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Abstract: In radar systems, target tracking errors are mainly from motion models and nonlinear measurements. When we 
evaluate a tracking algorithm, its tracking accuracy is the main criterion. To improve the tracking accuracy, in this paper we 
formulate the tracking problem into a regression model from measurements to target states. A tracking algorithm based on a 
modified deep feedforward neural network (MDFNN) is then proposed. In MDFNN, a filter layer is introduced to describe the 
temporal sequence relationship of the input measurement sequence, and the optimal measurement sequence size is analyzed. 
Simulations and field experimental data of the passive radar show that the accuracy of the proposed algorithm is better than those 
of extended Kalman filter (EKF), unscented Kalman filter (UKF), and recurrent neural network (RNN) based tracking methods 
under the considered scenarios.
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1  Introduction

Target tracking is a fundamental and active re‐
search topic in many fields, such as radar, naviga‐
tion, and smart driving systems. The primary purpose 
of target tracking is to accurately estimate the target 
state in motion space. High-accuracy tracking is im‐
portant, especially for the detection of small and low-
speed targets (e.g., unmanned aerial vehicles (UAVs)), 
which may help terminate the sabotage activities of 
UAVs and ensure better and safer airspace manage‐
ment. How to improve the tracking accuracy remains 
an important problem (Singer RA, 1970; Wang et al., 
2009; Radmard et al., 2013; Choi et al., 2014; Jiang 
et al., 2015; Yi et al., 2015).

According to the approximation method of the 
posterior probability density function (PDF) (Smidl 
and Quinn, 2008; Mazuelas et al., 2013), the existing 
tracking algorithms can be categorized into two types, 
namely analytical Gaussian approximate tracking 
(Singer H, 2008; Saha et al., 2014; Ning et al., 2017) 
and random sampling approximate tracking (Gordon 
et al., 1993; Higuchi, 1997; Doucet et al., 2001; Schön 
et al., 2005; Bengtsson et al., 2008; Yin and Zhu, 
2015). The first type is designed by approximating 
the PDF of the target state to a Gaussian or mixed 
Gaussian distribution. The extended Kalman filter 
(EKF) handles the nonlinearity of the tracking model 
with linear approximation around the predicted track‐
ing point at each frame (Saha et al., 2014). The track‐
ing state may be inaccurate or even divergent due to 
strong nonlinearity. The unscented Kalman filter (UKF) 
(Ning et al., 2017) is based on the unscented transfor‐
mation. The approximation result of UKF is usually 
better than that of EKF. Singer H (2008) used the 
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Gauss–Hermite (GH) integration rule to approximate 
the nonlinear part of the tracking model. The effective‐
ness of these analytical Gaussian approximate track‐
ing approaches has been demonstrated in many stud‐
ies (Singer H, 2008; Smidl and Quinn, 2008; Mazue‐
las et al., 2013; Saha et al., 2014; Ning et al., 2017). 
However, they have difficulties in dealing with arbi‐
trary distributions in the tracking system.

The second type provides another effective state 
estimation tool for the nonlinear tracking system. 
Compared with the aforementioned algorithms, it ap‐
proximates the conditional probability distribution of 
the state and realizes the transition of the conditional 
probability using the Bayesian theory (Gordon et al., 
1993). Doucet et al. (2001) introduced the Monte 
Carlo (MC) simulation method into the particle filter 
(PF). A number of weighted samples (or particles) 
were used to approximate the posterior distribu‐
tion. It may achieve high accuracy at the cost of un‐
acceptable complexity and numerical problems, espe‐
cially when the dimension of the state space becomes 
large (Bengtsson et al., 2008). Schön et al. (2005) de‐
composed the state vector into two disjoint compo‐
nents, including a linear state component and a non‐
linear state component in marginalized particle filter‐
ing (MPF). They were estimated by a bank of Kal‐
man filters (KFs) and by a PF, separately. This ap‐
proach can improve the cost-effectiveness of the track‐
ing algorithm. Higuchi (1997) revealed that PF and 
the genetic algorithm (GA) share a similar structure. 
Based on the observations, Yin and Zhu (2015) pro‐
posed genetic PF (GPF) by incorporating the genetic 
operators in PF to mitigate particle impoverishment. 
Nonetheless, most of these improved PFs have more 
complex strategies and suffer from a higher computa‐
tional burden.

The aforementioned two types of methods are 
dependent on an accurate system model. Nevertheless, 
an accurate system model requires the extraction of 
more useful information from the measurement data. 
Since the measurement data are nonlinear and con‐
tain errors, target tracking based on an accurate model 
is challenging and difficult to adapt to application re‐
quirements. Hence, target tracking is evolving from 
model-driven to data-driven. In recent years, data-
driven approaches have achieved great breakthroughs 
and have been applied to many fields (Oong and Isa, 

2011; Ding et al., 2016). We note that a neural network 
(NN) is proven to have the potential to approximate 
the desired model with arbitrary accuracy by the uni‐
versal approximation theorem (Hornik et al., 1989; 
Hornik, 1991). In fact, researchers have paid atten‐
tion to the application of NNs in target tracking since 
1994. Chin (1994) and Amoozegar and Sundareshan 
(1994) incorporated NN into KF to provide more in‐
formation on manoeuvre targets. However, these 
NNs are too shallow to approximate the complex fea‐
tures of tracks due to the limited parameters in the 
networks. Gu et al. (2020) used deep reinforcement 
learning to track a mobile radiation source based only 
on the received signal strengths. Fatseas and Bekooij 
(2019) developed a deep convolutional NN to track 
multiple targets directly from frequency modulated 
continuous wave (FMCW) range-Doppler maps. Ras‐
salna and Mishra (2020) used single shot detection 
(SSD) to process the images provided by the electro 
optic (EO) sensor. Then, the processing results and 
the data from the radar are used for tracking. However, 
these deep NN based tracking approaches are de‐
signed for the original signals and images. They are 
not suitable for radar tracking with measurements. 
Gao et al. (2018) used a recurrent neural network 
(RNN) to track manoeuvre targets. Nonetheless, RNN 
learning relies on back-propagation through time 
(BPTT). BPTT significantly increases the computa‐
tional complexity of the learning, and even worse, 
it may cause many problems in learning, e.g., gradient 
vanishing and exploding (Bengio et al., 1994). Liu 
JX et al. (2020) mitigated the influence of target ma‐
noeuvres on tracking using the long short-term mem‐
ory (LSTM) model. Unfortunately, LSTM can re‐
member only finite dependency information and suf‐
fers from high computational complexity. Thus, they 
cannot solve the high-accuracy tracking problem 
well.

