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Abstract: With the fast-growing graphical user interface (GUI) development workload in the Internet industry,
some work attempted to generate maintainable front-end code from GUI screenshots. It can be more suitable for
using user interface (UI) design drafts that contain UI metadata. However, fragmented layers inevitably appear in
the UI design drafts, which greatly reduces the quality of the generated code. None of the existing automated GUI
techniques detects and merges the fragmented layers to improve the accessibility of generated code. In this paper, we
propose UI layers merger (UILM), a vision-based method that can automatically detect and merge fragmented layers
into UI components. Our UILM contains the merging area detector (MAD) and a layer merging algorithm. The
MAD incorporates the boundary prior knowledge to accurately detect the boundaries of UI components. Then, the
layer merging algorithm can search for the associated layers within the components’ boundaries and merge them into
a whole. We present a dynamic data augmentation approach to boost the performance of MAD. We also construct
a large-scale UI dataset for training the MAD and testing the performance of UILM. Experimental results show
that the proposed method outperforms the best baseline regarding merging area detection and achieves decent layer
merging accuracy. A user study on a real application also confirms the effectiveness of our UILM.
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1 Introduction

The graphical user interface (GUI) is an impor-
tant visual communication tool that can play an es-
sential role in an app’s success. A user interface
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(UI) design draft is a high-fidelity GUI prototype,
and it has a view hierarchy representing both how
UI components are constructed and how they are
arranged. One of the main jobs of a front-end engi-
neer is to implement the code. With today’s increas-
ing development in the Internet industry, there is a
huge demand for front-end code development. To
relieve front-end developers from tedious and repeti-
tive work, some previous research has adopted auto-
matic methods to generate maintainable code from
UI screenshots (Behrang et al., 2018; Beltramelli,
2018), but it can be more suitable to generate code
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from UI design drafts that contain the UI metadata.
Imgcook (https://www.imgcook.com/) is such a tool
that can automatically generate front-end code from
UI design drafts.

To generate high-quality and maintainable
front-end code with automatic code generation
tools, the UI design drafts need a concise and
structured view hierarchy. In practice, designers
usually produce a UI design draft by facilitating
the overlay of layers that represent basic shapes
and visual elements, with design software such
as Sketch (https://www.sketch.com/) and Figma
(https://www.figma.com/). These fragmented lay-
ers without structured grouping inevitably increase
the difficulty of understanding the semantics of UI
components and also impair the maintainability of
the generated code.

In a code generation process, the associated
fragmented layers need to be merged into UI com-
ponents to avoid increasing the complexity of the
hierarchical structure and even reduce the quality of
generated code. As shown in Fig. 1, the dashed rect-
angular boxes represent the fragmented layers. Note
that some fragmented layers together represent one
UI component. As shown in Fig. 2, the view hier-
archy without merging fragmented layers in the UI
icon is complicated and redundant. After merging,
the layout structure is simplified greatly because we
can use a single container to represent the compo-
nent. However, due to the substantial number of
layers and complex design patterns in a UI design
draft, it is time-consuming for designers or develop-
ers to locate and merge multiple fragmented layers
manually. In this study, we try to locate all the UI
components that have fragmented layers that need
to be merged. Then we can merge these layers into
UI components. Therefore, the quality of the gener-

Fig. 1 Examples of fragmented layers in user interface
(UI) components (the dashed rectangles represent the
fragmented layers). These fragmented layers form UI
components with semantic information

ated code can be improved because the complexity
of the view hierarchy is greatly reduced.

As described above, the challenge is to deter-
mine the location and number of UI components
in a design draft. The number of UI components
in a given design draft is diverse. The UI compo-
nents have various types, such as icon, atmosphere
UI, and background UI. Multiple types result in dif-
ferent sizes and aspect ratios. For example, there is
a significant size difference between the background
UI (top-left) and the WiFi icon (top-right) as shown
in Fig. 1. Another challenge is that we need to search
for all the associated fragmented layers in the region
of UI components when their locations are found.
Fig. 1 shows that the atmosphere UI (middle-left)
consists of six fragmented layers and we have to find
all of them accurately. Intuitively, the more accu-
rate the detected UI components’ boundaries are, the
more accurately we can find the associated layers.

In particular, our method solves the problem in
two steps: merging area detection and layer merg-
ing, which are implemented by the merging area de-
tector (MAD) and the layer merging algorithm, re-
spectively. The MAD can automatically detect UI
component areas. The layer merging algorithm uses
the located merging area to merge the fragmented

View hierarchy View hierarchy

Merge

Shown in 
  Sketch

Shown in 
  Sketch

Fig. 2 An example of merging fragmented layers.
The dashed boxes in the “carrot-like” icon represent
fragmented layers which are shown in the view hier-
archy on the top-left side under the “Figure” folder.
After merging these fragmented layers, the view hier-
archy on the top-right side is simplified as one single
“#merge#” container
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layers into UI components. Before feeding data into
the MAD, we construct a preprocessing pipeline that
parses the UI design drafts to obtain the screenshots
with view hierarchy. The layer boundary informa-
tion in the view hierarchy can be incorporated to the
MAD as prior knowledge. Additionally, a novel data
augmentation and spatial fusion (SF) strategy is in-
troduced to boost the performance of our MAD. To
train our MAD and evaluate the effectiveness of our
UI layers merger (UILM), we collect and construct a
UI dataset with modern diverse UI design drafts.

