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Abstract: This paper describes a route planner that enables an autonomous underwater vehicle to selectively
complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic. The
problem is formulated as a variant of the orienteering problem. Based on the genetic algorithm (GA), we propose
the greedy strategy based GA (GGA) which includes a novel rebirth operator that maps infeasible individuals into
the feasible solution space during evolution to improve the efficiency of the optimization, and use a differential
evolution planner for providing the deterministic local path cost. The uncertainty of the local path cost comes from
unpredictable obstacles, measurement error, and trajectory tracking error. To improve the robustness of the planner
in an uncertain environment, a sampling strategy for path evaluation is designed, and the cost of a certain route
is obtained by multiple sampling from the probability density functions of local paths. Monte Carlo simulations
are used to verify the superiority and effectiveness of the planner. The promising simulation results show that the
proposed GGA outperforms its counterparts by 4.7%–24.6% in terms of total profit, and the sampling-based GGA
route planner (S-GGARP) improves the average profit by 5.5% compared to the GGA route planner (GGARP).

Key words: Autonomous underwater vehicle; Route planning; Genetic algorithm; Orienteering problem;
Stochastic path cost
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1 Introduction

Monitoring the environment in an all-round way
is often necessary in marine-related industries, such
as submarine pipelines, oil exploration, harbor in-
dustry, and aquaculture (Cheng et al., 2021). Au-
tonomous underwater vehicles (AUVs) that are ma-
neuverable and can be equipped with multiple sen-
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sors have attracted great attention from researchers.
AUV is a kind of underwater robot which is able
to reach areas that are inaccessible to human beings
and can finish complex tasks automatically. An AUV
can adjust its actions timely based on environmental
variations; hence, the route-planning strategy signif-
icantly affects the reliability and efficiency of the op-
eration. An AUV is expected to carry out as many
tasks as possible with limited battery energy (Han
et al., 2021). Due to the complexity of the ocean, a
comprehensive route-planning strategy is required to
address the route-planning problem when the path
cost is stochastic.

Many noteworthy works have been reported to
deal with the autonomous vehicle route-planning
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problem. The AUV route-planning problem has been
represented as a combination of the travel salesman
problem (TSP) and the knapsack problem (KP),
where the vehicle is required to autonomously max-
imize the efficiency, i.e., using the limited battery
capacity to obtain as much profit as possible (Mah-
moud Zadeh et al., 2018). The problem has also been
introduced as an orienteering problem (OP) (Chou
et al., 2021), and it has been discussed in many fields,
such as unmanned aerial vehicle (UAV) mission plan-
ning (Royset and Reber, 2009; Dorling et al., 2017)
and tourist trip design problem (Vansteenwegen and
van Oudheusden, 2007; Schilde et al., 2009). How-
ever, the methods proposed in the above studies do
not perform well when facing the complex ocean en-
vironment. Given that OP is a non-deterministic
polynomial (NP) hard problem (Bagagiolo et al.,
2021), heuristic methods are supposed to be promis-
ing to deal with large and variant instances. A bi-
level task planning strategy has been proposed to
use metaheuristics to address the issue of team OP
of autonomous surface vehicles (Sun et al., 2022). To
solve OP with heterogeneous task characteristics, a
two-phase heuristic approach has been proposed (Ji
et al., 2021). Besides, the evolutionary algorithm
has been combined with a greedy randomized adap-
tive search procedure to find the optimal route of OP
(Marinakis et al., 2015). Different from UAVs (Lan
et al., 2021), an AUV often faces a highly random
ocean environment. Dealing with the randomness of
the local path cost in the AUV route-planning prob-
lem is full of challenges, and swarm intelligence based
evolutionary algorithms are powerful for solving this
problem. Despite the excellent performance of exist-
ing evolutionary algorithms (Mahmoud Zadeh et al.,
2018; Abbasi et al., 2020; Sun et al., 2022), the indi-
viduals in these methods are often of low efficiency
due to the strict constraint of the total cost. The op-
timization is often seriously hindered because there
is usually no clear boundary between the feasible and
infeasible domains in the space of definition.

