
Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

MyWAL: performance optimization by removing redundant

input/output stack in key-value store*

Xiao ZHANG†‡1,2,3, Mengyu LI†2,4, Michael NGULUBE1,2, Yonghao CHEN1,2, Yiping ZHAO1

1School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
2MIIT Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Xi’an 710072, China

3National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology,

Northwestern Polytechnical University, Xi’an 710072, China
4School of Software, Northwestern Polytechnical University, Xi’an 710072, China

†E-mail: zhangxiao@nwpu.edu.cn; limy@mail.nwpu.edu.cn

Received Oct. 21, 2022; Revision accepted Mar. 5, 2023; Crosschecked June 27, 2023

Abstract: Based on a log-structured merge (LSM) tree, the key-value (KV) storage system can provide high reading performance
and optimize random writing performance. It is widely used in modern data storage systems like e-commerce, online analytics,
and real-time communication. An LSM tree stores new KV data in the memory and flushes to disk in batches. To prevent data
loss in memory if there is an unexpected crash, RocksDB appends updating data in the write-ahead log (WAL) before updating
the memory. However, synchronous WAL significantly reduces writing performance. In this paper, we present a new WAL mechanism
named MyWAL. It directly manages raw devices (or partitions) instead of saving data on a traditional file system. These can avoid
useless metadata updating and write data sequentially on disks. Experimental results show that MyWAL can significantly improve
the data writing performance of RocksDB compared to the traditional WAL for small KV data on solid-state disks (SSDs), as
much as five to eight times faster. On non-volatile memory express soild-state drives (NVMe SSDs) and non-volatile memory
(NVM), MyWAL can improve data writing performance by 10%–30%. Furthermore, the results of YCSB (Yahoo! Cloud Serving
Benchmark) show that the latency decreased by 50% compared with SpanDB.

Key words: Key-value (KV) store; Log-structured merge (LSM) tree; Non-volatile memory (NVM); Non-volatile memory
express soild-state drive (NVMe SSD); Write-ahead log (WAL)

https://doi.org/10.1631/FITEE.2200496 CLC number: TP392

1 Introduction

A key-value (KV) storage system based on the
log-structured merge (LSM) tree (Leavitt, 2010) data
structure has better performance and scalability than
a traditional relational database. It is widely used in

various big data systems. For example, LevelDB (Stone‐
braker, 2010; Dong et al., 2021) is a fast KV storage
library written at Google that provides an ordered
mapping from string keys to string values. RocksDB
(Facebook, 2019) is a KV store for maximum perfor‐
mance developed by Facebook. The writing perfor‐
mance of the LSM tree is faster than that of B-tree
because of its data writing mechanism. The add/update
operations are executed in memory, and after sorting and
merging, the data in memory are written to the disk.

To avoid in-memory data loss during a system
crash, RocksDB records all add/update operations in
write-ahead log (WAL). When the memory is full, data
will flush into a disk. The KV data are stored on disk

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Key Research and Development
Project of China (No. 2022YFB2702101), the Shaanxi Province Key
Industrial Projects, China (Nos. 2021ZDLGY03-02 and 2021ZDLGY03-
08), and the National Natural Science Foundation of China (No.
92152301)

 ORCID: Xiao ZHANG, https://orcid.org/0000-0001-7680-1179;
Mengyu LI, https://orcid.org/0000-0002-6640-2729
© Zhejiang University Press 2023

980

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

in ordered tables in several layers. In the LSM-tree
architecture, there are three kinds of disk writing
operations: WAL, flush, and compaction. RocksDB de‐
cides when to flush and carry out data compaction, and
always writes WAL once there is add/update operation.
WAL is an essential mechanism for recovering data
in case of a power failure and operating system (OS)
crash. However, it has a significant impact on writing
performance. For example, it may reduce 50%–90%
of writing operations per second (OPS) in different
cases.

The writing performance optimization of WAL
is important for RocksDB. Non-volatile memory ex‐
press soild-state drives (NVMe SSDs) and non-volatile
memory (NVM) have better input/output (IO) perfor‐
mance than hard disk drive (HDD). Some researchers
have proposed optimization solutions based on new
storage media or hierarchical architectures. WiscKey
saves data on SSD separate storage (Lu et al., 2017).
SpanDB optimizes WAL performance by saving WAL
on NVMe SSDs (Chen et al., 2021). MatrixKV de‐
signes a new L0 layer-management mechanism in NVM
that reduces write stalls (Yao et al., 2020). However,
these solutions save WAL on the local file system, which
maintains unnecessary metadata for the WAL mecha‐
nism. For example, when appending a KV operation
in WAL, it must update the access time and length of
the WAL file.

In this paper, we propose a new WAL mecha‐
nism named MyWAL, which manages and saves WAL
data to the raw device. It removes unnecessary IO op‐
erations caused by the file system, so it can achieve
better performance than the current WAL mechanism.
We compare the performance under different condi‐
tions. The results show that MyWAL can effectively
improve the writing performance of KV data on dif‐
ferent storage media.

2 Research background and motivation

In this section, we introduce the LSM-tree archi‐
tecture used in RocksDB and discuss the performance
impact of the WAL mechanism. We also compare the
writing performance of the file system with that of the
raw devices, which motivates our design of MyWAL.