We summarize the contributions of this study
as follows:

1. We construct a large UI dataset (https://
github.com/zju-d3/UILM) consisting of UI design
drafts. A dynamic data augmentation and SF strat-
egy is introduced to boost the performance of our
method.

2. This is the first work to solve the frag-
mented layer issue by proposing a method called
UILM, which contains an MAD and a layer merg-
ing algorithm.

3. Our MAD outperforms the best merging area
detection baseline. The experimental results based
on three specific development conditions show that
our method can successfully support automatic code
generation. The user study on a real application also
confirms the effectiveness of our UILM.

2 Related works

2.1 UI code generation

To free the developer from tedious and repet-
itive work, recent research on automatically gen-
erating code from various design stages has been
conducted, including hand-drawn sketches (Aşıroǧlu
et al., 2019; Jain et al., 2019; Suleri et al., 2019),
wireframes (Halbe and Joshi, 2015; Ge, 2019), and
GUI screenshots (Nguyen and Csallner, 2015; Bel-
tramelli, 2018; Chen CY et al., 2018; Moran et al.,
2020; Feng et al., 2021). Suleri et al. (2019) pro-
posed an approach for web code generation from
hand-drawn mock-ups using computer vision tech-
niques and deep learning methods. Sketch2Code
(Jain et al., 2019) employs deep neural networks
(DNNs) to detect GUI elements in sketches. Its out-
put is a platform-independent UI representation ob-
ject used by a GUI parser to create code for different

platforms. However, the generation from sketches or
wireframes to code still requires manually modifying
the generated code. To improve the usability of the
generated code, pix2code (Beltramelli, 2018), which
is based on convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), can generate
code from a GUI screenshot. To generate more ap-
propriately structured code, Chen CY et al. (2018)
presented a neural machine translator that combines
computer vision and machine translation techniques
for converting a UI design image to a GUI skeleton.

The above-mentioned UI code generation tech-
niques do not fully use UI metadata, such as view
hierarchies or accessibility tags, and thus some work
is needed to improve the quality of generated code
by taking the UI design drafts to generate more
useful and maintainable front-end code. Yotako
(https://yotako.io/) and Imgcook are tools that take
UI design drafts made by designers as input for mod-
ern design software. The resulting code from these
tools describes the original UI using only relative
constraints, allowing it to be responsive to different
front-end platforms, e.g., Vue, React, and Angular.
However, the existence of fragmented layers misleads
the machine, so there are many fragmented contain-
ers in the generated code. The generated code of-
ten does not satisfy developers’ requirements due to
the lack of maintainability. We seek to address this
limitation and advance the body of work on code
generation with our approach.

2.2 UI detection and dataset

The first step of our method is to use UI screen-
shots and raw view hierarchies to detect the frag-
mented layer regions. Here we briefly survey exist-
ing GUI element or component detecting techniques.
Some works (Chen S et al., 2019; Chen JS et al.,
2020; Moran et al., 2020) first use traditional image
processing methods, such as edge detection, to lo-
cate UI elements, and then apply the CNN model to
identify the semantics of UI elements (e.g., UI type).
Liu et al. (2020) presented OwlEye to classify and
detect GUI display issues, such as missing images
and text overlap, to guide developers to fix these
bugs. They further developed a fully automated ap-
proach, Nighthawk (Liu et al., 2023), which is based
on the faster region-based convolutional neural net-
work (Faster RCNN) model, to detect GUIs with
display issues and locate the detailed region of the
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issue to guide developers to fix bugs. Gallery D.C.
(Chen CY et al., 2019) uses Faster RCNN to detect
UI components and automatically creates a gallery
of GUI design components. White et al. (2019) used
YOLOv2 to identify GUI widgets in UI screenshots
to improve GUI testing. Zhang et al. (2021) col-
lected and annotated a large UI dataset from iPhone
apps to train a robust and efficient on-device model
to detect UI elements.

To train a model for detecting and merging
fragmented layers in UI design drafts, a large-scale
dataset consisting of UI design drafts is manda-
tory. Recently, Rico (Deka et al., 2017), a large-
scale dataset of Android apps, is generally used as
the data source for related research on UI. Different
from the traditional image-based dataset, Rico con-
sists of about 72 000 UI examples from 9722 Android
apps. Each example is associated with a screenshot
of a particular UI design, the corresponding view
hierarchy, and the user interaction information. It
marks 24 UI component types, 197 text button con-
cepts, and 97 icon types on these view hierarchies.
However, it has some limitations, such as broken hi-
erarchies, inaccurate bounding box boundaries, and
inconsistencies in the class labels of similar objects
(Bunian et al., 2021). Although Li et al. (2022) de-
veloped tools for improving the quality of the Rico
dataset, more complex UI layouts and UI design
specifications have been a challenge for UI research.
Zhang et al. (2021) attempted to fill this gap by
collecting and annotating a large UI dataset from
modern iPhone apps. Hence, it is important to have
a well-structured dataset that can provide more ac-
curate and more diverse UI design to support UI
research. Also, to the best of our knowledge, there

is no public dataset for the task of detecting frag-
mented layers. Therefore, we collect UI drafts and
construct a UI dataset with modern diverse UI com-
ponents that enables us to train a fragmented layer
MAD.

