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Abstract: Based on a log-structured merge (LSM) tree, the key-value (KV) storage system can provide high reading performance 
and optimize random writing performance. It is widely used in modern data storage systems like e-commerce, online analytics, 
and real-time communication. An LSM tree stores new KV data in the memory and flushes to disk in batches. To prevent data 
loss in memory if there is an unexpected crash, RocksDB appends updating data in the write-ahead log (WAL) before updating 
the memory. However, synchronous WAL significantly reduces writing performance. In this paper, we present a new WAL mechanism 
named MyWAL. It directly manages raw devices (or partitions) instead of saving data on a traditional file system. These can avoid 
useless metadata updating and write data sequentially on disks. Experimental results show that MyWAL can significantly improve 
the data writing performance of RocksDB compared to the traditional WAL for small KV data on solid-state disks (SSDs), as 
much as five to eight times faster. On non-volatile memory express soild-state drives (NVMe SSDs) and non-volatile memory 
(NVM), MyWAL can improve data writing performance by 10%–30%. Furthermore, the results of YCSB (Yahoo! Cloud Serving 
Benchmark) show that the latency decreased by 50% compared with SpanDB.

Key words: Key-value (KV) store; Log-structured merge (LSM) tree; Non-volatile memory (NVM); Non-volatile memory 
express soild-state drive (NVMe SSD); Write-ahead log (WAL)
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1  Introduction

A key-value (KV) storage system based on the 
log-structured merge (LSM) tree (Leavitt, 2010) data 
structure has better performance and scalability than 
a traditional relational database. It is widely used in 

various big data systems. For example, LevelDB (Stone‐
braker, 2010; Dong et al., 2021) is a fast KV storage 
library written at Google that provides an ordered 
mapping from string keys to string values. RocksDB 
(Facebook, 2019) is a KV store for maximum perfor‐
mance developed by Facebook. The writing perfor‐
mance of the LSM tree is faster than that of B-tree 
because of its data writing mechanism. The add/update 
operations are executed in memory, and after sorting and 
merging, the data in memory are written to the disk.

To avoid in-memory data loss during a system 
crash, RocksDB records all add/update operations in 
write-ahead log (WAL). When the memory is full, data 
will flush into a disk. The KV data are stored on disk 
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in ordered tables in several layers. In the LSM-tree 
architecture, there are three kinds of disk writing 
operations: WAL, flush, and compaction. RocksDB de‐
cides when to flush and carry out data compaction, and 
always writes WAL once there is add/update operation.  
WAL is an essential mechanism for recovering data 
in case of a power failure and operating system (OS) 
crash. However, it has a significant impact on writing 
performance. For example, it may reduce 50%–90% 
of writing operations per second (OPS) in different 
cases.

The writing performance optimization of WAL 
is important for RocksDB. Non-volatile memory ex‐
press soild-state drives (NVMe SSDs) and non-volatile 
memory (NVM) have better input/output (IO) perfor‐
mance than hard disk drive (HDD). Some researchers 
have proposed optimization solutions based on new 
storage media or hierarchical architectures. WiscKey 
saves data on SSD separate storage (Lu et al., 2017). 
SpanDB optimizes WAL performance by saving WAL 
on NVMe SSDs (Chen et al., 2021). MatrixKV de‐
signes a new L0 layer-management mechanism in NVM 
that reduces write stalls (Yao et al., 2020). However, 
these solutions save WAL on the local file system, which 
maintains unnecessary metadata for the WAL mecha‐
nism. For example, when appending a KV operation 
in WAL, it must update the access time and length of 
the WAL file.

In this paper, we propose a new WAL mecha‐
nism named MyWAL, which manages and saves WAL 
data to the raw device. It removes unnecessary IO op‐
erations caused by the file system, so it can achieve 
better performance than the current WAL mechanism. 
We compare the performance under different condi‐
tions. The results show that MyWAL can effectively 
improve the writing performance of KV data on dif‐
ferent storage media.

2  Research background and motivation

In this section, we introduce the LSM-tree archi‐
tecture used in RocksDB and discuss the performance 
impact of the WAL mechanism. We also compare the 
writing performance of the file system with that of the 
raw devices, which motivates our design of MyWAL.