Compared with the aforementioned NNs, the 
learning of deep feedforward neural networks (DFNNs) 
(Goodfellow et al., 2016) is much easier and faster. It 
is preferable to use a feedforward structure to learn 
the trajectory characteristics. Nevertheless, DFNN 
cannot model the sequence dependency well due to 
the limitation of the network structure. Therefore, the 
recurrent feedback of RNN can be regarded as an in‐
finite impulse response (IIR) filter. We use a high-order 
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finite impulse response (FIR) filter to approximate it. 
Specifically, we add a new FIR filter layer that is 
placed between the hidden layers of the DFNN net‐
work. In addition, this modified DFNN (MDFNN) 
can realize sliding window control of the length of 
the measurement sequences. Based on MDFNN, a 
novel target tracking algorithm is constructed for high-
accuracy tracking. First, the target track database is 
built. Then, we design and train about 10 MDFNNs 
and select the best one. Finally, a dataset of multi‐
static passive radar is used to validate the proposed 
algorithm.

The main contributions of this paper are as follows:
1. We design a new filter layer for MDFNN. 

Target tracking needs to establish the long-term de‐
pendency of measurement in time series, but DFNN 
cannot model the dependency without a recurrence 
structure. Hence, an FIR filter is embedded between 
the hidden layers to solve the problem. The proposed 
target tracking algorithm can handle measurement se‐
quences of any length by a filter layer that is formed 
by FIR, extract more target motion features, and 
achieve higher tracking accuracy.

2. An accurate regression model is established 
efficiently by exploiting DFNN/MDFNN for target 
feature extraction and state estimation. As mentioned 
above, compared with other recursive NNs, DFNN/
MDFNN can achieve better generalization perfor‐
mance with a much higher learning rate. In addition, 
the influence of the measurement sequence size in 
the input layer on the tracking network is considered. 
The difference in measurement sequences affects the 
acquisition of target information and then influences 
the tracking performance. A tradeoff scheme is devel‐
oped based on an experiment to select an appropriate 
sequence length.

2  Building the dataset of the target

In this paper, we build the dataset in the context 
of multistatic passive radars. A passive radar detec‐
tion system (Griffiths and Long, 1986; Griffiths and 
Baker, 2005; Kuschel, 2013; Palmer et al., 2013) gen‐
erally includes signal processing and data process‐
ing. Signal processing is mainly to obtain measure‐
ments that include the information of the target bistatic 

range, bistatic velocity, and azimuth. Data processing 
realizes target state estimation using measurements. 
In this section, the target tracking database is estab‐
lished. The samples in our database contain the mea‐
surements and real state of tracks, which constitute 
the input‒output pairs for the high-accuracy target-
tracking network. It is well known that the move‐
ment of the target can be simulated according to the 
corresponding model (Li and Jilkov, 2003), which 
means that the large amount of data required by the 
proposed tracking network in the training stage is 
usually not a problem. To make the tracks in our 
tracking database closer to reality, all the parameters 
used to generate the tracks are set according to the 
real scenarios.

The model of the track generator (MTG) is de‐
fined as follows:

state equation: xk = f ( xk − 1 ) + vk, (1)

measurement equation: zk = h ( xk ) + wk, (2)

where xk = [ xk, ẋk, ẍk, yk, ẏk, ÿk ]T is the target state at 

time k, ( xk, yk ) are the positions of the target at time 

k, ( ẋk, ẏk ) are the velocities of the target along the x 

and y directions at time k, and ( ẍk, ÿk ) are the acceler‐

ations of the target along the x and y axes at time k. zk 
is the corresponding measurement at time k. In Eq. (1), 
f is the state transition function, and the process noise 

vk is assumed to be zero-mean additive white Gaussian 
noise. In Eq. (2), h is the nonlinear measurement 
function. The measurement noise wk is also assumed 
to be additive zero-mean white Gaussian noise, and 
the covariance matrix of wk conforms to

E{wkw
T
j } = Rkδkj, (3)

where δkj is the Kronecker Delta function. According 
to MTG, the real state x1:K = { xk: k = 1, 2, ⋯, K} of 

tracks is generated by Eq. (1), and the measurements 

z1:K = {zk: k = 1, 2, ⋯, K} are generated by Eq. (2). 

The measurement is related to the radar system struc‐
ture, which is analyzed as follows.

A multistatic passive radar system consists of N t 
transmitters (i.e., s tn t

, n t = 1, 2, ⋯, N t) and N r receiv‐

ers (i.e., srnr
,  nr = 1, 2, ⋯, N r). Their positions are 

known and denoted by s tn t
= [ xn t

, yn t
]T and srnr

=
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[ xnr
, ynr

]T. The measurement function h ( xk ) can be 

given by

h ( xk ) =
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. Generally, the mea‐

surement function of the nth bistatic pair at time k can 
be expressed as

hn ( xk ) =

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úrn,k
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, (5)

where υ is the target motion velocity, rn,k is defined 
as the bistatic range of the nth bistatic pair at time k, 
pk is the two-dimensional (2D) target position, denoted 

by pk = [ xk, yk ]T, ṙn,k is the bistatic velocity of the nth 

bistatic pair at time k, || ⋅ || denotes the Euclidean 
norm, φn,k is the azimuth of the nth bistatic pair at 

time k, and atan2(⋅, ⋅ ) is the four-quadrant inverse 

tangent. Assuming that N = 3, the measurement func‐
tion h ( xk ) at time k can be represented as

h ( xk ) = [ r1,k, r2,k, r3,k, ṙ1,k, ṙ2,k, ṙ3,k, φ1,k, φ2,k, φ3,k ]T. (6)

In this paper, the transition function f in Eq. (1) 

is defined in a constant acceleration (CA) shape (Li 
and Jilkov, 2003). Using MTG, the measurements 
z1:K ={zk: k = 1, 2, ⋯, K} and corresponding states 

x1:K = {xk: k = 1, 2, ⋯, K} can be generated when the 

parameters of the model, i.e., the initial state x0, num‐
ber of times K, process noise vk, measurement noise 
wk, and transition function f, are set.