In this study, we propose a novel object-
detection-based method to detect the regions of the
fragmented layers in UI design drafts. Given that
UI design drafts have view hierarchies, we enrich vi-
sual features by incorporating the layers’ boundary
information.

3 Methodology

In this section, we introduce the details of the
proposed method. As illustrated in Fig. 3, we present
a dynamic data augmentation approach, and de-
sign the MAD. The segmentation map encodes the
boundary information and the location of the UI
components. By adding the segmentation map to the
UI images, MAD can use the spatial information of
layers to condition the proposed bounding features.
The layer merging algorithm can merge fragmented
layers into UI components. After merging the layers,
they can be transformed into one single image-type
layer, which can significantly reduce the complexity
of layers in the UI design drafts and improve the
quality of generated code.

3.1 Dataset construction

To investigate our automatic approach for merg-
ing fragmented layers in design drafts, it is essential
to have a large-scale, carefully annotated dataset of
UI design drafts. Thus, we create the UILM dataset,

Data Augmentation
 Generated 

Data augmentation

Dataset

UI image

Segmentation map

Fusion Layer merging

6223

screenshots

Merging area 
    detector

Fig. 3 Overview of the proposed method
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a novel well-annotated dataset of >600 Sketch files.
Each Sketch file consists of several design drafts.
Each design draft has a view hierarchy for organiz-
ing layers. A view hierarchy is a tree structure where
each layer in the tree corresponds to an element in
the UI. Different from Rico (Deka et al., 2017), our
layers are the indivisible elements that make up UI
objects in design software. In fact, in design drafts,
it is very common for multiple fragmented layers to
form a UI component, such as icons and background
UI.

When constructing the dataset, we recruit UI
designers to perform data annotation. They are
asked to read a document that details the steps for
data annotation. Then they are provided with an
example set of annotated UI design drafts where
all the fragmented layers are clustered into several
groups and associated with the “#merge#” label.
This provides a better understanding of how to make
a correct “#merge#” annotation. Eventually, they
use Sketch to manually locate fragmented layers for
given UI design drafts and manually merge these
layers into groups. Consequently, these groups are
named starting with “#merge#.”

In the data preprocessing stage, given an an-
notated UI design draft, we parse its artboard to
a JSON file and generate the train labels using
the COCO format (Lin et al., 2014). The parsing
pipeline is shown in Fig. 4. The Sketch tools save
the corresponding screenshots. The layers in an art-
board can be regarded as a view tree. We traverse
the tree from bottom to top and obtain the spatial in-

formation of all layers. The information of each layer
includes position, size, type, fill, etc. When we tra-
verse to the layer group containing the “#merge#”
label, we create the training data [x, y, w, h] based
on the previously obtained position and size infor-
mation ((x, y) represents the coordinates of the top-
left corner, and w and h denote the width and height
information respectively). To highlight the bound-
ary information, we generate segmentation maps by
filling the layers with colors in traversing order. In
summary, with UI drafts, we generate UI screen-
shots, corresponding segmentation maps, and train-
ing data containing groups of “#merge#” labels and
layer information.

3.2 Merging area detection

We need to locate the merging area of the UI
component and determine reliable boundary for the
area. It is difficult to merge layers with high accuracy
if the predicted boundary is not accurate enough.
As illustrated in Fig. 5, to solve this issue, we adopt
multi-stage adaptive convolution (Vu et al., 2019) to
learn an anchor with an adaptive shape to improve
the boundaries’ alignment accuracy in the context of
complex UI layouts.

Specifically, given a feature map x, we calcu-
late each location p on the output feature y in the
adaptive convolution as follows:

y [p] =
∑

O∈Ω

ω [O] · x [p+O] , (1)

where Ω is the offset field and offset O can be

Design artboard

Traverse layer

Traverse order:
from bottom to top

Transform to COCO
  format annotation

Generate

Saving the image by using “Sketch”

Segmentation map

UI image

Fig. 4 Parsing pipeline of user interface (UI) draft preprocessing
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   regressor

6223
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Fig. 5 Architecture of the merging area detector (RPN: region proposal network)

decomposed into center offset and shape offset, which
can be obtained by

O = Octr +Oshp, (2)

where Octr = (āx − px, āy − py), Oshp is defined by
anchor shape and kernel size, and ā denotes the pro-
jection of anchor a onto the feature map.