2.1  LSM-tree architecture

LSM tree is a hierarchical data structure. The 
core idea is that sequential writing performance is 
much higher than the random writing performance 
for disk. Fig. 1 shows the typical architecture of the 
LSM tree used in RocksDB. There are six primary 
data structures in the LSM tree. Memory table (MMT) 
and immutable memory table (IMMT) save data in 
the memory. MMT is a readable and append-write file 
that saves new or updated KV data. RocksDB saves 
KV data in a WAL file before it updates in the MMT. 
When the size of the MMT reaches the threshold, the 
MMT will change to IMMT. When the size of the 
IMMT reaches the threshold, the data in IMMT will 
flush into disks. RocksDB saves KV data in a sorted 
string table (SST) in several layers. Dumping an 
IMMT to an SST in L0 is called minor compaction. 
Merging and resorting several SSTs into a lower layer 
is called major compaction. RocksDB provides some 
commonly used compaction algorithms, leveled com‐
paction and universal compaction, to better manage 
SSTs between different levels.

There are three kinds of disk IO operations in 
RocksDB: WAL, minor compaction, and major com‐
paction. RocksDB can choose when and how to do 
compaction, but it has to write WAL as soon as a new 
update operation executes. The composition of the 
WAL in RocksDB is shown in Fig. 2. The WAL file 
is divided into several logical blocks, kBlockSize, the 

Fig. 1  Architecture of the LSM tree used in RocksDB 
(LSM: log-structured merge; WAL: write-ahead log; 
SST: sorted string table)
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basic unit of WAL reaing and writing operations, and 
the default size is 32 KB. Each area is composed of 
several variable length records (e.g., r0, r1, and r2), and 
the remaining part (P) is filled with zero. Each re‐
cord stores the length and type of payload, including 
update requests and its corresponding 32-bit cyclic re‐
dundancy check (CRC) data. When an OS crashes, all 
data in MMT and IMMT will be lost. In this case, 
when RocksDB reboots, it can rebuild the MMT and 
IMMT by reading and performing operations saved 
in WAL.

2.2  KV storage based on LSM tree

Based on the RocksDB data writing process de‐
scribed in the previous subsection, this paper divides the 
system’s performance overhead into three parts: (1) the 
problem of writing performance overhead caused by 
pre-writing logs when the WAL mechanism is enabled, 
(2) the problem of writing pause because the MMT 
cannot convert to the IMMT when the data are refreshed 
from the IMMT to the SST, and (3) the problem of 
writing amplification caused by the consolidation and 
compaction operations between SSTs at different levels 
on the disk.

In addition to these three areas, existing optimi‐
zation directions based on LSM tree focus mainly on 
reducing writing amplification (Raju et al., 2017; 
Yao et al., 2017; Mei et al., 2018), optimizing merge 
operations (Zhang ZG et al., 2014; Teng et al., 2017), 
researching special load balancing (Wu et al., 2015; 
Ren et al., 2017), supporting automatic tuning (Dayan 
and Idreos, 2018; Zhang YM et al., 2018), designing 
secondary indexes (Zhu et al., 2017; Absalyamov et al., 
2018; Qader et al., 2018; Luo and Carey, 2019), and 
making full use of the underlying hardware platform 
for optimization based on new hardware (Athanas‐
soulis et al., 2011; Kannan et al., 2018; Papagiannis 
et al., 2018).

This subsection discusses the three proposed di‐
rections in combination with the above research work.

SpanDB (Chen et al., 2021) proposes storing the 
WAL and the top-level SST on the speed disk (SD), 
while the lower-level SST is stored on the capacity 
disks (CDs). It dynamically adjusts the storage loca‐
tion of new SSTs based on the pressure on the SD 
and CD. Although SpanDB optimizes the WAL mecha‐
nism and adjusts the storage of SSTs, its asynchronous 
interface storage engine is not suitable. If forced to 
be embedded in the application, it cannot exert its 
maximum potential. FlatLSM was also used to try to 
optimize the WAL mechanism by proposing a persis‐
tent memory table (PMT) that separates the index and 
the data. It uses buffer logs to store KV bytes with 
a size <256. FlatLSM attempts to address the prob‐
lem of writing pauses by combining volatile memory 
and persistent L0, which can reduce the depth of the 
LSM tree and concentrate IO bandwidth on L0-L1 
compaction.