Before generating the samples of the target 
tracking database, we must determine the range of 
the target trajectory to ensure that they cover all pos‐
sible UAV detection fields. In Fig. 1, the shaded area is 
the common detection area of the multistatic passive 
radar system. The boundary values in the detection 

area are determined according to the flight path of 
the UAVs. As shown in Table 1, the distance from 

the radar to the target covers the main detection 

range of the passive radar, i.e., 0.2 to 11 km. The ve‐
locity of the target is set in the range of 0–26 m/s, 
which covers all common velocities of UAVs as much 
as possible. The azimuth ranges from −60° to 60°.

Accordingly, the parameters of MTG are de‐

rived as follows:

1. Since a fixed length of track segments is re‐

quired in the tracking network, the lengths of all the 
track segments trsegment are defined to be 100 s in the 

target tracking database. The length of a sample track 
is set to 1000 s. Hence, a sequence truncation stage is 

inserted and summarized in Algorithm 1. In practice, 

a long track can be considered a combination of sev‐

eral track segments.

2. The initial state x0 is calculated by using polar 

coordinate decomposition. To ensure that the entire 

tracks satisfy the passive radar detection ranges 

described in Fig. 1, the initial distance of the target 

is set to range from 200+Vmax·trsegment to 11 000−Vmax·

trsegment, where Vmax=26 m/s is the maximum velocity 

of the UAV. Then, we uniformly sample a random 

distance R random from this range to obtain the initial 

position (x0, y0) of the track in the x and y directions 

as

Fig. 1  Graphical illustration of the surveilled area for 
passive radar 

Table 1  Ranges of target states

Parameter

Distance from the passive radar

Speed of the UAVs

Azimuth from the passive radar to the UAVs

Range

0.2–11 km

0–26 m/s

−60°–60°
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x0 = R random· sin θR, y0 = R random·cos θR, (7) 

where θR is the angle between the north and the direc‐
tion from the radar, and it is uniformly sampled from 
0 to π. Likewise, the initial velocities (ẋ0, ẏ0) in the x 

and y directions are calculated as

ẋ0 = V random· sin θV, ẏ0 = V random·cos θV, (8)

where V random   is the random velocity uniformly sam‐
pled from 0 to 26 m/s, and θV is the angle between 
the north and the initial direction of the target veloci‐
ty, uniformly sampled from −π to π. Similarly, the ini‐
tial accelerations (ẍ0, ÿ0) are computed as

ẍ0 = A random· sin θA, ÿ0 = A random·cos θA, (9) 

where A random   is the random accelerated velocity uni‐
formly sampled from 0.1 to 5 m/s2, and θA denotes 
the angle between the north and the initial direction 
of the target acceleration, uniformly sampled from 
−π to π. Thus, the initial state of the track segment is 
x0 = [ x0, ẋ0, ẍ0, y0, ẏ0, ÿ0 ]T.

3. According to Eqs. (1) and (2), the process 
noise vk and measurement noise wk are defined as

vk ∼ N (0, Qk ) ,    Qk = E{vkv
T
k } =

é

ë
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û
úúúú

Q1  0

 0   Q1

, (10)

ì
í
î

ïï
ïï
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ṙ ),           wφ ∼ N (0,  σ 2

φ ),
(11)

where N denotes a normal distribution. In Eq. (10), 
Qk is the covariance matrix of vk, and Q1 is given by

 Q1 =
é
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ê ù

û
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úú
ú

úT 5 /20 T 4 /8 T 3 /6
T 4 /8 T 3 /3 T 2 /2
T 3 /6 T 2 /2 T

q͂, (12)

where T is the sampling interval, q͂ is the power spec‐

tral density of the process noise, set to q͂= 4 m2 /s5 in 

this study. In Eq. (11), σwr
 is the deviation of bistatic 

range noise randomly sampled in the range of [16, 
30] m. σwṙ

 and σφ are the deviations of the bistatic ve‐

locity and azimuth noise, randomly sampled in the 
ranges of [2, 4] m/s and [0.6°, 3°], respectively.

After obtaining all settings for MTG, 59 500 sam‐
ples are generated based on the radar practical scenarios.

3  Proposed algorithm

In this section, the details of the proposed track‐
ing algorithm are presented. Unlike traditional track‐
ing algorithms, the proposed algorithm tracks the tar‐
get based on an MDFNN that is trained off-line. The 
framework of the proposed algorithm is shown in 
Fig. 2. It contains the training and tracking stages. In 
the training stage, there are three main steps: (1) The 
original measurements and real state of tracks are 
processed to generate the normalized input‒output 
pairs, which are suitable for training the tracking net‐
work. (2) To obtain a tracking network with the best 
generalization performance, the target measurement 
sequences are first decomposed into several groups. 
Then, a total of u (u=10) models are trained with 
these submeasurement sequences in each group and 
the corresponding real state of tracks. In the training 
models (i.e., MDFNNs), the cost function is defined by 
the mean square error (MSE). (3) The optimal tracking 
model is selected by cross-validation. In the tracking 
stage, the original measurement is first preprocessed 
using the bistatic target tracking (BTT) algorithm (Yi 
et al., 2015) to remove false measurements. The re‐
tained measurements are used to realize the one-
step-ahead estimation of target states. Then, the entire 
target track is estimated by splicing the track segments. 
The details of the proposed tracking network are 
presented in the following.