At the region proposal network, to select suffi-
cient positive samples and avoid establishing a loose
requirement for positive samples, we use two stages
by starting out with an anchor-free metric followed
by an anchor-based metric in the second stage. In the
first stage, the adaptive convolution is set to perform
dilated convolution because anchor center offsets are
zeros. Its function is to enlarge the feature map per-
ception field. In the second stage, we compute the
anchor offset Oτ and feed it into the regressor f τ to
produce the regression prediction δ̂τ . The prediction
δ̂τ is used to produce regressed anchors aτ+1. The
objectness scores are then produced from the classi-
fier, followed by non-maximum suppression (NMS)
to produce the region proposals.

At the box regressor, improving the layer bound-
ary alignment rate depends on the box regression
performance of the detector. In Faster RCNN (Ren
et al., 2017), a fixed threshold, intersection over
union (IoU), is set, typically u=0.5, which estab-
lishes quite a loose requirement for positives. This
makes it difficult to train a detector to achieve the
optimal performance. If the IoU is set higher, typi-
cally u=0.7, it leads to a few positive samples after
filtering and causes the model to be over-fitting. In
this study we follow the suggestions of Cai and Vas-
concelos (2018) that a detector optimized at a single
IoU level is not necessarily optimal at other levels.
In other words, each IoU level can learn an optimal
bounding box regressor independently. We adopt
the cascade box regressor, which improves perfor-

mance by multi-stage expansion while avoiding the
over-fitting problem.

3.3 Layer merging algorithm

Our ultimate goal is to find redundant layers
from the layer list and merge them into UI compo-
nents. Therefore, after detecting the merging areas
from screenshots, we need to trace back to the corre-
sponding layers from UI drafts in the detected merg-
ing area. We propose the layer merging algorithm,
which merges the relevant layers while filtering the
irrelevant layers in the detected area.

The complete merging process is shown in Al-
gorithm 1. With the JSON file and the predicted
bounding box list as the input, we first flatten the

Algorithm 1 Layer merging
Input: N predicted bounding boxes {bbi}Ni=1 and their

JSON files
Output: result group res
1: Ti ← pre-determined threshold of the intersection
2: Traverse JSON files to obtain the flatten layer list
{flj}Mj=1 and obtain the indices of the layers

3: Arrange {bbi}Ni=1 in ascending order
4: for all bbi in bb do
5: for all flj in fl do
6: if flj ∩ bbi > Ti then
7: Save the layer flj to the filtered list {fik}Kk=1

8: end if
9: end for

10: Compute the distance threshold Td

11: for all fik in fi do
12: if fik+1.index− fik.index < Td then
13: Save the layer to result group res
14: end if
15: end for
16: Remove the layers in res from flatten list fl and

update fl
17: end for
18: return res
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hierarchical layers to a layer list, because it is as-
sumed that the tree hierarchy from UI designers is
not reliable. We then index the layer list and arrange
the predicted bounding boxes in ascending order.

Given a predicted bounding box, we traverse the
layers from the flattened list “fl.” The area of lay-
ers can be calculated. We calculate the intersection
area of the given predicted bounding box and all lay-
ers. The layers that exceed the pre-determined area
threshold Ti are saved to the filtered list “fi.” We
index the layers by their absolute positions in the
list. We can calculate the distance between any two
layers by using the index. The mean distance of the
filtered layers is used as the distance threshold Td.
If the distance between adjacent layers is below the
threshold Td, we save the layer to the result group
“res.” Finally, the saved layers are removed from
the flattened layer list, and the flattened layer list
is updated. After processing all predicted bounding
boxes, we find all the fragmented layers belonging to
particular UI components.

3.4 Feature fusion

Most of the UI design drafts in our research
are from mobile online shopping platforms, which
have pretty rich semantic information, such as com-
ponents, icons, and backgrounds. In addition, a vari-
ety of UI components in e-commerce scenarios lead to
complex boundary information in constructed layers,
which makes it difficult to learn the bounding spatial
features. We therefore propose a fusion strategy to
use the spatial information as prior knowledge.

There are two strategies for using the spatial fea-
tures based on the segmentation map. As shown in
Fig. 6, we first generate the segmentation map which
contains only boundary information. In the spatial
fusion (SF) strategy, we stack the segmentation map
to the original UI image to produce the fusion image.
The fusion image contains the specific boundary of
the UI component. The fusion images are fed into
the CNN backbone to produce a feature map. In the
feature fusion (FF) strategy, inspired by Xu et al.
(2017), we use the high-dimensional features of spa-
tial information as prior knowledge. Specifically, two
high-dimensional feature maps are extracted from
the original image and the corresponding segmenta-
tion map respectively by the CNN backbone, and are
then concatenated as a fused feature map. For hard
examples, the fusion strategy can help the backbone

learn its boundary information more easily.

3.5 Dynamic data augmentation

Training an effective object detection model for
visual understanding requires massive high-quality
data. Traditional methods of data augmentation
for object detection are mainly image processing, in-
cluding random flipping, random cropping, and re-
sizing. These methods often cannot be dynamically
adjusted to the data. Static data augmentation does
not work well for small or large-aspect-ratio objects
in the UI design scenario. Furthermore, training the
MAD requires a large number of annotated UI de-
sign drafts. However, there is so far no such type
of open dataset, and collecting such UI design drafts
requires great effort and time.