Yao et al. (2020) designed MatrixKV with a new 
data structure called the matrix container on NVM to 
manage the L0 layer to reduce writing pauses. MatrixKV 
also includes a column action to reduce the amount 
of data compaction from the L0 layer to the L1 layer. 
To reduce the depth of the LSM tree, the width of 
each layer is increased, and cross-row hint search is 
introduced to improve the reading performance. How‐
ever, its garbage collection mechanism leads to wasted 
persistent memory (PM) space. Also, its cross-row hint 
search, designed to improve the reading performance, 
reduces the flush speed to a certain extent.

dComparison (Pan et al., 2017) proposes delayed 
compaction to reduce writing amplification. It post‐
pones some compaction to the next compaction for 
collection, which means it combines multiple virtual 
compactions into one actual compaction to reduce the 
total IO and improve the writing performance. Virtual 
compaction means that metadata are written in the 
form of virtual SST, and each virtual SST points to the 
unordered real SSTs. However, the improvement of 
reading–writing performance is not very good. There‐
fore, Pan et al. (2017) introduced voluntary counsel‐
ing and testing (VCT) and virtual SST merge thresh‐
old (VSMT) parameters to ensure the reading–writing 
performance trade-off.

Fig. 2  Data format of a WAL file (WAL: write-ahead log; 
CRC: cyclic redundancy check)
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Single-level merge (SLM)-DB (Kaiyrakhmet et al., 
2019) puts MMT and IMMT on the PM, and introduces 
B+-tree on the PM to build a global index for all SSTs. 
It reduces writing amplification to improve reading–
writing performance and optimize reading amplifica‐
tion. However, as data increase, the cost of maintain‐
ing the B+-tree increases.

To summarize, we redesign the WAL mecha‐
nism in the LSM-tree structure and build it on a new 
storage media, such as NVMe SSD or NVM, to 
optimize the performance of synchronous WAL. Most 
research focuses on the writing amplification and writ‐
ing pause problems. Only SpanDB optimizes WAL 
on NVMe SSD, which is highly relevant to our re‐
search. Therefore, we compare the performance of 
SpanDB with MyWAL in this paper.

2.3  Performance loss caused by WAL

RocksDB saves new data in the memory, achiev‐
ing much higher performance than the disk-based data‐
base. However, the data in the memory can be lost if 
there is a power failure or OS crash without WAL. 
Therefore, the WAL is the essential mechanism to 
ensure data availability. Unfortunately, writing WAL 
reduces the RocksDB writing performance. In this 
subsection, we evaluate the performance loss caused 
by WAL.

db_bench is the primary benchmark to evaluate 
RocksDB’s performance. RocksDB inherits it from 
LevelDB and enhances it to support many additional 
options. There are several workloads: fillseq, readran‐
dom, overwrite, fillrandom, seekrandom, and read‐
whilewriting. We select three writing workloads (fillseq, 
fillrandom, and overwrite) to evaluate the perfor‐
mance loss caused by WAL. The pattern of writing 
WAL can be specified when the RocksDB starts. The 
default pattern is writing WAL synchronously. When 
the application can tolerate some data loss, it can use 
writing WAL asynchronously for better performance. 
If the user can tolerate the loss of all memory data, it 
can disable WAL to obtain the highest performance.

Fig. 3 shows the performance loss caused by 
WAL from three perspectives. Figs. 3a–3c compare the 
throughput under different patterns. When the WAL 
mechanism is disabled, the performance is highest 
in all three patterns. The throughput of no-WAL is 
7%–200% higher than that of async-WAL and 11 to 
210 times higher than that of sync-WAL. Meanwhile, 
the throughput of async-WAL is 10 to 73 times higher 
than that of sync-WAL. Figs. 3d–3f compare the exe‐
cuted OPS. The OPS of no-WAL is 4%–212% higher 
than that of async-WAL and 11.36 to 246.92 times 
higher than that of sync-WAL. Meanwhile, the OPS of 
async-WAL is 10.56 to 79.65 times higher than that of 

Fig. 3  Performance loss caused by WAL: (a) fillseq throughput; (b) fillrandom throughput; (c) overwrite throughput; 
(d) fillseq OPS; (e) fillrandom OPS; (f) overwrite OPS (WAL: write-ahead log; OPS: operations per second. The horizontal 
axis represents the size of each data written by db_bench)
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sync-WAL. The WAL mechanism reduces the writing 
performance by 11 to 246 times.