Algorithm 1  Input sequence setting for complex 
measurement data from the track segment of a given 
target in the training phase
Input: measurement sequence z1:K and the corresponding state 
sequence x1:K.

// K is the total length of the sample track

1

2

3

4

5

6

7

8

9

Initialization: set ε = 100

// Length of the truncated subsequence

Num = K−ε // Number of target subsequences

For n=1 to Num do
M i =  z1:K (: ,   n : ε )

Mo =  x1:K (: ,   n : ε )

Sei{n}= M i  // Total subsequences

Seo{n}= Mo

ε =  ε + 1

End For
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3.1  Preprocessing

There are two key problems when the measure‐
ment sequences are directly used to estimate the tar‐
get state. The first problem is that the bistatic veloci‐
ties and azimuths of input measurements are too small 
in comparison with the bistatic ranges. When they 
are fed into the tracking network and combined with 
bistatic ranges based on a random weight matrix, their 
data features are submerged by the bistatic range data. 
To relieve the problem, the min-max normalization 
technique is employed to modify the samples, which 
are suitable for training. Thus, the loss of the track‐
ing network can be guaranteed to converge to a satis‐
factory small value. According to Eq. (6), input mea‐
surements z1:K can be rewritten as

z1:K = [ r1,1:K, r2,1:K, r3,1:K, ṙ1,1:K, ṙ2,1:K, ṙ3,1:K, 

φ1,1:K, φ2,1:K, φ3,1:K ]T, (13)

where rn,1:K=[ rn,1, rn,2, ⋯, rn,K ] (n=1, 2, 3) denotes the 

bistatic range vector of the nth bistatic pair, ṙn,1:K =
[ ṙn,1, ṙn,2, ⋯, ṙn,K ] denotes the bistatic velocity vector 
of the nth bistatic pair, and φn,1:K=[ φn,1, φn,2, ⋯, φn,K ] 
is the azimuth vector of the nth bistatic pair. Measure‐
ment z1:K is normalized to generate the input data z N

1:K 
for the tracking network as follows:

z N
1:K = [ r N

1,1:K, ⋯, r N
n,1:K, ṙ N

1,1:K, ⋯, ṙ N
n,1:K,    

φN
1,1:K, ⋯, φN

n,1:K ]T,     (14)

where
r N

n,1:K = [ r N
n,1, r N

n,2, ⋯, r N
n,K ] , (15)

ṙ N
n,1:K = [ ṙ N

n,1, ṙ N
n,2, ⋯, ṙ N

n,k ] , (16)

φN
n,1:K = [ φN

n,1, φN
n,2, ⋯, φN

n,k ] , (17)

r N
n,i =

2 ( rn,i − min rn,1:K )
max rn,1:K − min rn,1:K

− 1, (18)

ṙ N
n,i =

2 ( ṙn,i − min ṙn,1:K )
max ṙn,1:K − min ṙn,1:K

− 1, (19)

φN
n,i =

2 (φn,i − min φn,1:K )
max φn,1:K − min φn,1:K

− 1, (20)

where n = 1, 2, 3, and “max” and “min” are the maxi‐
mum and minimum absolute values in the elements 
of the input vector, respectively. Meanwhile, the real 
state x1:K of tracks is processed by the same normal‐
ization. The minimum and maximum values are de‐
termined. Obviously, the min-max normalization tech‐
nique scales the real-time trained data ( z1:K, x1:K ) to 

values ( z N
1:K,   x N

1:K ) between −1 and 1, which avoids 

data feature loss to a great extent. Thus, the tracking 
network can learn more target information.

The second problem is that false measurements 
are contained in radar detection, which may cause 
false trajectory output in the tracking stage. A prepro‐
cessing step is developed to modify the input of sam‐
ples, which are suitable for tracking. Thus, the pro‐
posed tracking network can estimate the desired target 

Fig. 2  Framework of the proposed tracking algorithm
The upper part shows the training stage where the preprocessed data are used to train the tracking network according to a designed 
cost function. The bottom part shows the tracking stage where the trained tracking network is used to estimate the target state

1219



Xu et al. / Front Inform Technol Electron Eng   2023 24(8):1214-1230

state. The preprocessing step is summarized in Fig. 3. 
On one hand, the field experimental measurements 
are disposed by the BTT algorithm with the transi‐
tion matrix in the CA shape, where the false measure‐
ments contained by the field experimental measure‐
ments can be removed. Specifically, based on the 
framework of bistatic coordinates, association hypoth‐
esis decision and global association are first used to 
associate the measurements with each other and form 
the starting trajectory. Then the measurement of each 
scan is associated with the track, and KF is used to up‐
date the track states for the associated track. Finally, 
the raw measurement data associated with the bistatic 
track are outputted (Yi et al., 2015). On the other 
hand, the difference between the target measurements 
ẑ1:K extracted is still large, and the min-max normaliza‐
tion technique is adopted to generate the final input 
data ẑ N

1:K for the high-accuracy network.

3.2  Target tracking network model

The proposed tracking network is used to learn 
the information of input sequence z N

1:K to output the 
estimates of state x1:K. Once the network is well 
trained, it can directly and precisely output the target 
state without any information of the state truth. As 
DFNN cannot map arbitrary measurement sequences 
from time k to K to the current state output at time K, 
MDFNN with an FIR filter added between the hid‐
den layers is proposed to solve the above problem. 
MDFNN is developed with an input layer, three hid‐
den layers, two filter layers, and an output filter. The 
structure of MDFNN is summarized in Fig. 4a. h i,k 

(i=1, 2, 3) and h͂ j,k (j=1, 2) denote the output of the ith 

hidden layer and jth filter layer at time k, respectively. 