In this study, we propose the dynamic data aug-
mentation method to generate training data using
existing Sketch files. Because the size of UI lay-
ers ranges widely, our data augmentation approach
focuses on small components and large-aspect-ratio
components and we present the dynamic data aug-
mentation algorithm. Given the screenshot and as-
sociated JSON file, we traverse the layer list and ran-
domly remove the layers that should not be merged
according to a predefined ratio. We then generate a
new JSON file and corresponding screenshot. Note
that the layers are randomly deleted at each training
epoch, so we have a very diverse training sample. As
shown in Fig. 7, the meaning of “dynamic” is to keep
the merging layers that are shown in the red solid-
line box, and the other irrelevant layers shown in the
red dashed box are randomly removed with a certain
probability.

4 Experiments

4.1 Experimental setting

4.1.1 Dataset

The dataset contains screenshots of artboards
and the corresponding JSON files with UI hierar-
chies. It is worth mentioning that large-scale art-
boards may exceed the GPU memory limit, so we
split each artboard into several images with a fixed
size based on the shorter side. Because the shorter
side of these artboards is not fixed, we resize the im-
ages such that the shorter side has a maximum of
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Fig. 6 Two strategies for feature fusion: (a) spatial fusion strategy; (b) feature fusion strategy
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Fig. 7 Examples of data augmentation (solid box: preserved region; dashed box: removed region). References
to color refer to the online version of this figure

800 pixels and the larger side has 1333 pixels. When
dividing the dataset into the training set and test set,
the images from the same artboard are divided into
the same set to avoid introducing bias. Duplicated
screenshots, which are produced from highly similar
design drafts, are removed from the dataset. A total
of 7399 screenshots are collected for experiments. To
make the model focus on the hard examples, we take

30% of the collected data to augment small objects,
which are defined as smaller than 32 × 32 pixels,
and take 30% of the original data to augment large-
aspect-ratio objects when the aspect ratio is >3. In
total, 5981 screenshots are used as the training set
and augmented screenshots are added to the train-
ing set. The number of augmented screenshots gen-
erated by dynamic data augmentation is 5448. The
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test is performed on the remaining 1418 collected
screenshots without data augmentation.

4.1.2 Implementation details

We use ResNet50 (He et al., 2016) pre-trained
on ImageNet as the backbone network. The feature
pyramid network (FPN) (Lin et al., 2017) is used to
extract a pyramid of features. In the first stage of the
adaptive region proposal network, the anchor-free
metrics for sample discrimination with the thresh-
olds of center-region σctr and ignore-region σign are
0.2 and 0.5 respectively. In the second stage, we
use the anchor-based metric with the IoU threshold
of 0.7. The multi-task loss is set with the stage-
wise weight α1 = α2 = 1 and the trade-off λ=10.
The NMS threshold is set to 0.7. In the cascade
box regression network, there are three stages with
IoU = 0.5, 0.6, 0.7. In the first stage, the input to the
regressor is the adaptive region proposal from the
cascade region proposal network. In the following
stages, re-sampling is implemented by simply using
the regressed outputs from the previous stage. We
follow the standard settings as in Vu et al. (2019).
We implement our method with the PyTorch and
MMDetection codebase (Chen K et al., 2019). We
train all models with a mini-batch of 8 for 12 epochs
using the stochastic gradient descent (SGD) opti-
mizer with a momentum update of 0.9 and a weight
decay of 0.0001. The learning rate is initialized to
0.01 and divided by 10 after 8 and 11 epochs. It takes
about 4 h for the models to converge on an NVIDIA
GeForce RTX 3090 GPU.

4.1.3 Evaluation metrics

We report performance with the metrics used
in the COCO detection evaluation criterion (Lin
et al., 2014) and provide mean average precision
(mAP) across various IoU thresholds (i.e., IoU

= {0.50 : 0.05 : 0.95, 0.50, 0.75}) and various scales
(small, medium, large). In the COCO evaluation,
the IoU threshold ranges from 0.50 to 0.95 with a
step size of 0.05 represented as AP. The APs at fixed
IoUs such as IoU=0.50 and IoU=0.75 are written as
AP50 and AP75, respectively.

4.2 Results

4.2.1 Detection performance comparison with
baselines

We first present the merging area detection per-
formance. Table 1 shows the performance compari-
son with the baselines. Note that our MAD uses the
proposed SF strategy and dynamic data augmenta-
tion. It can be seen that our MAD is much better
than the baselines. Specifically, the performance of
our MAD is improved by 26.61% and 18.15% in terms
of mAP compared to RetinaNet and Faster-RCNN,
respectively. It is effective to incorporate boundary
prior knowledge to condition the bounding features.
Our approach also outperforms competing methods
such as Cascade-RCNN and GA-Faster-RCNN by
12.75% and 15.58% respectively, in terms of mAP.
This shows that the feature alignment using adaptive
anchors and the progressive refinement of boundaries
can contribute to a performance boost. Compared
to other methods, MAD enhances feature represen-
tation by fusing prior knowledge of layers’ boundary
information. This also implies that MAD is espe-
cially good at detecting UI layout.