The bottleneck of updating KV data is writing 
WAL to the file system. When the WAL is written 
synchronously, the throughput is <5 MB/s. We tested 
the sequential writing performance of the file system 
and raw devices using FIO (https://fio.readthedocs.io/
en/latest/fio_doc.html). FIO is an IO tool used for 
stress/hardware verification. We compared the writing 
performance on serial advanced technology attachment 
(SATA) SSD, NVMe SSD, and NVM. We ran FIO 
v3.28 using the “sync” ioengine with sequential write 
and random write. Fig. 4 shows the results. The sequen‐
tial and random writing performances of these media 
are almost the same. NVMe SSD is the fastest media, 
and the peak writing performance can reach 2 GB/s. 
When the data block is >4 KB, there is a significant 
drop in writing performance, and as the data block in‐
creases, its writing performance is not as good as NVMe 
SSD devices. When NVM uses the file system at 4 KB, 
the writing performance is reduced by about 77%, even 
close to that of the NVMe SSD. The throughput of 
RocksDB is 100 times slower than that of the file sys‐
tem on an SSD. It is necessary to completely abandon 
the general file system’s data organization and man‐
agement mechanism to avoid unnecessary functions 
brought by it, thereby eliminating the performance 
loss of the general file system to the storage media. 

Therefore, our main task is building new data orga‐
nization and management mechanism on storage media 
based on WAL files.

3  Design and implementation

In this section, we introduce the design and im‐
plementation of MyWAL. It uses a new data structure 
to organize the updating log and saves data directly to 
the raw device. We also discuss how to recover the 
MMT from WAL in different cases. Finally, we dis‐
cuss the thread safety of MyWAL in a multi-thread 
updating environment.

3.1  Reconstruction of WAL data structure

When data are written to RocksDB, RocksDB first 
writes to the WAL file and then updates the MMT. 
Fig. 5 shows the process of writing a record to the 
WAL file. RocksDB uses one thread to write WAL se‐
quentially. It supports multiple threads updating KV 
data in parallel. Operations of multiple threads will 
be merged into a write_group. All operations in one 
write_group are merged into a MergeBatch, where the 
content is to be written to the WAL. If WriteOptions.
sync is true, the WriteToWAL() function writes Merge‐
Batch and flushes to the local file system synchro‐
nously. Then RocksDB updates the KV data in the 

Fig. 4  Comparison of writing performance between raw devices and Ext4: (a) sequential write (SSD); (b) sequential write 
(NVMe SSD); (c) sequential write (NVM); (d) random write (SSD); (e) random write (NVMe SSD); (f) random write (NVM) 
(The horizontal axis represents the size of each data written by FIO)
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MMT. If WriteOptions.sync is false, the MergeBatch 
will not be synchronized to the file system until the 
OS flushes the buffer periodicity. In this case, the 
application does not wait for any disk writing IO, but 
some data may be lost if the system crashes. When 
RocksDB writes a record into WAL, the file system 
must allocate space and update data and metadata such 
as file length and access time.

Linux has a kernel buffer cache or page cache, 
and most disk IOs are conducted through the buffer. 
When RocksDB writes data to the WAL file, the kernel 
usually copies the data to the buffer first. Therefore, 
the data will be persisted only when the buffer is full 
or the kernel needs to reuse the buffer to store other 
data. This mechanism can achieve better IO perfor‐
mance, but may cause data loss if there is a system 
failure. Linux provides three functions to sync data 
in the buffer to disk. The sync() function moves all 
changed buffers to a writing queue and returns. How‐
ever, it does not wait for IO completion, so it cannot 
guarantee that data will persist in some cases. The 
fsync() function saves all data related to the specific 
file descriptor (fd) to disk, and returns until all data 
and metadata are persisted. The fdatasync() function 
is similar to fsync(), except it only updates data 
and ignores metadata. RocksDB uses fsync() or fda‐
tasync() according to the OS type and configuration. 
Every WAL write will change the data and file size, 
so fsync() will issue at least two IOs, one for data and 
the other for metadata. fdatasync() can perform better, 
but may increase the risk of data loss. If the file size 

does not update before RocksDB crashes, the rebuild 
process cannot recognize the corresponding data.