W i (i=1, 2, 3, 4) is the weight matrix, and WF,i (i=1, 2) 

is the weight matrix connecting the ith filter layer to 

the (i+1)th hidden layer. ck denotes the coefficient vec‐

tor connecting the hidden layer to the filter layer. 

Fig. 4b shows the sliding window (SW) processing 

of the filter layer. The filter layer encodes all mea‐

surement sequences from time k to k+M into a fixed-

size representation. Then, the output of the filter layer 

and the input of the current hidden layer are fed into 

the next hidden layer. The tracking network can also 

be called the M-order tracking network. Assume that 

the three hidden layers have l1, l2, and l3 nodes in 

MDFNN, separately. The mathematical model of the 

tracking network can be expressed as follows:

   h1,k = fh (W T
1 zk + κ1 ) = fh(∑i = 1

9

W T
1 ( j, i )zk (i ) + κ1 ( j )   ) ,

  j = 1, 2, ⋯, l1, (21)

   H͂1,k = [  h͂1,1  ,  h͂1,2, ⋯, h͂1,k ]

= [  h1,1  ,  h1,2, ⋯, h1,k ] [ c1  ,   c2, ⋯, ck ] , (22)

ck =
ì
í
î

ïï

ïïïï

[ c1, c2, ⋯, ck − L + 1, ck − L + 2, ⋯, ck ]  T,  k⩾M,

[ c1, c2, ⋯, ck,  0, ⋯, 0
M − k

]    T,  k < M, (23)

h2,k = fh (W T
2 h1,k + W T

F,1 h͂1,k + κ2 )

= fh(∑i = 1

l1

W T
2 ( j, i)   h1,k (i) +∑

i = 1

l1

W T
F,1 ( j, i)h͂1,k (i) + κ2 ( j)  ) ,  

                         j = 1, 2, ⋯, l2, (24)

Fig. 3  Preprocessing for track data (BTT: bistatic target tracking)
After preprocessing, the normalized target measurement sequence is outputted as the network input
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       H͂2,k = [  h͂2,1  ,  h͂2,2, ⋯, h͂2,k ]

= [  h2,1  ,  h2,2, ⋯, h2,k ] [ c1  ,   c2, ⋯, ck ] , (25)

h3,k = fh (W T
3 h2,k + W T

F,2 h͂2,k + κ3 )

= fh(∑i = 1

l1

W T
3 ( j,i )   h2,k ( i ) +∑

i = 1

l1

W T
F,2 ( j,i ) h͂2,k ( i )

  +κ3 ( j )   ) ,   j = 1, 2, ⋯, l3, (26)

x̂k = fo (W T
4 h3,k + κ4 ) = fh(∑i = 1

l2

W T
4 ( j,i )h3,k (i ) + κ4 ( j )) , 

            j = 1, 2, ⋯, 6, (27)

where ( j, i ) denotes the element of the matrix in row 

j and column i, ( i ) represents the ith element of the 

vector, κ i ( i = 1, 2, 3, 4 ) denotes the offset vector of 

each layer of the tracking network,   H͂ i,k (i=1, 2) repre‐
sents all outputs of the ith filter layer from time 1 to k, 
x̂ N

k  indicates the normalized regression prediction of 
xk by the proposed tracking network at time k, and   fh 

and   fo are all elementwise activation functions. They 

are usually a saturating nonlinear function such as a 
logistic sigmoid function s (α )=1/(1+e−α ) or a hyper‐

bolic tangent function   tan h (α )=(eα−e−α)/(eα+e−α).

Let W={W1, W2, W3, W4} denote the connection 
weight matrix of the input layer, hidden layer, and 
output layer, WF={WF,1, WF,2} the weight matrix con‐
necting the filter layer to the hidden layer, and κ =
{κ1, κ2, κ3, κ4} the offset of all layers. The target func‐
tion of the tracking network can also be expressed as

x̂k = ϕ ( zk ; W, WF, ck, κ ) , (28)

where x̂k is the estimated state. It can be considered a 
composition of multiple nonlinear layers when un‐
folded in time. To obtain high-accuracy state estima‐
tion, x̂k, W, WF, ck, and κ should be selected to mini‐
mize the error of the prediction. Thus, the cost func‐
tion can be defined as

J =∑
i = 1

K

 x̂ i − x i

2

/2. (29)

The parameters in Eq. (28) are usually estimated 
using the error back propagation algorithm (EBPA) 
based on stochastic gradient descent (Rumelhart et al., 
1986). EBPA fully exploits the structure of MDFNN 
and backwards updates weights and thresholds from 
the output layer to the input layer.

Fig. 4  Illustration of a modified deep feedforward neural network (MDFNN): (a) structure of MDFNN; (b) sliding window 
(SW) processing for window size M
In (a), the network consists of an input layer, hidden layers, filter layers, and an output layer, where the hidden layers 
perform a nonlinear transformation of input activation into output activation. The filter layers capture the long-term 
dependency in the measurement sequence. The input layer and output layer receive and output sequences, respectively. In 
(b), SW processing considers consecutive measurements and moves forwards by one scan each step to include the latest 
bistatic measurements
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3.3  Determination of the optimal tracking model

For the estimation of the target state, we use the 
proposed tracking network to learn from the target 
tracking dataset with multiple labels. Based on the 
MDFNN model, we mark the measurements without 
false alarms as input. Ten different tracking models 
are trained and evaluated to obtain a comparative idea‑
list model. The whole process of determination in‐
volves four steps:

1. Training process: Generally, the training pro‐
cess is the decisive stage for tracking models. In this 
case, we use 85% of the target tracking dataset to 
train inherent parameters in Eq. (28). The regression 
relationship between the measurements and the real 
target state in the training dataset can be learned using 
the MDFNN algorithm. Thus, a trained tracking model 
can be employed to predict the target state.