2.1 LSM-tree architecture

LSM tree is a hierarchical data structure. The
core idea is that sequential writing performance is
much higher than the random writing performance
for disk. Fig. 1 shows the typical architecture of the
LSM tree used in RocksDB. There are six primary
data structures in the LSM tree. Memory table (MMT)
and immutable memory table (IMMT) save data in
the memory. MMT is a readable and append-write file
that saves new or updated KV data. RocksDB saves
KV data in a WAL file before it updates in the MMT.
When the size of the MMT reaches the threshold, the
MMT will change to IMMT. When the size of the
IMMT reaches the threshold, the data in IMMT will
flush into disks. RocksDB saves KV data in a sorted
string table (SST) in several layers. Dumping an
IMMT to an SST in L0 is called minor compaction.
Merging and resorting several SSTs into a lower layer
is called major compaction. RocksDB provides some
commonly used compaction algorithms, leveled com‐
paction and universal compaction, to better manage
SSTs between different levels.

There are three kinds of disk IO operations in
RocksDB: WAL, minor compaction, and major com‐
paction. RocksDB can choose when and how to do
compaction, but it has to write WAL as soon as a new
update operation executes. The composition of the
WAL in RocksDB is shown in Fig. 2. The WAL file
is divided into several logical blocks, kBlockSize, the

Fig. 1 Architecture of the LSM tree used in RocksDB
(LSM: log-structured merge; WAL: write-ahead log;
SST: sorted string table)

981

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

basic unit of WAL reaing and writing operations, and
the default size is 32 KB. Each area is composed of
several variable length records (e.g., r0, r1, and r2), and
the remaining part (P) is filled with zero. Each re‐
cord stores the length and type of payload, including
update requests and its corresponding 32-bit cyclic re‐
dundancy check (CRC) data. When an OS crashes, all
data in MMT and IMMT will be lost. In this case,
when RocksDB reboots, it can rebuild the MMT and
IMMT by reading and performing operations saved
in WAL.

2.2 KV storage based on LSM tree

Based on the RocksDB data writing process de‐
scribed in the previous subsection, this paper divides the
system’s performance overhead into three parts: (1) the
problem of writing performance overhead caused by
pre-writing logs when the WAL mechanism is enabled,
(2) the problem of writing pause because the MMT
cannot convert to the IMMT when the data are refreshed
from the IMMT to the SST, and (3) the problem of
writing amplification caused by the consolidation and
compaction operations between SSTs at different levels
on the disk.

In addition to these three areas, existing optimi‐
zation directions based on LSM tree focus mainly on
reducing writing amplification (Raju et al., 2017;
Yao et al., 2017; Mei et al., 2018), optimizing merge
operations (Zhang ZG et al., 2014; Teng et al., 2017),
researching special load balancing (Wu et al., 2015;
Ren et al., 2017), supporting automatic tuning (Dayan
and Idreos, 2018; Zhang YM et al., 2018), designing
secondary indexes (Zhu et al., 2017; Absalyamov et al.,
2018; Qader et al., 2018; Luo and Carey, 2019), and
making full use of the underlying hardware platform
for optimization based on new hardware (Athanas‐
soulis et al., 2011; Kannan et al., 2018; Papagiannis
et al., 2018).

This subsection discusses the three proposed di‐
rections in combination with the above research work.

SpanDB (Chen et al., 2021) proposes storing the
WAL and the top-level SST on the speed disk (SD),
while the lower-level SST is stored on the capacity
disks (CDs). It dynamically adjusts the storage loca‐
tion of new SSTs based on the pressure on the SD
and CD. Although SpanDB optimizes the WAL mecha‐
nism and adjusts the storage of SSTs, its asynchronous
interface storage engine is not suitable. If forced to
be embedded in the application, it cannot exert its
maximum potential. FlatLSM was also used to try to
optimize the WAL mechanism by proposing a persis‐
tent memory table (PMT) that separates the index and
the data. It uses buffer logs to store KV bytes with
a size <256. FlatLSM attempts to address the prob‐
lem of writing pauses by combining volatile memory
and persistent L0, which can reduce the depth of the
LSM tree and concentrate IO bandwidth on L0-L1
compaction.

Yao et al. (2020) designed MatrixKV with a new
data structure called the matrix container on NVM to
manage the L0 layer to reduce writing pauses. MatrixKV
also includes a column action to reduce the amount
of data compaction from the L0 layer to the L1 layer.
To reduce the depth of the LSM tree, the width of
each layer is increased, and cross-row hint search is
introduced to improve the reading performance. How‐
ever, its garbage collection mechanism leads to wasted
persistent memory (PM) space. Also, its cross-row hint
search, designed to improve the reading performance,
reduces the flush speed to a certain extent.

dComparison (Pan et al., 2017) proposes delayed
compaction to reduce writing amplification. It post‐
pones some compaction to the next compaction for
collection, which means it combines multiple virtual
compactions into one actual compaction to reduce the
total IO and improve the writing performance. Virtual
compaction means that metadata are written in the
form of virtual SST, and each virtual SST points to the
unordered real SSTs. However, the improvement of
reading–writing performance is not very good. There‐
fore, Pan et al. (2017) introduced voluntary counsel‐
ing and testing (VCT) and virtual SST merge thresh‐
old (VSMT) parameters to ensure the reading–writing
performance trade-off.