We design a new data structure to reduce the 
metadata update operation. We save the WAL directly 
to the raw device without a file system. The raw de‐
vice can be a disk, a partition, or a preallocated area, 
which can be specified in a configuration file. We store 
multiple WALs in order and then maintain the meta‐
data both in the memory and on the device. Mean‐
while, the frequently updated metadata are only saved 
in the memory. Fig. 6 shows the data structures in the 
memory and device. The first data structure in the 
raw device is the header, which saves a magic num‐
ber, the device’s size (or partition’s size), and the 
number of WAL lists. The following is the WAL list. 
It stores the metadata of the WAL files. Finally, 
the remaining area is for storing WAL data. Because 
there is only one writable MMT in RocksDB, there is 
only one corresponding writable WAL. When RocksDB 
starts or the size of the MMT exceeds the predefined 
threshold, RocksDB will create a new WAL file. We 
save only the start position of the WAL file. If the 
MMT switches to an IMMT, we store the previous 
WAL number in the list. The start position of the new 
file is the end position of the previous WAL file.

File size is an essential feature of a file. It is 
updated once the data are appended. We maintain the 
size of the WAL in the memory. If RocksDB closes 
normally, the contents of all WAL files will be flushed 
to persistent storage devices. If RocksDB terminates 
unexpectedly, it has to read the contents of WAL files 

Fig. 5  Process of writing WAL
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to reconstruct the content in the MMT and IMMT. 
We save the previous log number in the WAL meta‐
data. Because the start position of a WAL file is the 
end of the previous WAL file, we can construct a list 
according to the metadata in the WAL list. Except for 
the last WAL file, other files’  start and end positions 
are known.

To find the end position of the last WAL, we 
modify the data format of the WAL file. Fig. 7 shows 
the data format of MyWAL. We add a four-byte flag 
in each record. We put the system time in the first re‐
cord in a logical block. For each subsequent record, 
it saves the CRC of the previous record.

3.2  Management of space and WAL files

When RocksDB starts, it will create a new WAL. 
RocksDB will create a new WAL file when the writ‐
able MMT exceeds the write_buffer_size or column 
family (CF) is flushed to the disk. In this case, the 
MMT will change to an IMMT, and the WAL will be 

closed and flushed to the disk. It will create a new 
MMT and corresponding WAL file.

The WAL file is given a log number, such as 
0000001.LOG. When the size of a WAL file exceeds 
max_total_wal_size, it will trigger the refresh opera‐
tion of the CF. Once the number of WAL files exceeds 
the limit, RocksDB will force all the active CF data 
to flush to the disk. Generally, the RocksDB will de‐
lete the corresponding WAL file after the MMT is 
flushed to the disk. Some options will cause Rocks‐
DB to retain the flushed WAL for a while, such as 
WAL_ttl_seconds and WAL_size_limit_MB. We can 
calculate how much space is enough for WAL files 
from these options. For example, if RocksDB deletes 
the WAL file after the MMT is flushed, the required 
space is max_write_buffer_number×max_total_wal_
size. max_write_buffer_number defines how many 
MMTs are in the system. max_total_wal_size defines 
the maximum size of a WAL file. We can manage the 
space as a ring. The new WAL file is adjacent to the 
end of the previous WAL files. When it reaches the 
end of the partition, MyWAL will continue writing 
from the beginning. We can define several individual 
rings if there are several CFs.

3.2.1  Space and log files management of MyWAL

We design MyWAL to improve the performance 
of KV data writing by reducing metadata updates on 
the disk. When RocksDB creates a WAL file, MyWAL 
will write the metadata to the disk to record the log 
number, time stamp, and the previous WAL filename 

Fig. 7  Data format of a WAL file in MyWAL (WAL: write-
ahead log; CRC: cyclic redundancy check)

Fig. 6  Disk format and memory tables of MyWAL
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(if it has one). At the same time, MyWAL maintains 
the metadata information of the WAL file in memory. 
When RocksDB updates the WAL file, the length in‐
formation will update in memory but will not write 
to the disk. A record is the minimum updating unit of 
the WAL file. MyWAL adds a four-byte flag to the 
header of each record. The flag of the first record in 
the WAL file stores the same time stamp, saved in the 
WAL metadata. Other records save the CRC infor‐
mation of their previous record. With this unique 
design, MyWAL can calculate the end position of the 
WAL file by scanning the disk. When a MMT has 
flushed to the disk, RocksDB will delete the corre‐
sponding WAL files. For MyWAL, it deletes only the 
metadata in the WAL lists. In some cases, RocksDB 
needs to keep the WAL file for a while, and MyWAL 
updates the WAL flag instead of deleting the item.