2. Validation process: Once the training procedure 
of the MDFNN model is completed, cross-validation 
is applied to eradicate overfitting. To validate the 
effectiveness of the MDFNN model, 10% of the 
tracking dataset is used to cross-validate every trained 
tracking model. When the trained MDFNN model per‐
forms poorly on the validation dataset, we must further 
modify a series of parameters to improve the perfor‐
mance of the MDFNN model. Specifically, we retrain 
every trained tracking model and revalidate them sepa‐
rately based on the same retrained dataset. If MDFNNs 
achieve appropriate performance, the verification pro‐
cedure will cease.

3. Testing process: We can acquire 10 MDFNN 
models as long as the training and validation proce‐
dures are completed. Accordingly, the performance 
of each MDFNN is further tested by using 5% of the 
measurement sequence dataset. As the testing dataset 
has never been used, this is a reliable and effective 
means to guarantee the estimation performance of the 
10 MDFNN models.

4. Model selection: To further evaluate the adap‐
tive capacity of the trained 10 MDFNN models, we 
choose some new measurement sequence datasets 
that have not been trained before to further test each 
acquired MDFNN. Then, an optimal MDFNN model 
is selected as the final target tracking model. Hence, 
this is a powerful way to compare and evaluate the 
performance of 10 MDFNN models. All universal 

procedures of training an MDFNN model are summa‐
rized in Fig. 5 (Liu H et al., 2019).

The steps contain feature extraction, training, test‐
ing, and evaluation in obtaining the target tracking 
model. When the final tracking model is recognized 
and confirmed, we input the target measurements into 
the trained MDFNN model to estimate the target state. 
This achieves the entire process from model-driven to 
data-driven.

In this study, the number of nodes of each layer 
Nh in the tracking network is set as in Table 2. The 
number of nodes is designed based on the empirical 
equation below:

Nh = Ns / [ ]λ ( N i + No ) , (30)

where Ns denotes the sample size, N i and No are the 
input size and output size, respectively, and λ is a 
constant that is usually set in the range of [1, 20] for 
a large sample. First, assuming that λ=5, 10, 20, we 
can obtain the number of nodes Nh, which is in the 
ranges of [396, 793] and [198, 396]. Then, the accu‐
rate number of nodes of each layer can be achieved 
by cross-validation.

Note that the cost function is usually noncon‐
vex, which means that many local minima may exist. 

Table 2  Number of nodes of each layer

Layer 

Input

Hidden 1

Filter 1

Hidden 2

Filter 2

Hidden 3

Output

Number of nodes

9

384

384

225

225

540

6

Fig. 5  Flowchart of training an MDFNN model
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Generally, we tend to find the quasi-optimum with 
lower computation complexity in the parameter space 
(Rumelhart et al., 1986).

4  Simulations and field experimental results

In this section, simulations are first conducted 
to verify the effectiveness of the proposed algorithm. 
Real data are then used to test the practical perfor‐
mance of the proposed method.

Based on the existing schemes and the proposed 
tracking algorithm, we design a framework for exper‐
imental comparison. As shown in Fig. 6, the frame‐
work consists of three modules. The first module is 
the tracking dataset building module, which aims to 
obtain target measurements from measurements with 
false alarms. The second module is a classic tracking 
scheme, which includes localization (spherical inter‐
polation, SI) (Malanowski and Kulpa, 2012) with 
tracking (KF), EKF, and UKF based tracking meth‐
ods. The third module is the machine learning module 
(i.e., classic regression model RNN and the proposed 
method MDFNN), which is used for extracting target 

features from the sample dataset and building a con‐
clusive model. The MDFNN model is determined 
based on the high accuracy requirement, which is ac‐
curate in certain instances. The different tracking per‐
formances of the classic tracking methods, RNN, and 
the proposed tracking algorithm are tested and com‐
pared based on real experimental data.

For all the experiments, the root mean square 
error (RMSE) is employed for tracking performance 
evaluation. It is calculated as follows:

RMSEk =
1

MC
∑
i = 1

MC

( xk − x̂k,i )2 , (31)

where RMSEk is the RMSE at time k, xk denotes the 
real value at time k, x̂k,i represents the estimated value 
of the ith MC simulation at the same time, and MC is 
the number of MC simulations. RMSE is an absolute 
measure of fitting for the proposed tracking algo‐
rithm. The lower the RMSE, the better the algorithm.

4.1  Ablation experiment

In this subsection, an ablation experiment is 
conducted to validate the effectiveness of the filter 

Fig. 6  Pipeline of the proposed target tracking method comparison framework, which includes three main modules, i.e., 
dataset building, classic tracking, and machine learning for target tracking (SI: spherical interpolation; EKF: extended 
Kalman filter; UKF: unscented Kalman filter; MDFNN: modified deep feedforward neural network; RNN: recurrent 
neural network)
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layer in the tracking network. The tracking network 
without the filtering layer (i.e., DFNN) is trained with 
20 000 epochs based on the target tracking database, 
which is identical to that in Section 2. The training 
results are shown in Fig. 7.

Fig. 7a shows the RMSEs of the tracking network 
based on MDFNN or DFNN in the x and y coordi‐

nates. Obviously, the RMSE of DFNN is larger than 
that of MDFNN. It seriously fluctuates after 48 s and is 
larger than 200 m, although it slightly decreases in 
some period of testing. As shown in Fig. 7b, the track‐
ing network based on DFNN cannot correctly track 
the trajectory. As we further observe in Table 3, the 
RMSEs of the tracking network based on DFNN and 
the tracking network based on MDFNN are 545.79 m 
and 3.03 m, respectively. The tracking RMSEs of 
DFNN are so large that the passive radar has undoubt‐
edly lost the target.