Fruitful achievements based on various theo-
ries exist in AUV path planning. Traditional al-
gorithms, such as the Dijkstra algorithm (Kirsanov
et al., 2013), A* algorithm (Duchoň et al., 2014),
the rapidly exploring random tree algorithm (RRT)
(Xue et al., 2019), and the fast marching (FM) algo-
rithm (Yu and Wang, 2014), are all effective in han-
dling the AUV path-planning problem. To improve

the universality and efficiency, heuristic algorithms,
such as the particle swarm optimization (PSO) algo-
rithm (Zhuang et al., 2016), the ant colony algorithm
(ACA) (Yan, 2021), and the differential evolution
(DE) algorithm (Zhang JX et al., 2022), have been
introduced and testified to be reliable. However, the
uncertainty of the local path cost, which comes from
the inconsistency between the plan and the actual
operation, is often not considered. The replanning
strategy is effective in dealing with the cost fluctua-
tion in path and route planning (Zeng et al., 2015;
Mahmoud Zadeh et al., 2019), but it is only a re-
medial measure. Ocean model based prediction has
been introduced to enhance the performance of plan-
ning (Zeng et al., 2020), but it is rarely useful when
the problem is small-scale in space and time. To set-
tle the problem with stochastic path cost, a recourse
model which describes the constraint as a soft one is
designed, where a penalty is proportional to timeout
(Teng et al., 2004). Regrettably, this method may
bring risks to the AUV. Linearization has also been
introduced to model the total profit based on the
two-stage recourse model (Evers et al., 2014), but it
is unsatisfactory when dealing with large instances
because of the high computational cost. Inspired by
these works, in this paper we propose a sampling
strategy to settle the existing challenges.

To improve the reliability and efficiency of route
planning when the task set is large and the local
path cost is stochastic, an improved genetic algo-
rithm (GA) based route planner equipped with a
sampling-based route-cost estimator is designed in
this paper. The GA is modified with the greedy
strategy to be more suitable for solving the AUV
route-planning problem compared with traditional
methods. The DE local path planner is used to
draw out the deterministic path cost, and the total
deterministic route cost is replaced by the average
sampled multiple times from the local paths’ prob-
ability density functions (PDFs). The structure of
the proposed route planner is illustrated in Fig. 1.
The contributions of this study can be summarized
as follows:

1. An exclusive GA with efficient evolution-
ary operators is devised to settle the AUV route-
planning problem. To address the individual fea-
sibility problem in heuristic methods neglected by
reported works (Mahmoud Zadeh et al., 2015, 2018),
a novel greedy strategy based rebirth operator is
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proposed. It can effectively solve the problem that
individuals in the infeasible domain contribute lit-
tle under the total time constraint, thereby tremen-
dously improving the efficiency of the optimization.

2. Most existing works regarding AUV route
planning consider planning with deterministic local
path cost (Mahmoud Zadeh et al., 2019). Taking
the ocean complexity into consideration, we model
the stochastic local path cost as the superposition of
normal and Poisson distributions, based on the fact
that the randomness of the path cost comes mainly
from the path cost estimation error and the maneu-
vers caused by dynamic obstacles.

3. The route cost is obtained by sampling from
the PDFs of the local paths. The sampling-based
route-cost estimator is integrated into the route plan-
ner to evaluate the fitness of each feasible route by
sampling local paths in the optimization.

DE-based local path planner

Selection, crossover, and
mutation operations

Sampling and evaluation

Rebirth operation

Optimal route

Deterministic
local path cost

Task and deterministic
environment information

Limitations

Stochastic
environment model

Feasible routes

Iteration

Fig. 1 Structure of the introduced route planner

2 Problem formulation

An AUV is expected to perform as many tasks
as possible with limited energy. The tasks to be
performed include water quality measurement, un-
derwater photography, terrain detection, data load-
ing and unloading with sensor nodes, etc. Each of
the tasks can be reckoned as a task spot with a cer-
tain profit according to its importance. The mission
of the planner is to find a feasible route that max-
imizes the total profit of one AUV execution under
the circumstance that the battery capability is lim-
ited and the cost of each sub-path is stochastic. A
route refers to the sequence of a series of tasks to be
completed, while a path is the physical path to be

followed when an AUV operates between two task
spots. A typical scenario is shown in Fig. 2, where
a feasible route is marked. In this section, the AUV
route-planning problem with stochastic path cost is
formulated mathematically.