4.2.2 Comparison of two fusion strategies

We conduct experiments to evaluate the effec-
tiveness of the two fusion strategies separately. Ta-
ble 2 shows that the SF strategy that fuses layers’
boundary information into the original UI image is
a better choice. A reasonable explanation is that

Table 1 Performance comparison with baselines

Method AP AP50 AP75 APS APM APL

RetinaNet 0.545 0.708 0.602 0.523 0.634 0.395
Faster-RCNN 0.584 0.726 0.647 0.588 0.627 0.430

GA-Faster-RCNN 0.597 0.739 0.654 0.605 0.637 0.429
Cascade-RCNN 0.612 0.734 0.665 0.612 0.657 0.456

CRPN-Faster-RCNN 0.638 0.766 0.696 0.638 0.687 0.487
MAD 0.690 0.801 0.753 0.677 0.752 0.536

The best results are in bold. The subscripts “50” and “75” represent that the IoU thresholds are 0.50 and 0.75, respectively.
The subscripts “S,” “M,” and “L” represent area≤ 32 × 32, 32 × 32 < area ≤ 96 × 96, and area> 96 × 96, respectively
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Table 2 Comparison of two fusion strategies

Method AP AP50 AP75 APS APM APL

RetinaNet+FF 0.556 0.745 0.633 0.553 0.636 0.272
RetinaNet+SF 0.602 0.754 0.679 0.580 0.682 0.435

Faster-RCNN+FF 0.495 0.690 0.583 0.505 0.563 0.170
Faster-RCNN+SF 0.622 0.757 0.697 0.614 0.683 0.442

MAD+FF 0.607 0.763 0.680 0.611 0.659 0.378
MAD+SF 0.674 0.797 0.741 0.661 0.736 0.524

The better results are in bold. The subscripts “50” and “75” represent that the IoU thresholds are 0.50 and 0.75, respectively.
The subscripts “S,” “M,” and “L” represent area≤ 32 × 32, 32 × 32 < area ≤ 96 × 96, and area> 96 × 96, respectively. FF:
feature fusion; SF: spatial fusion

the semantic information in the segmentation map is
poor, so it is difficult to enrich the features extracted
from UI images. The fused features may even cor-
rupt the original UI image feature representation,
degrading model performance. The SF strategy en-
riches the original image with spatial features from
layer boundaries at the pixel level, which appears
to be more efficient for the backbone to extract the
semantic features. The results show that the SF
strategy on all three models improves mAP by at
least 8.27% over the FF strategy.

4.2.3 Analysis of failure cases

Our MAD does not perform well for complex
background components and some complicated UI
component shapes. Fig. 8 shows the typical examples
that make the detection of merging layers very chal-
lenging. For UI components with complex shapes,
MAD cannot accurately determine the component’s
boundaries. For example, the predicted bounding
box and the ground truth have a very significant
gap, such as the left side of Fig. 8. Therefore, the
merging algorithm cannot merge all fragmented lay-
ers into the correct UI component. Another chal-
lenge is that the model has difficulty in learning
salient visual features in complex design scenarios.
For example, if the designer designs a background UI
component like the right side of Fig. 8, MAD cannot
accurately determine the boundaries that belong to
the background.

4.2.4 Layer merging performance

To evaluate the layer merging result, we define a
metric called mean layer IoU, which is similar to IoU.
It is a score from 0 to 1 that specifies the intersection
of a prediction layer and the ground-truth layer in the
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Fig. 8 Failure cases (ground truth is shown in
red boxes, while the predictions are shown in green
boxes). References to color refer to the online version
of this figure

UI component. For example, if there are three layers
in a predicted group and four layers in ground truth,
then the layer IoU is 0.75. We average the sum of the
IoU of all layer groups, and perform operations on all
labeled data to find the layers that should be merged.
Our model achieves 87.70% in terms of mean layer
IoU. This implies that the layer merging algorithm
can achieve decent accuracy.

4.3 Ablation study

4.3.1 Data augmentation

We investigate the contribution of the proposed
data augmentation approach. “MAD+DataAug” de-
notes the adoption of the data augmentation ap-
proach in MAD. “MAD+SF+DataAug” denotes the
adoption of both the data augmentation approach
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and the SF fusion strategy in MAD. From Table 3
we can observe that “MAD+SF+DataAug” improves
mAP by 1.6% from “MAD+SF.” This indicates the
effectiveness of data augmentation for merging area
detection. The training set with the augmented data
has more diverse samples for small and large-aspect-
ratio objects, which increases the scalability of the
model.

4.3.2 Spatial fusion

We conduct experiments with or without the
fusion strategy. Note that we use the SF strategy ac-
cording to the previous experimental results. Table 3
indicates that after encoding the boundary informa-
tion, MAD has 2.3% mAP improvement. The ob-
vious gain brought by the SF strategy suggests the
necessity of the bounding spatial prior knowledge
which enriches feature representation. In addition,
applying the fusion strategy to Faster-RCNN and
RetinaNet yields 5.7% and 3.8% mAP improvement,
respectively. This also demonstrates that the prior
knowledge of boundary information can boost the
performance of UI component detection models.