4.2  Selection of the sequence size

To evaluate the performance of the proposed ap‐
proach, we have considered the case of three aerial 
targets, whose trajectories are shown in Fig. 8. In the 
simulations, a 2D space is considered, the accuracies 
of the bistatic range and bistatic velocity are 30 m 
and 2 m/s, respectively, and the azimuth accuracy is 
3°. In our numerical results, the system performance 
is measured in terms of RMSE over 100 simulation 
runs. First, the performance of the proposed tracking 
network versus input sequence size is tested by track‐
ing the trajectory of target 2 (Fig. 8). The tracking re‐
sults for different sequence sizes are shown in Table 4. 

The values of RMSEs of the position slowly decline 
along with the increase in sequence size and fluctuate 
at approximately 1.28 m after ε=100. For a larger ε, 
the number of training parameters needs to increase, 
leading to a more complicated tracking network. As 
a result, considering a tradeoff between the acquisi‐
tion of target information and the computation com‐
plexity, the input sequence size is set to 100.

Then, we examine the impact of the sliding win‐
dow technique proposed in the filter layer on the per‐
formance of the tracking network described in Fig. 4. 
Table 5 gives the position RMSE of the tracking net‐
work over different window sizes for the abovemen‐
tioned three trajectories (Fig. 8). The trends of the 
tracking RMSE of the three trajectories are basically 
the same with the change in filter order. The RMSEs 
of the three tracks are relatively small when M=20.

4.3  Performance comparison

For all tracking techniques, the corresponding 
parameters have been set to the values maximizing 
the performance. RNN, conventional EKF, and UKF 
are used for comparison.

The network structure of RNN refers to Gao et al. 
(2018), and the number of hidden units of the RNN 
network is set to 256. For the aforementioned scenario, 
Fig. 9 shows the RMSE versus time. The total RMSEs 
are given in Table 6. The results show that RNN and 
MDFNN perform much better than conventional track‐
ing approaches. Among them, MDFNN outperforms 
RNN since it considers sliding window control on the 
length of the measurement sequences. Compared with 

Fig. 7  Training results of the tracking network without the filter layer: (a) position RMSE of the tracking network based on 
DFNN or MDFNN in testing; (b) results of tracking by the tracking network based on DFNN or MDFNN
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the smaller RMSEs of EKF and UKF, the RMSEs of the 
proposed algorithm decrease by at least 82.33%, 86.51%, 
and 72.49% for trajectories 1, 2, and 3, respectively. 
The improved accuracy can be attributed to the com‐
bined effect of having a larger dataset for training and 
testing.

In addition, the posterior Cramer–Rao bound 
(PCRB) of the three target tracks is shown in Fig. 9. 
The method proposed by Tichavsky et al. (1998) is 
used to calculate PCRB. In the 1T-3R passive radar 
system, which consists of one transmitter and three 
receivers, all the RMSEs of the proposed method are 

Fig. 9  Performance comparison among the proposed tracking 
algorithm, EKF, UKF, and RNN for three trajectories: 
(a) trajectory 1; (b) trajectory 2; (c) trajectory 3

Table 4  Means of the position tracking RMSE for the 
first trajectory with different sequence sizes

Sequence size ε

10

50

100

150

200

RMSE (m)

2.26

1.87

1.28

1.27

1.27

Sequence size ε

300

400

500

600

700

RMSE (m)

1.26

1.27

1.27

1.28

1.57

Table 3  Training results of the tracking network and the 
network without the filtering layer

Network

MDFNN

DFNN

RMSE (m)

3.03

545.79

Fig. 8  Three aerial targets in Cartesian coordinates (simulation 
data)

Table 5  Means of the position tracking RMSE for three 
trajectories with different filter orders M

M

10

20

30

40

50

RMSE (m)

Trajectory 1

1.45

1.29

1.50

1.93

2.65

Trajectory 2

1.07

0.97

1.12

1.24

1.45

Trajectory 3

2.54

2.33

2.18

2.60

3.32
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superior to the corresponding PCRB. This verifies 
the high accuracy of the proposed method. The possi‐
ble reasons for this are mainly as follows: (1) Based 
on the analysis in Section 3.2, the process of target 
tracking can be considered as finding the optimal pa‐
rameter of a regression model. The curve fitted by 
the proposed algorithm is smoother than the trajectory 
tracked by traditional methods. (2) PCRB is a lower 
bound on the MSE of an unbiased estimator. The pro‐
posed algorithm is not limited to unbiased estima‐
tors. It provides a possible processing means for sat‐
isfying the requirement of high accuracy.

According to the results achieved for this exam‐
ple, the performance of the proposed tracking algo‐
rithm is considerably improved compared to EKF and 
UKF. Instead of seeking a traditional method of ap‐
proximation, the proposed tracking algorithm shows 
its capability to reduce the tracking error by applying 
its own nonlinear structure and the ability to process 
nonlinear systems.

4.4  Field experimental results

In this subsection, the effectiveness of the proposed 
algorithm is demonstrated using the experimental data 
acquired from an experimental passive radar system 
developed at Wuhan University in Hubei Province, 
China. As shown in Fig. 10, there is one transmitter 
and three receivers. The transmitter is located at the 
Wuhan Guishan Digital Radio and Television Tower. 
The three receivers are all located at Wuhan Universi‐
ty, and the baseline distances to the transmitting sta‐
tion are 7.56, 8.12, and 8.28 km, separately. The tar‐
get is a DJI drone, and its flight altitude is 100 m. 
The experimental data were acquired in July 2017. 
The selected duration was about 200 s. We extracted 
the corresponding Global Position System (GPS) infor‐
mation from the drone as a reference. The four tracking 
schemes mentioned in the framework (Fig. 6) were 
tested using the experimental data.

For multistatic passive radar detection, the influ‐
ence of the target height on each receiver may offset 
each other. Hence, the effect of the target altitude on 
the accuracy is analyzed by simulating the field de‐
tection scenarios of multistatic passive radar. Ten thou‐
sand tracks are randomly simulated under the field 
detection area (Fig. 10) to investigate the influence 
of the target altitude on the accuracy. Fig. 11 shows 
the 2D coordinate EKF tracking results for different 
target altitudes. The total RMSEs are given in Table 7. 