Fig. 2 Data format of a WAL file (WAL: write-ahead log;
CRC: cyclic redundancy check)

982

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

Single-level merge (SLM)-DB (Kaiyrakhmet et al.,
2019) puts MMT and IMMT on the PM, and introduces
B+-tree on the PM to build a global index for all SSTs.
It reduces writing amplification to improve reading–
writing performance and optimize reading amplifica‐
tion. However, as data increase, the cost of maintain‐
ing the B+-tree increases.

To summarize, we redesign the WAL mecha‐
nism in the LSM-tree structure and build it on a new
storage media, such as NVMe SSD or NVM, to
optimize the performance of synchronous WAL. Most
research focuses on the writing amplification and writ‐
ing pause problems. Only SpanDB optimizes WAL
on NVMe SSD, which is highly relevant to our re‐
search. Therefore, we compare the performance of
SpanDB with MyWAL in this paper.

2.3 Performance loss caused by WAL

RocksDB saves new data in the memory, achiev‐
ing much higher performance than the disk-based data‐
base. However, the data in the memory can be lost if
there is a power failure or OS crash without WAL.
Therefore, the WAL is the essential mechanism to
ensure data availability. Unfortunately, writing WAL
reduces the RocksDB writing performance. In this
subsection, we evaluate the performance loss caused
by WAL.

db_bench is the primary benchmark to evaluate
RocksDB’s performance. RocksDB inherits it from
LevelDB and enhances it to support many additional
options. There are several workloads: fillseq, readran‐
dom, overwrite, fillrandom, seekrandom, and read‐
whilewriting. We select three writing workloads (fillseq,
fillrandom, and overwrite) to evaluate the perfor‐
mance loss caused by WAL. The pattern of writing
WAL can be specified when the RocksDB starts. The
default pattern is writing WAL synchronously. When
the application can tolerate some data loss, it can use
writing WAL asynchronously for better performance.
If the user can tolerate the loss of all memory data, it
can disable WAL to obtain the highest performance.

Fig. 3 shows the performance loss caused by
WAL from three perspectives. Figs. 3a–3c compare the
throughput under different patterns. When the WAL
mechanism is disabled, the performance is highest
in all three patterns. The throughput of no-WAL is
7%–200% higher than that of async-WAL and 11 to
210 times higher than that of sync-WAL. Meanwhile,
the throughput of async-WAL is 10 to 73 times higher
than that of sync-WAL. Figs. 3d–3f compare the exe‐
cuted OPS. The OPS of no-WAL is 4%–212% higher
than that of async-WAL and 11.36 to 246.92 times
higher than that of sync-WAL. Meanwhile, the OPS of
async-WAL is 10.56 to 79.65 times higher than that of

Fig. 3 Performance loss caused by WAL: (a) fillseq throughput; (b) fillrandom throughput; (c) overwrite throughput;
(d) fillseq OPS; (e) fillrandom OPS; (f) overwrite OPS (WAL: write-ahead log; OPS: operations per second. The horizontal
axis represents the size of each data written by db_bench)

983

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

sync-WAL. The WAL mechanism reduces the writing
performance by 11 to 246 times.

The bottleneck of updating KV data is writing
WAL to the file system. When the WAL is written
synchronously, the throughput is <5 MB/s. We tested
the sequential writing performance of the file system
and raw devices using FIO (https://fio.readthedocs.io/
en/latest/fio_doc.html). FIO is an IO tool used for
stress/hardware verification. We compared the writing
performance on serial advanced technology attachment
(SATA) SSD, NVMe SSD, and NVM. We ran FIO
v3.28 using the “sync” ioengine with sequential write
and random write. Fig. 4 shows the results. The sequen‐
tial and random writing performances of these media
are almost the same. NVMe SSD is the fastest media,
and the peak writing performance can reach 2 GB/s.
When the data block is >4 KB, there is a significant
drop in writing performance, and as the data block in‐
creases, its writing performance is not as good as NVMe
SSD devices. When NVM uses the file system at 4 KB,
the writing performance is reduced by about 77%, even
close to that of the NVMe SSD. The throughput of
RocksDB is 100 times slower than that of the file sys‐
tem on an SSD. It is necessary to completely abandon
the general file system’s data organization and man‐
agement mechanism to avoid unnecessary functions
brought by it, thereby eliminating the performance
loss of the general file system to the storage media.

Therefore, our main task is building new data orga‐
nization and management mechanism on storage media
based on WAL files.

3 Design and implementation

In this section, we introduce the design and im‐
plementation of MyWAL. It uses a new data structure
to organize the updating log and saves data directly to
the raw device. We also discuss how to recover the
MMT from WAL in different cases. Finally, we dis‐
cuss the thread safety of MyWAL in a multi-thread
updating environment.

