1. 通过全面的实验研究考察阻尼在流固耦合（FSI）

问题中的影响作用；2. 提出一套光滑粒子流体动

力学（SPH）和有限元方法（FEM）相结合的耦

合算法，并对流固耦合系统进行数值模拟。 

创新点：1. 通过一系列实验研究惯性驱动问题中阻尼的影

响并使用本文提出的数值方法进行验证；2. 该数

值方法能够在不解耦的情况下对完整系统进行

求解。 

方 法：1. 构建数值模型模拟流体和弹性结构之间的强烈

相互作用；2. 利用 SPH 和 FEM 对流体和结构分

别进行模型化；3. 采用接触力学对系统中的流固

耦合机理进行建模。 

结 论：1. 基于 SPH-FEM 耦合的 FSI 模型可成功模拟自

由液面形状、橡胶板的位移以及容器壁上的压

强；2. 模拟结果显示，在连续相互作用的惯性驱

动问题中阻尼并不是必要的考虑因素。 

关键词：阻尼；流固耦合；光滑粒子流体动力学；接触力

学；溃坝问题 

 