Fig. 8 shows how MyWAL adds a WAL file on 
the device. There will be two types of free space in the 
device in MyWAL, generally due to the disk free space 
area 1 generated by the flush operation and the disk 
free space area 2 which has not been used during the 
data writing process. When RocksDB performs an 
insert operation, MyWAL writes a log file to disk in 
the form of an append. The specific operation process 
is as follows:

1. Determine whether the data size of the WAL 
log file to be written exceeds the capacity of area 2.

2. If it is less than the capacity, MyWAL directly 
writes the log file to the position pointed to by the 
tail and modifies the value of the tail without writing 
to the end of the data file after completion.

3. If it is greater than that, MyWAL writes part 
of the data W3_1 into area 2 and the rest of the data 
W3_2 into area 1.

4. Note that a judgment needs to be made when 
writing the remaining data into area 1. If the remaining 
data size is larger than area 1, write the remaining 
data W3_2 into area 1, and then modify the tail to 
complete a write request.

5. Otherwise, it indicates that the disk capacity 
is insufficient and cannot meet the storage requirements 
of the WAL log files in RocksDB, so insufficient disk 
space is returned.

3.2.2  Data recovery after RocksDB crash

WAL is used to recover lost data after the RocksDB 
crashes. We will discuss rebuilding the MMT from WAL 
files on the disk. There are two steps in the recon‐
struction process. First, we rebuild the WAL list and 
analyze which WAL files should be rebuilt to the MMT. 
Next, we restore the contents of each WAL in turn. The 
method for recovering MMTs from WAL is the same 
as the original RocksDB. The key innovation is how 
to obtain the start/end position and the length of the 
WAL files without updating the metadata. If we know 
the start and end positions of a WAL file, the rebuild 
process is the same as the original RocksDB.

We store the previous WAL filename (log number) 
in each metadata record. Because RocksDB generates 
the WAL files one by one, we can construct a list ac‐
cording to the relation among files. For each WAL 
file, if it has a subsequent WAL file, the start position 
of the subsequent WAL file is the end position of the 

Fig. 8  Adding WAL data and metadata on the device
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WAL file. The flag indicates whether the corresponding 
MMT has been flushed to the disk.

We do not update the file length while writing 
data for the newest WAL file. After RocksDB calls 
write() to flush data to the raw device, it cannot deter‐
mine whether the data are written to the device. Both 
the OS and device may have caches. Using the flush 
instruction takes time. A write instruction may write 
only partial data if there is a power failure, and the 
atomic writing unit of SSD is 4 KB. A record is the 
basic writing unit for WAL files. Fig. 9 lists all eight 
cases in the writing process. We use a solid line to 
represent the completed writing operations and a 
dashed line to represent uncompleted writing opera‐
tions. By doing the CRC of a record, MyWAL can 
find out if the record is unabridged or broken. For 
cases 1, 3, and 7, a broken record indicates that the 
end position is the previous record. In case 5, the data 
in P are not all 0, indicating that P is the end of the 
WAL file. Because MyWAL recycles storage space, an 
old record may follow the newest record in the latest 
WAL file. A complete record does not mean that it is 
a correct record. If the time stamp of r3 is earlier than 
the time stamp of r0, it means r3 is invalid. If the pre‐
vious CRC of r1 is not the same as the CRC of r0, it 
means r1 is invalid. This check method is also effec‐
tive for other records with a previous record.

To verify the correctness of the recovery func‐
tion, we design the following experiment: the appli‐
cation continuously writes KV data to RocksDB, where 
the keys are sequentially incremented. Concurrently, 
the latest KV is written into a shared memory. After 
a random wait of 1–20 s, we kill the application pro‐
cess and then read the latest KV from the shared mem‐
ory to verify whether all KV data are correctly saved 
in RocksDB. We repeat the test 10 000 times, and each 
time MyWAL correctly reads all KV data.

4  Evaluation

In this section, we first compare the performance 
of MyWAL with the original RocksDB using db_bench, 
and compare the performance of MyWAL with the 
state-of-the-art KV store SpanDB using YCSB (Yahoo! 
Cloud Serving Benchmark). All experiments are run on 
a test machine with three kinds of media. Table 1 lists 
the configuration of the test server.

db_bench is the primary tool that is used to 
benchmark RocksDB performance. RocksDB inherits 
db_bench from LevelDB and enhances it to support 
many additional options. Currently, db_bench supports 
many benchmarks to generate 32 different types of 
workloads, and its various options can be used to con‐
trol the tests. We use db_bench to evaluate the perfor‐
mance of the original RocksDB and RocksDB with 
MyWAL. Because MyWAL optimizes the writing per‐
formance of KV data, we choose the following three 
workloads: (1) fillseq: write sequentially, and insert 
into the KV database in the order of keys. (2) over‐
write: overwrite, and rewrite the corresponding value 
in RocksDB in random key order. (3) fillrandom: ran‐
dom write, and write KV data in random key order.