3.1 Reconstruction of WAL data structure

When data are written to RocksDB, RocksDB first
writes to the WAL file and then updates the MMT.
Fig. 5 shows the process of writing a record to the
WAL file. RocksDB uses one thread to write WAL se‐
quentially. It supports multiple threads updating KV
data in parallel. Operations of multiple threads will
be merged into a write_group. All operations in one
write_group are merged into a MergeBatch, where the
content is to be written to the WAL. If WriteOptions.
sync is true, the WriteToWAL() function writes Merge‐
Batch and flushes to the local file system synchro‐
nously. Then RocksDB updates the KV data in the

Fig. 4 Comparison of writing performance between raw devices and Ext4: (a) sequential write (SSD); (b) sequential write
(NVMe SSD); (c) sequential write (NVM); (d) random write (SSD); (e) random write (NVMe SSD); (f) random write (NVM)
(The horizontal axis represents the size of each data written by FIO)

984

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

MMT. If WriteOptions.sync is false, the MergeBatch
will not be synchronized to the file system until the
OS flushes the buffer periodicity. In this case, the
application does not wait for any disk writing IO, but
some data may be lost if the system crashes. When
RocksDB writes a record into WAL, the file system
must allocate space and update data and metadata such
as file length and access time.

Linux has a kernel buffer cache or page cache,
and most disk IOs are conducted through the buffer.
When RocksDB writes data to the WAL file, the kernel
usually copies the data to the buffer first. Therefore,
the data will be persisted only when the buffer is full
or the kernel needs to reuse the buffer to store other
data. This mechanism can achieve better IO perfor‐
mance, but may cause data loss if there is a system
failure. Linux provides three functions to sync data
in the buffer to disk. The sync() function moves all
changed buffers to a writing queue and returns. How‐
ever, it does not wait for IO completion, so it cannot
guarantee that data will persist in some cases. The
fsync() function saves all data related to the specific
file descriptor (fd) to disk, and returns until all data
and metadata are persisted. The fdatasync() function
is similar to fsync(), except it only updates data
and ignores metadata. RocksDB uses fsync() or fda‐
tasync() according to the OS type and configuration.
Every WAL write will change the data and file size,
so fsync() will issue at least two IOs, one for data and
the other for metadata. fdatasync() can perform better,
but may increase the risk of data loss. If the file size

does not update before RocksDB crashes, the rebuild
process cannot recognize the corresponding data.

We design a new data structure to reduce the
metadata update operation. We save the WAL directly
to the raw device without a file system. The raw de‐
vice can be a disk, a partition, or a preallocated area,
which can be specified in a configuration file. We store
multiple WALs in order and then maintain the meta‐
data both in the memory and on the device. Mean‐
while, the frequently updated metadata are only saved
in the memory. Fig. 6 shows the data structures in the
memory and device. The first data structure in the
raw device is the header, which saves a magic num‐
ber, the device’s size (or partition’s size), and the
number of WAL lists. The following is the WAL list.
It stores the metadata of the WAL files. Finally,
the remaining area is for storing WAL data. Because
there is only one writable MMT in RocksDB, there is
only one corresponding writable WAL. When RocksDB
starts or the size of the MMT exceeds the predefined
threshold, RocksDB will create a new WAL file. We
save only the start position of the WAL file. If the
MMT switches to an IMMT, we store the previous
WAL number in the list. The start position of the new
file is the end position of the previous WAL file.

File size is an essential feature of a file. It is
updated once the data are appended. We maintain the
size of the WAL in the memory. If RocksDB closes
normally, the contents of all WAL files will be flushed
to persistent storage devices. If RocksDB terminates
unexpectedly, it has to read the contents of WAL files

Fig. 5 Process of writing WAL

985

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

to reconstruct the content in the MMT and IMMT.
We save the previous log number in the WAL meta‐
data. Because the start position of a WAL file is the
end of the previous WAL file, we can construct a list
according to the metadata in the WAL list. Except for
the last WAL file, other files’ start and end positions
are known.

To find the end position of the last WAL, we
modify the data format of the WAL file. Fig. 7 shows
the data format of MyWAL. We add a four-byte flag
in each record. We put the system time in the first re‐
cord in a logical block. For each subsequent record,
it saves the CRC of the previous record.

3.2 Management of space and WAL files

When RocksDB starts, it will create a new WAL.
RocksDB will create a new WAL file when the writ‐
able MMT exceeds the write_buffer_size or column
family (CF) is flushed to the disk. In this case, the
MMT will change to an IMMT, and the WAL will be

closed and flushed to the disk. It will create a new
MMT and corresponding WAL file.

The WAL file is given a log number, such as
0000001.LOG. When the size of a WAL file exceeds
max_total_wal_size, it will trigger the refresh opera‐
tion of the CF. Once the number of WAL files exceeds
the limit, RocksDB will force all the active CF data
to flush to the disk. Generally, the RocksDB will de‐
lete the corresponding WAL file after the MMT is
flushed to the disk. Some options will cause Rocks‐
DB to retain the flushed WAL for a while, such as
WAL_ttl_seconds and WAL_size_limit_MB. We can
calculate how much space is enough for WAL files
from these options. For example, if RocksDB deletes
the WAL file after the MMT is flushed, the required
space is max_write_buffer_number×max_total_wal_
size. max_write_buffer_number defines how many
MMTs are in the system. max_total_wal_size defines
the maximum size of a WAL file. We can manage the
space as a ring. The new WAL file is adjacent to the
end of the previous WAL files. When it reaches the
end of the partition, MyWAL will continue writing
from the beginning. We can define several individual
rings if there are several CFs.