Destination
AUV

Route

Local path
Tasks

Dynamic 
obstacle

Terrene

Island

Ocean

Fig. 2 A sample of an autonomous underwater vehi-
cle (AUV) following the planned path in the mission
region

2.1 AUV global route-planning problem

Assume that N is the task set. An AUV departs
from Ns (launch position) and finally arrives at Nd

(destination) where the AUV is supposed to be re-
covered by the ship. For convenience, we define the
set of all the spots as follows:

N ′ = N ∪ {Ns, Nd}. (1)

The profit p, which represents the degree of priority
of the task is endowed to each of the tasks in N .
Define (i, j) as the arc connecting Ni ∈ N ′ and Nj ∈
N ′, and tij is the deterministic cost from task Ni

to task Nj . Assume that all the arcs (i, j) ∈ A,
where A is the set of arcs connecting spots in N ′, are
accessible. Thus, we can formulate the AUV global
route-planning problem on the complete graph G =

{N ′, A}.
Let sij ∈ {1, 0} be the binary selection variable.

If arc (i, j) is chosen to be part of the route, sij = 1;
otherwise, sij = 0. Thus, the total profit of one
optional route is given by

J =
∑

Ni∈N∪{Ns}, Nj∈N

sijpj , (2)

where pj is the profit of task Nj . The starting
and destination spots must be included in the route.
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Thus, it follows that
∑

Nj∈N

ssj =
∑

Ni∈N

sid = 1. (3)

Each task can be carried out only once; i.e., for Nk ∈
N , there exists

∑

Ni∈N∪{Ns}
sik =

∑

Nj∈N∪{Nd}
skj ≤ 1. (4)

The duration of travel of the AUV is usually limited
by the battery capacity. For simplicity, we assume
that the thrust of the power is constant, and thus
the limitation of the energy is equivalent to that of
the time. A route should satisfy

∑

(i,j)∈A

sijtij ≤ Tmax, (5)

where tij is the local cost of path Pi,j , while Tmax is
the time of battery duration. In this study, the goal
of the optimization is to maximize Eq. (2) subject to
conditions (3)–(5).

2.2 Local path with stochastic cost

The total cost of route R = [Ns, . . . , Ni, Nj ,
. . . , Nd] is the sum of all the local path costs. The
local cost tij is defined as the sum of the traveling
time from Ni to Nj and the task execution time tj
as follows:

tij =
dij
vG

+ tj , (6)

where vG is the AUV’s ground-referenced speed, dij
is the length of the most time-saving path between
Ni and Nj, and tj is the time going to be spent in
carrying out task Nj . The beeline path is the short-
est way, but it is often not considered because the
AUV needs to avoid collision with any obstacles and
make full use of the ocean current. The most energy-
saving path is given by the path planner embedded
in the planning system.

Eq. (6) gives the deterministic form of the lo-
cal path cost. However, the AUV’s future motion is
often uncertain, which results in uncertainty of the
time cost. The uncertainty comes from the measure-
ment error, trajectory tracking error, and unplanned
maneuvers performed to avoid collision with unpre-
dictable obstacles.

2.2.1 Measurement and trajectory tracking errors

The working area is covered by the ocean cur-
rent field which is often complex and subject to

changes. The AUV uses on-board sensors to mea-
sure its speed, location, and other information in
real time, and then controls the actuator to track
the planned trajectory. The measurement and tra-
jectory tracking errors are hard to estimate or elim-
inate under limitations of the battery, sensors, and
computing resources. Consequently, it is rational
to assume that the impact of the measurement and
tracking errors is statistically uniform; the additional
time can be described as follows:

Δteij ∼ N (0, σ2), (7)

where σ ∝ tij indicates that the longer the path Pi,j

is, the more the additional time Δteij may be.