We evaluate the performance of RocksDB by 
writing hundreds of thousands of KV data with the 
size of value ranges from 16 B to 16 KB. We test the 
performance on three kinds of media: SSD, Optane 
NVMe SSD, and Optane NVM. By setting the wal_dir 
on different positions, we can test the performance of 
the original WAL or new MyWAL. Because the bench‐
mark makes RocksDB write a large amount of data 
to the media, it may trigger garbage collection in the 

Fig. 9  Rebuilding of the newest WAL file

Table 1  Experimental configuration information

Item

CPU

Memory

SSD

NVMe SSD

NVM

RocksDB

Benchmark

Description

Intel® Xeon® Gold 5218 CPU @ 2.30 GHz

Samsung 2666 MHz DDR4 32 GB

Samsung SSD 860 EVO 250 GB

Intel® Optane™ SSD 900P 480 GB

Two Intel® Optane™ DC persistent memory 128 GB

RocksDB-6.28.2

db_bench of RocksDB-6.28.2

FIO-3.28

YCSB-0.17.0
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following test. To avoid the effects of garbage collec‐
tion, we clear the SSD and NVMe SSD before start‐
ing a new test.

4.1  Improvement of MyWAL on different devices 
of a single thread

Fig. 10 shows the throughput comparison results 
between MyWAL and the original WAL of a single 
thread. The results of SSD, NVMe SSD, and NVM are 
shown in three rows. The columns represent the re‐
sults of three workloads: fillseq, fillrandom, and over‐
write. For SSD, the throughput of MyWAL is approxi‐
mately 4 to 7 times larger than the original WAL in all 
three workloads when the size of the value is 1 KB, 
4 KB, and 16 KB. The throughput of MyWAL has 
about 1.72 to 3.80 times improvement on NVMe SSD 
and 1.29 to 6.13 times on the NVM.

The minimum measurable value of throughput 
for benchmark db_bench is 0.1 MB/s. In the first 
row of Fig. 10, the throughput of the original WAL 
is <0.1 MB/s; therefore, the results are 0.

Fig. 11 shows the OPS comparison results be‐
tween MyWAL and the original WAL of a single 
thread. When the benchmark issues small writes, the 

OPS is high and the throughput is low. For SSD, the 
OPS of MyWAL is approximately 4.50 to 5.54 times 
larger than that of the original WAL in all three work‐
loads. The OPS of MyWAL is 1.72 to 3.40 times larger 
than that of the original WAL on NVMe SSD and ap‐
proximately 1.22 to 6.33 times on the NVM.

Ext4-DAX is a mode that enables direct access 
(DAX) on the Ext4 file system, allowing data to be 
written directly to NVM, bypassing the system buffer. 
It offers better IO performance than the standard Ext4 
file system. However, previous research indicates that 
the performance of RocksDB on Ext4-DAX is similar 
to Ext4 (Izraelevitz et al., 2019). In this study, we also 
compare the performance of RocksDB to that of 
Ext4-DAX. The results show that the performance of 
MyWAL is 1 to 5 times better than that of Ext4-DAX.

4.2  Improvement of MyWAL on different devices 
with multi-threads

Fig. 12 shows the throughput comparison results 
between MyWAL and the original WAL. The results 
of SSD, NVMe SSD, and NVM are shown in three 
rows. The columns represent the results of three work‐
loads: fillseq, fillrandom, and overwrite. For SSD, the 

Fig. 10  Throughput comparison between MyWAL and the original WAL of a single thread (The horizontal axis represents the 
size of each data written by db_bench)
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Fig. 11  OPS (operations per second) comparison between MyWAL and the original WAL of a single thread (The horizontal 
axis represents the size of each data written by db_bench)

Fig. 12  Throughput comparison between MyWAL and the original WAL with 64 threads (The horizontal axis represents 
the size of each data written by db_bench)
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throughput of MyWAL is approximately 5 to 8 times 
larger than that of the original WAL in all three work‐
loads. The throughput of MyWAL has about 12%–
30% improvement on NVMe SSD and 13%–29% on 
the NVM.