3.2.1 Space and log files management of MyWAL

We design MyWAL to improve the performance
of KV data writing by reducing metadata updates on
the disk. When RocksDB creates a WAL file, MyWAL
will write the metadata to the disk to record the log
number, time stamp, and the previous WAL filename

Fig. 7 Data format of a WAL file in MyWAL (WAL: write-
ahead log; CRC: cyclic redundancy check)

Fig. 6 Disk format and memory tables of MyWAL

986

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

(if it has one). At the same time, MyWAL maintains
the metadata information of the WAL file in memory.
When RocksDB updates the WAL file, the length in‐
formation will update in memory but will not write
to the disk. A record is the minimum updating unit of
the WAL file. MyWAL adds a four-byte flag to the
header of each record. The flag of the first record in
the WAL file stores the same time stamp, saved in the
WAL metadata. Other records save the CRC infor‐
mation of their previous record. With this unique
design, MyWAL can calculate the end position of the
WAL file by scanning the disk. When a MMT has
flushed to the disk, RocksDB will delete the corre‐
sponding WAL files. For MyWAL, it deletes only the
metadata in the WAL lists. In some cases, RocksDB
needs to keep the WAL file for a while, and MyWAL
updates the WAL flag instead of deleting the item.

Fig. 8 shows how MyWAL adds a WAL file on
the device. There will be two types of free space in the
device in MyWAL, generally due to the disk free space
area 1 generated by the flush operation and the disk
free space area 2 which has not been used during the
data writing process. When RocksDB performs an
insert operation, MyWAL writes a log file to disk in
the form of an append. The specific operation process
is as follows:

1. Determine whether the data size of the WAL
log file to be written exceeds the capacity of area 2.

2. If it is less than the capacity, MyWAL directly
writes the log file to the position pointed to by the
tail and modifies the value of the tail without writing
to the end of the data file after completion.

3. If it is greater than that, MyWAL writes part
of the data W3_1 into area 2 and the rest of the data
W3_2 into area 1.

4. Note that a judgment needs to be made when
writing the remaining data into area 1. If the remaining
data size is larger than area 1, write the remaining
data W3_2 into area 1, and then modify the tail to
complete a write request.

5. Otherwise, it indicates that the disk capacity
is insufficient and cannot meet the storage requirements
of the WAL log files in RocksDB, so insufficient disk
space is returned.

3.2.2 Data recovery after RocksDB crash

WAL is used to recover lost data after the RocksDB
crashes. We will discuss rebuilding the MMT from WAL
files on the disk. There are two steps in the recon‐
struction process. First, we rebuild the WAL list and
analyze which WAL files should be rebuilt to the MMT.
Next, we restore the contents of each WAL in turn. The
method for recovering MMTs from WAL is the same
as the original RocksDB. The key innovation is how
to obtain the start/end position and the length of the
WAL files without updating the metadata. If we know
the start and end positions of a WAL file, the rebuild
process is the same as the original RocksDB.

We store the previous WAL filename (log number)
in each metadata record. Because RocksDB generates
the WAL files one by one, we can construct a list ac‐
cording to the relation among files. For each WAL
file, if it has a subsequent WAL file, the start position
of the subsequent WAL file is the end position of the

Fig. 8 Adding WAL data and metadata on the device

987

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

WAL file. The flag indicates whether the corresponding
MMT has been flushed to the disk.

We do not update the file length while writing
data for the newest WAL file. After RocksDB calls
write() to flush data to the raw device, it cannot deter‐
mine whether the data are written to the device. Both
the OS and device may have caches. Using the flush
instruction takes time. A write instruction may write
only partial data if there is a power failure, and the
atomic writing unit of SSD is 4 KB. A record is the
basic writing unit for WAL files. Fig. 9 lists all eight
cases in the writing process. We use a solid line to
represent the completed writing operations and a
dashed line to represent uncompleted writing opera‐
tions. By doing the CRC of a record, MyWAL can
find out if the record is unabridged or broken. For
cases 1, 3, and 7, a broken record indicates that the
end position is the previous record. In case 5, the data
in P are not all 0, indicating that P is the end of the
WAL file. Because MyWAL recycles storage space, an
old record may follow the newest record in the latest
WAL file. A complete record does not mean that it is
a correct record. If the time stamp of r3 is earlier than
the time stamp of r0, it means r3 is invalid. If the pre‐
vious CRC of r1 is not the same as the CRC of r0, it
means r1 is invalid. This check method is also effec‐
tive for other records with a previous record.

To verify the correctness of the recovery func‐
tion, we design the following experiment: the appli‐
cation continuously writes KV data to RocksDB, where
the keys are sequentially incremented. Concurrently,
the latest KV is written into a shared memory. After
a random wait of 1–20 s, we kill the application pro‐
cess and then read the latest KV from the shared mem‐
ory to verify whether all KV data are correctly saved
in RocksDB. We repeat the test 10 000 times, and each
time MyWAL correctly reads all KV data.