Fig. 9 presents the advantages of SF with ex-
amples. As shown on the right side of Fig. 9, the
SF strategy adds a clear boundary to distinguish dif-
ferent UI component areas. Thus, the model can
visually identify the region as a combination of mul-
tiple layers more easily, and increase the prediction
performance of layer merging. Furthermore, in a
real design scenario, the designer may have already
merged some layers like the left side of Fig. 9. There-
fore, there is no need to detect the digital icons, but
there is no information here to prompt the model.
This could cause the model to wrongly recognize the
UI component region. The results show that MAD
with the SF strategy detects the UI component suc-
cessfully, because the model can learn visual bound-
ary features to avoid detecting UI components that
have been merged.

5 User study and application

The goal of this work is to automatically merge
fragmented layers in UI design drafts to reduce the
time developers spend on understanding and mod-
ifying code, and improve development efficiency.
The extensive experiments above demonstrate that
our model outperforms the baselines with decent
advance. However, the satisfaction of the gener-
ated code might be subjective depending on differ-
ent users or developers. In this section, we build
a complete pipeline for merging fragmented layers
called UILM. Specifically, a screenshot with view hi-
erarchy is fed into a parsing pipeline to produce a
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Fig. 9 Examples of spatial fusion (ground truth is
shown in red boxes, and the predictions are shown in
green boxes). References to color refer to the online
version of this figure

Table 3 Ablation studies

Method AP AP50 AP75 APS APM APL

MAD 0.651 0.778 0.705 0.658 0.688 0.512
MAD+SF 0.674 0.797 0.741 0.661 0.736 0.524

MAD+DataAug 0.659 0.775 0.706 0.666 0.704 0.519
MAD+SF+DataAug 0.690 0.801 0.753 0.677 0.752 0.536

The best results are in bold. The subscripts “50” and “75” represent that the IoU thresholds are 0.50 and 0.75, respectively.
The subscripts “S,” “M,” and “L” represent area≤ 32 × 32, 32 × 32 < area ≤ 96 × 96, and area> 96 × 96, respectively
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segmentation map. Then the screenshot and corre-
sponding segmentation map are fused and fed into
our MAD to predict the bounding boxes as detected
merging areas. Our layer merging algorithm takes
the merging areas and searches for the associated
layers to be merged. To better evaluate the useful-
ness of UILM, we conduct a user study to investigate
feedback from developers. We also apply UILM in
Taobao’s front-end development process.

5.1 Evaluation metrics

There are no existing evaluation metrics for code
generation from design drafts in the literature. In-
spired by the GUI design evaluation (Zhao et al.,
2021), we propose two novel objective metrics for
participants to estimate the quality of code gen-
eration by considering the characteristics of front-
end code implementation: code availability and code
modification time. Also, to confirm if UILM im-
proves code readability and maintainability, we pro-
pose two subjective metrics by asking participants
to rate their experience. The four metrics are quan-
tified by scores ranging from one to five. Code avail-
ability evaluates how much generated code is avail-
able for production. We use git service (https://git-
scm.com/) to record the lines of code changes. The
calculation approach is as follows:

availability = 1− number of lines of code changes

total number of lines of code
.

(3)
For data statistics, the metric score is defined as

shown in Table 4. A score of one to five corresponds
to code availability between 0 and 1.0. Code mod-
ification time evaluates the time required to adjust
the code to actual production standards. The par-
ticipants record the time of modifying the generated
code. We use 2 min as an interval. A modifica-
tion time of ≥10 min scores one point, and within
4 min scores five points. The scores of readability
and maintainability are given by participants from
one to five subjectively, representing the quality of
code from low to high.

5.2 Procedures

In this study, we define three categories of com-
mon UI components that contain fragmented layers,
which are icon, atmosphere UI, and background UI.
We fetch the corresponding components from design

Table 4 Evaluation metrics for code generation

Score Code availability Code modification time (min)

1 0 ≤ a < 0.75 t ≥ 10

2 0.75 ≤ a < 0.80 8 ≤ t < 10

3 0.80 ≤ a < 0.85 6 ≤ t < 8

4 0.85 ≤ a < 0.90 4 ≤ t < 6

5 0.90 ≤ a ≤ 1.00 t < 4

drafts and then generate the code using Imgcook.
For each category, we have 10 samples. Note that we
do not remove the components that are overlapped
on the background UI to ensure generalization.

For code evaluation, we recruit frond-end engi-
neers who have more than three years programming
experience and at least two years front-end devel-
opment experience using Vue (https://vuejs.org/),
which is a progressive JavaScript framework. They
are introduced to a detailed explanation of the code
evaluation metrics. Then they are provided with
generated code. We calculate scores for modification
time and the number of code changes, and collect
their ratings of code readability and maintainabil-
ity. Note that they are not aware of which code is
merged by our method, and all of them evaluate the
generated code without any discussion. After the
experiment, we ask the participants to leave some
feedback about our UILM.