Fig. 13 shows the OPS comparison results be‐
tween MyWAL and the original WAL. When the bench‐
mark issues small writes, the OPS is high, and the 
throughput is low. For SSD, the OPS of MyWAL is 
approximately 5 to 8 times larger than that of the 
original WAL in all three workloads. The OPS of 
MyWAL is approximately 12%–30% larger than that 
of the original WAL on NVMe SSD and 13%–29% 
on the NVM. Specifically, the performance of MyWAL 
is about 10% better than that of Ext4-DAX.

In general, the optimization of MyWAL on SSDs 
is significant (5 to 8 times higher than that of the 
original WAL). There is also a 10%–30% performance 
improvement on NVMe SSDs and NVM. There are 
some locking and synchronization mechanisms for WAL 
writing in RocksDB. However, even MyWAL removes 
the impact of the file system, and the RocksDB cannot 
fully use the NVMe SSD and other high-speed devices. 
Furthermore, when writing WAL files to high-speed 

storage media, the time used for log persistence accounts 
for a low proportion of writing WALs in RocksDB. 
Therefore, the overall improvement of RocksDB is 
less significant than that of SSDs.

4.3  Performance comparison of YCSB

In this subsection, we use the YCSB to compare 
the performance of MyWAL and SpanDB. YCSB is 
an open-source benchmark for evaluating the perfor‐
mance of different “KV” and “cloud” serving stores. 
YCSB includes six typical workloads with different 
read/write patterns. Because MyWAL optimizes the 
writing performance, we selected write-related work‐
loads: 100% write, YCSB-A (update heavy work‐
load, 50/50 read/write), YCSB-B (read mostly work‐
load, 95% read), YCSB-E (short ranges), and YCSB-F 
(read-modify-write). SpanDB provides high-speed par‐
allel WAL writes via sistem pelayanan dokter keluarga 
(SPDK). It hosts the data on SSD and relocates WAL 
and the top levels of the LSM tree to the NVMe SSD. 
We compare the performance of SpanDB, RocksDB, 
and MyWAL by saving the WAL on the NVMe SSD.

Fig. 14 shows the latency of five workloads for 
MyWAL, SpanDB, and RocksDB. The writing latency of 

Fig. 13  OPS (operations per second) comparison between MyWAL and the original WAL with 64 threads (The horizontal 
axis represents the size of each data written by db_bench)
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MyWAL is better than those of SpanDB and RocksDB, 
especially in the 100% write case. In the 100% write 
case, MyWAL has excellent performance. The aver‐
age latency decreases by 50% and 70% compared to 
those of SpanDB and RocksDB, respectively. The P99 
latency of MyWAL is also improved by 47% and 64%, 
respectively. In YCSB-A, the P95 latency of MyWAL 
is 18% lower than that of SpanDB and 54% lower than 
that of RocksDB. In the case of 95% and 5% write, 
MyWAL can still achieve good performance. In YCSB-B, 
MyWAL has a 16% performance improvement over 
SpanDB and a 79% performance improvement over 
RocksDB. In YCSB-E, the P95 latency of MyWAL de‐
creases by 24% and 33% compared with those of 
SpanDB and RocksDB, respectively. In YCSB-F, the 
performance of P99 latency is 24% better than that 
of SpanDB and 43% better than that of RocksDB.

In general, MyWAL performs much better com‐
pared to the state-of-the-art SpanDB and RocksDB. 
In some heavy writing workload cases, MyWAL has 
excellent performance. We also test the OPS, and the 
OPS of MyWAL is about 20%–100% higher than 
that of RocksDB, but the OPS of SpanDB is much 
higher than those of MyWAL and RocksDB. Be‐
cause SpanDB enables asynchronous request process‐
ing to mitigate inter-thread synchronization overhead 
and work efficiently with polling-based IO, it can ex‐
ecute more operations in parallel, especially reading 
operations.

5  Conclusions

In this work, we present MyWAL, which recon‐

structs the format of WAL files. It manages space and 

metadata directly on the raw devices. By removing the 

useless metadata and unnecessary update operations, 

MyWAL reduces the latency of writing WAL. MyWAL 

has excellent performance on SSD, and the results 

show that it is eight times faster than the original 

RocksDB. This optimization can be applied on differ‐

ent block devices, such as NVMe SSD and NVM. 

We also compare the performance of MyWAL with 

SpanDB on an NVMe SSD, and the results show that 

our solution has better latency than SpanDB.
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