4 Evaluation

In this section, we first compare the performance
of MyWAL with the original RocksDB using db_bench,
and compare the performance of MyWAL with the
state-of-the-art KV store SpanDB using YCSB (Yahoo!
Cloud Serving Benchmark). All experiments are run on
a test machine with three kinds of media. Table 1 lists
the configuration of the test server.

db_bench is the primary tool that is used to
benchmark RocksDB performance. RocksDB inherits
db_bench from LevelDB and enhances it to support
many additional options. Currently, db_bench supports
many benchmarks to generate 32 different types of
workloads, and its various options can be used to con‐
trol the tests. We use db_bench to evaluate the perfor‐
mance of the original RocksDB and RocksDB with
MyWAL. Because MyWAL optimizes the writing per‐
formance of KV data, we choose the following three
workloads: (1) fillseq: write sequentially, and insert
into the KV database in the order of keys. (2) over‐
write: overwrite, and rewrite the corresponding value
in RocksDB in random key order. (3) fillrandom: ran‐
dom write, and write KV data in random key order.

We evaluate the performance of RocksDB by
writing hundreds of thousands of KV data with the
size of value ranges from 16 B to 16 KB. We test the
performance on three kinds of media: SSD, Optane
NVMe SSD, and Optane NVM. By setting the wal_dir
on different positions, we can test the performance of
the original WAL or new MyWAL. Because the bench‐
mark makes RocksDB write a large amount of data
to the media, it may trigger garbage collection in the

Fig. 9 Rebuilding of the newest WAL file

Table 1 Experimental configuration information

Item

CPU

Memory

SSD

NVMe SSD

NVM

RocksDB

Benchmark

Description

Intel® Xeon® Gold 5218 CPU @ 2.30 GHz

Samsung 2666 MHz DDR4 32 GB

Samsung SSD 860 EVO 250 GB

Intel® Optane™ SSD 900P 480 GB

Two Intel® Optane™ DC persistent memory 128 GB

RocksDB-6.28.2

db_bench of RocksDB-6.28.2

FIO-3.28

YCSB-0.17.0

988

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

following test. To avoid the effects of garbage collec‐
tion, we clear the SSD and NVMe SSD before start‐
ing a new test.

4.1 Improvement of MyWAL on different devices
of a single thread

Fig. 10 shows the throughput comparison results
between MyWAL and the original WAL of a single
thread. The results of SSD, NVMe SSD, and NVM are
shown in three rows. The columns represent the re‐
sults of three workloads: fillseq, fillrandom, and over‐
write. For SSD, the throughput of MyWAL is approxi‐
mately 4 to 7 times larger than the original WAL in all
three workloads when the size of the value is 1 KB,
4 KB, and 16 KB. The throughput of MyWAL has
about 1.72 to 3.80 times improvement on NVMe SSD
and 1.29 to 6.13 times on the NVM.

The minimum measurable value of throughput
for benchmark db_bench is 0.1 MB/s. In the first
row of Fig. 10, the throughput of the original WAL
is <0.1 MB/s; therefore, the results are 0.

Fig. 11 shows the OPS comparison results be‐
tween MyWAL and the original WAL of a single
thread. When the benchmark issues small writes, the

OPS is high and the throughput is low. For SSD, the
OPS of MyWAL is approximately 4.50 to 5.54 times
larger than that of the original WAL in all three work‐
loads. The OPS of MyWAL is 1.72 to 3.40 times larger
than that of the original WAL on NVMe SSD and ap‐
proximately 1.22 to 6.33 times on the NVM.

Ext4-DAX is a mode that enables direct access
(DAX) on the Ext4 file system, allowing data to be
written directly to NVM, bypassing the system buffer.
It offers better IO performance than the standard Ext4
file system. However, previous research indicates that
the performance of RocksDB on Ext4-DAX is similar
to Ext4 (Izraelevitz et al., 2019). In this study, we also
compare the performance of RocksDB to that of
Ext4-DAX. The results show that the performance of
MyWAL is 1 to 5 times better than that of Ext4-DAX.

4.2 Improvement of MyWAL on different devices
with multi-threads

Fig. 12 shows the throughput comparison results
between MyWAL and the original WAL. The results
of SSD, NVMe SSD, and NVM are shown in three
rows. The columns represent the results of three work‐
loads: fillseq, fillrandom, and overwrite. For SSD, the

Fig. 10 Throughput comparison between MyWAL and the original WAL of a single thread (The horizontal axis represents the
size of each data written by db_bench)

989

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

Fig. 11 OPS (operations per second) comparison between MyWAL and the original WAL of a single thread (The horizontal
axis represents the size of each data written by db_bench)

Fig. 12 Throughput comparison between MyWAL and the original WAL with 64 threads (The horizontal axis represents
the size of each data written by db_bench)

990

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

throughput of MyWAL is approximately 5 to 8 times
larger than that of the original WAL in all three work‐
loads. The throughput of MyWAL has about 12%–
30% improvement on NVMe SSD and 13%–29% on
the NVM.

Fig. 13 shows the OPS comparison results be‐
tween MyWAL and the original WAL. When the bench‐
mark issues small writes, the OPS is high, and the
throughput is low. For SSD, the OPS of MyWAL is
approximately 5 to 8 times larger than that of the
original WAL in all three workloads. The OPS of
MyWAL is approximately 12%–30% larger than that
of the original WAL on NVMe SSD and 13%–29%
on the NVM. Specifically, the performance of MyWAL
is about 10% better than that of Ext4-DAX.