Table 6  Means of the position tracking RMSE for three 
trajectories with different tracking methods

Method

EKF
UKF
RNN

MDFNN

RMSE (m)
Trajectory 1

7.47
7.30
3.26
1.29

Trajectory 2
7.19
7.55
2.73
0.97

Trajectory 3
8.54
8.47
5.03
2.33

Fig. 10  Geometry of one transmitter, three receivers, and 
the area of interest

Fig. 11  Performance comparison with different target 
altitudes

Table 7  Means of the position tracking RMSE for 10 000 
trajectories with different target altitudes

Altitude h (m)

0

100

200

300

500

RMSE (m)

7.55

7.61

9.11

13.48

31.49

| RMSE − RMSE0 | (m)

0

0.06

1.56

5.93

23.94
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RMSE0 denotes the tracking result with h=0 m. The 
position RMSE increases along with the increase in 
the target altitude h. Compared with RMSE0, RMSE 
increases by 0.79%, 20.66%, 78.54%, and 317.09% 
for the four target altitudes of h=100, 200, 300, and 
500 m, respectively. Hence, the effect of the target al‐
titude on the tracking accuracy is relatively small for 
low-altitude detection.

Since the flight altitude of the target is 100 m in 
this study, the influence of the target altitude on the 
tracking performance is very weak according to the 
foregoing simulation results. The target altitude can 
be ignored here, and the real data can be used to verify 
the performance of the proposed algorithm by 2D co‐
ordinate tracking.

The processing results are plotted in Fig. 12. The 
target is tracked completely by the five tracking 
schemes. As shown in Fig. 12a, good agreement is 
achieved with GPS from a 2D view. The trajectory 
tracked by the proposed tracking algorithm is the 
closest to GPS compared with the four other tracking 
schemes. This validates the feasibility of the pro‐
posed algorithm. GPS information is used to calcu‐
late the RMSE of the trajectory. The position error is 
plotted in Fig. 12b. The track errors of SI+KF, EKF, 
and UKF seriously fluctuate in a dynamic process of 
tracking, and RNN tracking deviates significantly 
from the true state at the very start, while the errors 
of the proposed algorithm are relatively stable. This 
is because a deeper network structure can extract more 
target motion feature information from the measure‐
ment dataset. As we further observe in Table 8, the hori‐
zontal location accuracies of SI+KF, EKF, and UKF are 
12.25, 12.45, and 12.21 m, respectively, while those of 
RNN and MDFNN are 2.16 and 1.72 m, respectively. 
The proposed algorithm can track the targets with 
high accuracy, while classical methods present large 
track errors. The proposed algorithm can give more 
precise position information to counter-UAV systems.

4.5  Computational cost

This subsection is devoted to analyzing the com‐
putational cost of the proposed algorithm and tradi‐
tional approaches EKF (Saha et al., 2014) and UKF 
(Ning et al., 2017). The number of floating-point opera‐
tions (FLOPs) is adopted as a measure of the model 
complexity with MDFNN and the computational 

complexity with traditional algorithms. Denote the di‐
mension of the measurement and the dimension of the 
state by dm and ds, respectively. The computational 
complexities of EKF and UKF are O(d 3

s ) and O(d 3
m ), 

respectively.
Table 9 summarizes the model complexity of 

the proposed algorithm. The main procedures include 
the hidden layer O ( ε (dm + l2 )l1 + ε (ds + l2 )l3 ) and 

filter layer O ( ( l1 + l2 )M 2 ). Thus, the total model 

complexity is

FLOPsmodel = εl3ds + εl1dm + (l1 + l3 )ε + (l1 + l2 )M 2.

(32)

Fig. 12  Results of tracking in Cartesian coordinates (real 
data): (a) tracking results; (b) position deviation of the 
tracking track

Table 8  Means of the position RMSE of the track in the 
field experiment

Method

RMSE (m)

SI+KF

12.25

EKF

12.45

UKF

12.21

RNN

2.16

MDFNN

1.72
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The model complexity is on the order of O(ds ) 

and O(dm ). It has a first-order relationship with both 

the state dimension and the measurement dimension. 
The computational cost of the proposed algorithm 
refers to the inference speed of the trained model. 
However, the inference speed is related not only to 
the model complexity but also to many other factors, 
such as the memory access cost, hardware character‐
istics, software implementation, and system environ‐
ment (Ma et al., 2018). The model complexity cannot 
accurately measure the estimation speed of the pro‐
posed algorithm. Hence, experimentation is the most 
accurate way to evaluate the computational perfor‐
mance here.

We test the computational time of the proposed 
algorithm, EKF, and UKF by means of 100 experi‐
mental runs. For a fair comparison, all the algorithms 
are tested by the same Intel Core i7-4790 CPU at 4.0 
GHz and 32.0 GB RAM. The test results show that the 
proposed algorithm, EKF, and UKF consume 31.0, 
171.1, and 438.1 ms, respectively. Hence, the proposed 
algorithm is suitable for real-time implementation.

5  Conclusions

In this paper, we develop a high-accuracy target 
tracking algorithm for multistatic passive radar by ex‐
ploiting the learning capabilities and easy structure of 
DFNN. First, a novel MDFNN tracking model based 
on a new filter layer is advocated for tracking recur‐
sion. We have shown that the tracking network based 
on MDFNN models the sequence dependency well 

by the ablation experiment, thereby having better re‐
liability and tracking performance. Second, a reason‐
able measurement sequence size is selected to trade 
off the acquisition of target information and the com‐
putational complexity. Simulations and field data dem‐
onstrate that the proposed algorithm presents higher 
tracking accuracy compared to state-of-the-art meth‐
ods. In future work, we will consider radar tracking 
problems with different measurement noise levels. In 
these cases, the proposed algorithm may need to be 
fine-tuned to achieve proper tracking results. In addi‐
tion, we will try to use mixed machine-learning tech‐
niques to replace traditional target association modules.
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