2.2.2 Unpredictable obstacles

The on-board collision avoidance system pro-
tects the AUV from collisions. However, the detec-
tion range of the obstacle avoidance sonar is usually
tens to hundreds of meters, and this is not always
enough to cover the entire mission area. Besides,
the positions of some moving obstacles are hard to
ascertain in advance. These facts lead to the un-
certainty of the motion: unplanned maneuvers have
to be performed to avoid collisions. We assume that
the AUV adopts the consistent maneuvering strategy
during the movement, and each maneuver will intro-
duce the same additional traveling time Δtm. Thus,
the additional traveling time of the travel from Ni to
Nj caused by unplanned maneuvers is given by

Δtmij = nijΔtm, (8)

where nij ∼ π(λ) is the number of maneuvers per-
formed to avoid collisions, which follows a Poisson
distribution, and λ ∝ (tij +Δteij) indicates that the
longer the vehicle travels on its way, the more likely
it will encounter obstacles.

Thus, the AUV’s running time of each local path
in one route is described as follows:

t = tij +Δteij +Δtmij . (9)

The cumulative distribution function (CDF) of
the stochastic running time t can be written as
follows:

F (t) =
∞∑

n=0

P (nij = n)P
(
Δteij < t− nΔtm

)

=

∞∑

n=0

[
e−λλn

n!
Fe(t− nΔtm)

]
,

(10)
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where Fe(·) is the CDF of Δteij . It then follows that
the PDF of the running time satisfies

f(t) =
dF (t)

dt

=

∞∑

n=0

[
e−λλn

n!
fe(t− nΔtm)

]

=
e−λ

√
2πσ

∞∑

n=0

[
λn

n!
exp

(−(t− nΔtij − tij)
2

2σ2

)]
,

(11)
where fe(·) is the PDF of the normal distribution.
Consequently, the mathematical expectation of the
stochastic running time is

E(t) =

∫ +∞

−∞
t
e−λ

√
2πσ

∞∑

n=0

[
λn

n!
e

−(t−nΔtij−tij)
2

2σ2

]
dt

=
∞∑

n=0

e−λλn

n!

∫ +∞

−∞

[
t√
2πσ

e
−(t−nΔtij−tij)

2

2σ2

]
dt

=

∞∑

n=0

e−λλn

n!

[∫ +∞

−∞

t√
2πσ

e
−(t−tij )2

2σ2 dt

+

∫ +∞

−∞

nΔtij√
2πσ

e
−(t−tij−nΔtij)

2

2σ2 dt

]

=

∞∑

n=0

e−λλn

n!
(tij + nΔtij)

=e−λ

[
tij

∞∑

n=0

λn

n!
+ λΔtij

∞∑

n=1

λn−1

(n− 1)!

]

=tij + λΔtij .
(12)

The above inference holds based on the scenario
defined by Eqs. (7)–(9). Note that the formulation of
the stochastic path cost is decoupled from the plan-
ner. In other words, the model described can be
replaced by others that coincide with specific envi-
ronments better.

3 Greedy strategy based genetic algo-
rithm (GGA): solver for the orienteer-
ing problem

The large-scale OP described by expres-
sions (2)–(5) is nonlinear due to the stochastic path
cost (Evers et al., 2014). The GA is a powerful
heuristic tool to settle such a problem. It uses chro-
mosomes to represent possible solutions and uses a
variety of evolutionary operators to iteratively find
the optimal solution of the objective function. Gen-
erally, these operators include selection, crossover,

and mutation. Based on the improved operators of
the GA, a rebirth operator is proposed and thus a
new route planning method is generated, namely the
greedy strategy based genetic algorithm (GGA).