In general, the optimization of MyWAL on SSDs
is significant (5 to 8 times higher than that of the
original WAL). There is also a 10%–30% performance
improvement on NVMe SSDs and NVM. There are
some locking and synchronization mechanisms for WAL
writing in RocksDB. However, even MyWAL removes
the impact of the file system, and the RocksDB cannot
fully use the NVMe SSD and other high-speed devices.
Furthermore, when writing WAL files to high-speed

storage media, the time used for log persistence accounts
for a low proportion of writing WALs in RocksDB.
Therefore, the overall improvement of RocksDB is
less significant than that of SSDs.

4.3 Performance comparison of YCSB

In this subsection, we use the YCSB to compare
the performance of MyWAL and SpanDB. YCSB is
an open-source benchmark for evaluating the perfor‐
mance of different “KV” and “cloud” serving stores.
YCSB includes six typical workloads with different
read/write patterns. Because MyWAL optimizes the
writing performance, we selected write-related work‐
loads: 100% write, YCSB-A (update heavy work‐
load, 50/50 read/write), YCSB-B (read mostly work‐
load, 95% read), YCSB-E (short ranges), and YCSB-F
(read-modify-write). SpanDB provides high-speed par‐
allel WAL writes via sistem pelayanan dokter keluarga
(SPDK). It hosts the data on SSD and relocates WAL
and the top levels of the LSM tree to the NVMe SSD.
We compare the performance of SpanDB, RocksDB,
and MyWAL by saving the WAL on the NVMe SSD.

Fig. 14 shows the latency of five workloads for
MyWAL, SpanDB, and RocksDB. The writing latency of

Fig. 13 OPS (operations per second) comparison between MyWAL and the original WAL with 64 threads (The horizontal
axis represents the size of each data written by db_bench)

991

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

MyWAL is better than those of SpanDB and RocksDB,
especially in the 100% write case. In the 100% write
case, MyWAL has excellent performance. The aver‐
age latency decreases by 50% and 70% compared to
those of SpanDB and RocksDB, respectively. The P99
latency of MyWAL is also improved by 47% and 64%,
respectively. In YCSB-A, the P95 latency of MyWAL
is 18% lower than that of SpanDB and 54% lower than
that of RocksDB. In the case of 95% and 5% write,
MyWAL can still achieve good performance. In YCSB-B,
MyWAL has a 16% performance improvement over
SpanDB and a 79% performance improvement over
RocksDB. In YCSB-E, the P95 latency of MyWAL de‐
creases by 24% and 33% compared with those of
SpanDB and RocksDB, respectively. In YCSB-F, the
performance of P99 latency is 24% better than that
of SpanDB and 43% better than that of RocksDB.

In general, MyWAL performs much better com‐
pared to the state-of-the-art SpanDB and RocksDB.
In some heavy writing workload cases, MyWAL has
excellent performance. We also test the OPS, and the
OPS of MyWAL is about 20%–100% higher than
that of RocksDB, but the OPS of SpanDB is much
higher than those of MyWAL and RocksDB. Be‐
cause SpanDB enables asynchronous request process‐
ing to mitigate inter-thread synchronization overhead
and work efficiently with polling-based IO, it can ex‐
ecute more operations in parallel, especially reading
operations.

5 Conclusions

In this work, we present MyWAL, which recon‐

structs the format of WAL files. It manages space and

metadata directly on the raw devices. By removing the

useless metadata and unnecessary update operations,

MyWAL reduces the latency of writing WAL. MyWAL

has excellent performance on SSD, and the results

show that it is eight times faster than the original

RocksDB. This optimization can be applied on differ‐

ent block devices, such as NVMe SSD and NVM.

We also compare the performance of MyWAL with

SpanDB on an NVMe SSD, and the results show that

our solution has better latency than SpanDB.

Contributors
Xiao ZHANG and Mengyu LI designed the research.

Mengyu LI and Yonghao CHEN processed the data. Mengyu

LI drafted the paper. Xiao ZHANG helped organize the paper.

Xiao ZHANG, Mengyu LI, Michael NGULUBE, Yonghao CHEN,

and Yiping ZHAO revised and finalized the paper.

Compliance with ethics guidelines
Xiao ZHANG, Mengyu LI, Michael NGULUBE, Yonghao

CHEN, and Yiping ZHAO declare that they have no conflict of

interest.

Data availability
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

Fig. 14 Comparison of latency of MyWAL, SpanDB, and RocksDB: (a) YCSB-A; (b) YCSB-B; (c) YCSB-E; (d) YCSB-F;
(e) 100% write

992

Zhang et al. / Front Inform Technol Electron Eng 2023 24(7):980-993

References
Absalyamov I, Carey MJ, Tsotras VJ, 2018. Lightweight car‐

dinality estimation in LSM-based systems. Proc Int Conf
on Management of Data, p.841-855.
https://doi.org/10.1145/3183713.3183761

Athanassoulis M, Chen SM, Ailamaki A, et al., 2011. MaSM:
efficient online updates in data warehouses. Proc ACM
SIGMOD Int Conf on Management of Data, p.865-876.
https://doi.org/10.1145/1989323.1989414

Chen H, Ruan CY, Li C, et al., 2021. SpanDB: a fast, cost-effective
LSM-tree based KV store on hybrid storage. 19th USENIX
Conf on File and Storage Technologies, p.17-32.