5.3 Results

As shown in Table 5, the code generated af-
ter merging the fragmented layers using our UILM
outperforms the code without merging in average
code availability, modification time, readability, and
maintainability. In addition to the average score, our
method outperforms the method without merging,
on four metrics for all three UI component categories.
The results demonstrate the generalizability of our
UILM. We analyze the experimental results in detail.
The merged icon and atmosphere UI significantly de-
crease the code modification time, because our UILM
is good at detecting icon and atmosphere UI. Also,
the code readability and maintainability of the back-
ground UI are significantly improved by 70.27% and
48.28%, respectively. Regarding the background UI,
UILM not only merges the fragmented layers of the
detected background, but also merges the overlap-
ping icons and atmosphere UI. Hence, the improve-
ment is obvious and significant. This information
proves that our method can help improve the quality
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of the generated code
To demonstrate the significance of UILM, we

carry out the Mann–Whitney U test (Fay and
Proschan, 2010), which is specifically designed for
small samples. p<0.05 is typically considered to be
statistically significant and p<0.01 is considered to
be highly statistically significant. The results show
that our UILM can contribute significantly to code
generation in all four metrics except code availabil-
ity in the background UI. In addition, the partici-
pants conclude that merging fragmented layers has
a positive effect on improving generated code qual-
ity. They think that generated code without merging
tends to have redundant containers, but most con-
tainers can be fixed after merging. One of the par-
ticipants emphasizes that UILM has the potential
to aid the automatic code generation process: “The
key requirement is fast iteration. The generated code
with a clean layout is very beneficial to maintain and
modify.”

5.4 Application

To understand the applicability of UILM from
an industrial perspective, we apply our method to
Taobao’s front-end development process. We first
invite Taobao’s front-end engineers working on auto-
mated code generation development to provide some
typical and challenging UI design drafts to be merged
in practical application scenarios. To evaluate these

representative samples, our model as a plugin in
a code generation tool automatically merges frag-
mented layers in UI design drafts. We visualize some
challenging detection results as shown in Fig. 10.
The green box represents the components detected
by MAD in the first column and the red box repre-
sents the layers to be merged in the second column.
The results show that the proposed method detects
all components successfully and merges all associ-
ated layers. It also demonstrates that our UILM can

Detected components Merged layers

    Nested
components

  Complex
background

  Various
    icons

Fig. 10 Examples of associative layer merging results
(the green box represents the detected components,
and the red box represents the layers to be merged).
References to color refer to the online version of this
figure

Table 5 Performance of human evaluation

Category Metric
Score

Non-merge Merge Increment (%)

Icon

Code availability 2.72 3.54∗∗ 30.15
Code modification time 2.80 3.78∗ 35.0
Readability 3.84 4.44∗ 15.63
Maintainability 2.98 4.06∗ 36.24

Atmosphere UI

Code availability 2.72 3.50∗ 28.68
Code modification time 2.62 3.68∗∗ 40.46
Readability 3.14 4.20∗ 33.76
Maintainability 2.82 3.82∗ 35.46

Background UI

Code availability 1.94 2.46 26.80
Code modification time 2.24 2.98∗ 33.04
Readability 2.22 3.78∗∗ 70.27
Maintainability 2.32 3.44∗ 48.28

Average

Code availability 2.46 3.17 28.86
Code modification time 2.55 3.48 36.47
Readability 3.07 4.14 34.85
Maintainability 2.71 3.77 39.11

∗∗p<0.01; ∗p<0.05
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process various UI components such as various icons
and nested components. We also display a document
object model (DOM) tree associated with generated
front-end code. Fig. 11 shows that without merging
fragmented layers, the “text-like” logo consists of 10
image containers in the generated DOM tree. Its
nested structure and the redundant containers re-
sult in the poor readability and maintainability of
generated code. Our UILM can merge these layers
into one group with a “#merge#” tag for recognition
by downstream code generation algorithms. When
recognizing the annotation, an automatic code gen-
eration tool, such as Imgcook, can merge all layers
into a group to produce a singe image container. Af-
ter applying our UILM, the DOM tree generated by
Imgcook is simplified a lot. The clean DOM tree
significantly improves the quality of generated code.

DOM tree without UILM

DOM tree with UILM

Merge

Fig. 11 An example of a generated DOM tree with
and without UILM. In the DOM tree without UILM,
the dashed boxes represent redundant containers. In
the DOM tree with UILM, the single image container
represents the “text-like” UI component (DOM: doc-
ument object model; UI: user interface; UILM: UI
layers merger)

6 Conclusions

In this paper we investigated a novel issue con-
cerning layer merging in an automatic design draft
to the UI view code process, which can decrease the
quality of generated code. To solve this issue, we
innovatively proposed UILM by detecting the areas
of UI components and merging the fragmented lay-
ers into UI components. By incorporating bound-
ary prior knowledge, MAD can achieve more than
5.6% boost in detection mAP compared with the best
baseline. We also proposed a dynamic data augmen-
tation approach to boost the performance of MAD.

As the first work of merging fragmented layers in UI
design drafts, we constructed a large well-annotated
UI dataset to train our model and evaluated the ef-
fectiveness of our method. Furthermore, UILM was
proven to be effective in practice by building a test
pipeline.
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