Dayan N, Idreos S, 2018. Dostoevsky: better space-time trade-
offs for LSM-tree based key-value stores via adaptive re‐
moval of superfluous merging. Proc Int Conf on Manage‐
ment of Data, p.505-520.
https://doi.org/10.1145/3183713.3196927

Dong SY, Kryczka A, Jin YQ, et al., 2021. Evolution of devel‐
opment priorities in key-value stores serving large-scale
applications: the RocksDB experience. 19th USENIX Conf
on File and Storage Technologies, p.33-49.

Facebook, 2019. RocksDB, a persistent key-value store for fast
storage environments. http://rocksdb. org/ [Accessed on
Jan. 7, 2021].

Izraelevitz J, Yang J, Zhang L, et al., 2019. Basic performance
measurements of the Intel Optane DC persistent memory
module. https://arxiv.org/abs/1903.05714

Kaiyrakhmet O, Lee S, Nam B, et al., 2019. SLM-DB: single-
level key-value store with persistent memory. 17th USENIX
Conf on File and Storage Technologies, p.191-205.

Kannan S, Bhat N, Gavrilovska A, et al., 2018. Redesigning LSMs
for nonvolatile memory with NoveLSM. Proc USENIX
Conf on Usenix Annual Technical Conf, p.993-1005.

Leavitt N, 2010. Will NoSQL databases live up to their prom‐
ise? Computer, 43(2):12-14.
https://doi.org/10.1109/MC.2010.58

Lu LY, Pillai TS, Gopalakrishnan H, et al., 2017. WiscKey:
separating keys from values in SSD-conscious storage. ACM
Trans Stor, 13(1):5.
https://doi.org/10.1145/3033273

Luo C, Carey MJ, 2019. Efficient data ingestion and query
processing for LSM-based storage systems. Proc VLDB
Endow, 12(5):531-543.
https://doi.org/10.14778/3303753.3303759

Mei F, Cao Q, Jiang H, et al., 2018. SifrDB: a unified solution
for write-optimized key-value stores in large datacenter.
Proc ACM Symp on Cloud Computing, p.477-489.
https://doi.org/10.1145/3267809.3267829

Pan FF, Yue YL, Xiong J, 2017. dCompaction: delayed compac‐
tion for the LSM-tree. Int J Parallel Prog, 45(6):1310-1325.

https://doi.org/10.1007/s10766-016-0472-z
Papagiannis A, Saloustros G, González-Férez P, et al., 2018.

An efficient memory-mapped key-value store for flash
storage. Proc ACM Symp on Cloud Computing, p.490-
502. https://doi.org/10.1145/3267809.3267824

Qader MA, Cheng SW, Hristidis V, 2018. A comparative study
of secondary indexing techniques in LSM-based NoSQL
databases. Proc Int Conf on Management of Data, p.551-
566. https://doi.org/10.1145/3183713.3196900

Raju P, Kadekodi R, Chidambaram V, et al., 2017. Pebbles‐
DB: building key-value stores using fragmented log-
structured merge trees. Proc 26th Symp on Operating Sys‐
tems Principles, p.497-514.
https://doi.org/10.1145/3132747.3132765

Ren K, Zheng Q, Arulraj J, et al., 2017. SlimDB: a space-
efficient key-value storage engine for semi-sorted data.
Proc VLDB Endow, 10(13):2037-2048.
https://doi.org/10.14778/3151106.3151108

Stonebraker M, 2010. SQL databases v. NoSQL databases.
Commun ACM, 53(4):10-11.
https://doi.org/10.1145/1721654.1721659

Teng DJ, Guo L, Lee R, et al., 2017. LSbM-tree: re-enabling
buffer caching in data management for mixed reads and
writes. IEEE 37th Int Conf on Distributed Computing Sys‐
tems, p.68-79. https://doi.org/10.1109/ICDCS.2017.70

Wu XB, Xu YH, Shao ZL, et al., 2015. LSM-trie: an LSM-tree-based
ultra-large key-value store for small data items. USENIX
Annual Technical Conf, p.71-82.

Yao T, Wan JG, Huang P, et al., 2017. A light-weight compac‐
tion tree to reduce I/O amplification toward efficient key-
value stores. Proc 33rd Int Conf on Massive Storage Sys‐
tems and Technology, p.1-13.

Yao T, Zhang YW, Wan JG, et al., 2020. MatrixKV: reducing
write stalls and write amplification in LSM-tree based KV
stores with a matrix container in NVM. Proc USENIX
Conf on Usenix Annual Technical Conf, Article 2.

Zhang YM, Li YK, Guo F, et al., 2018. ElasticBF: fine-
grained and elastic bloom filter towards efficient read for
LSM-tree-based KV stores. Proc 10th USENIX Conf on
Hot Topics in Storage and File Systems, Article 11.

Zhang ZG, Yue YL, He BS, et al., 2014. Pipelined compaction
for the LSM-tree. IEEE 28th Int Parallel and Distributed
Processing Symp, p.777-786.
https://doi.org/10.1109/IPDPS.2014.85

Zhu YC, Zhang Z, Cai P, et al., 2017. An efficient bulk loading
approach of secondary index in distributed log-structured
data stores. Proc 22nd Int Conf on Database Systems for
Advanced Applications, p.87-102.
https://doi.org/10.1007/978-3-319-55753-3_6

993