3.1 Solution space and encoding

Every Ni ∈ N is possible to be visited in any
order during the AUV’s motion. If we put aside the
prohibition of task repetition, the solution space of
the optimization problem will be an l-dimensional
discrete space:

S = {0, 1, . . . , l}l, (13)

where l = |N | is the cardinal number of the task set.
The population space of GA is hence defined as

SK = {X|X = {X1, X2, . . . , XK},
Xi ∈ S (1 ≤ i ≤ K)} , (14)

where K is the population size and Xi is the indi-
vidual solution in population X. The optimization
goal is to maximize the total profit J and find the
corresponding task sequence X∗ ∈ S. Notice that
because of the restrictions defined by conditions (3)
and (4), not all the points in S are feasible to be
chosen as possible solutions.

In the chromosome of one solution, each task
is represented by its sequence number, which is an
integer, and the sequence numbers of the tasks are
arranged in order. Notice that the number of tasks
to be carried out is unknown before the departure,
so the optimization process should be carried out
simultaneously in the l-dimensional space and all of
its arbitrary-dimensional subspaces. Therefore, the
chromosome length is fixed to l. If the number of
planned tasks is fewer than l, the vacancies will be
filled with zeros. In Fig. 3, an example of one feasible
route in a certain task set and the corresponding
chromosome are presented.

N1 N4 N5 N6 N8 N9 0 0 0Ns Nd

N1

N2

N3

N4

N5

N6

N7

N8

N9

Ns

Nd

Path

Chromosome

Starting point
Destination
Task

Fig. 3 An example route and its corresponding
chromosome
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3.2 Selection, crossover, and mutation

3.2.1 Selection operator

The selection operator Ts : SK → S is a ran-
dom mapping, which selects one individual from the
population.

The total profit is used as the fitness to assess
each individual in the population, and the roulette
wheel strategy is adopted by the selection operator.
Specifically, the probability of each individual being
selected to be a parent is related to its fitness and
the population’s fitness, which satisfies the following
expression:

P (X◦
j = Xi) =

Jα(Xi)∑K
q=1 J

α(Xq)
, (15)

where J is the fitness function defined in Eq. (2), X◦
j

is one individual in the parent population X
◦, and

0 < α < ∞ (typically, α = 1). The whole X
◦ is

generated by repeating the selection operation.
Additionally, we adopt the elite retention policy

(Zhang H et al., 2020), which allows the most adapt-
able individuals in each generation being inherited
directly in the next generation. In each generation,
a certain proportion of the best-performing individu-
als will be reproduced to the next generation directly.

3.2.2 Crossover operator

Crossover is a fundamental aspect of evolution,
which enables individuals in the population to ex-
change information by exchanging chromosome seg-
ments. The crossover operator Tc : S2 → S2 is also
described as a random mapping.

On account of that a radical evolution strat-
egy may lead individuals into the infeasible space
frequently, the single-point crossover is therefore
adopted. Assume that the parents to be operated are
Xp1 and Xp2. They are divided into two segments
at the crossover point which is generated arbitrarily,
as follows:

{
Xp1 = [Xp1,1, Xp1,2] ,

Xp2 = [Xp2,1, Xp2,2] .
(16)

The offsprings Xo1 = [Xp1,1, Xp2,2] and Xo2 =

[Xp2,1, Xp1,2] are generated by exchanging chromo-
some segments. The optimization has to be executed
in subspaces with different dimensions; hence, the
two crossover points in Xp1 and Xp2 are not required

to be the same, which is different from the situation
in traditional methods. Because task repetition may
exist in Xo1 and Xo2, task deletion is contained in the
crossover operator to satisfy inequality (4). There-
after, zeros will be used to fill the vacancies if any
offspring’s length is shorter than l. The crossover
operator is intuitively illustrated in Fig. 4.

N9 N6 N3 N4 N5 N8 N1 0 0

N1 N7 N3 N4 N8 N6 N9 N5 N2

N9 N6 N9 N5 N2 0 0 0 0

N1 N7 N3 N4 N8 N6 N3 N4 N5 N8 N1

N5 0 0

Parent 1

Parent 2

Offspring 1

Offspring 2

Offspring 2 N1 N7 N3 N4 N8 N6

N9 N6 N5 N2 0 0 0 0 0Offspring 1

Fig. 4 An example of the crossover operation

3.2.3 Mutation operator

Mutation is a vital mechanism to ensure that the
GA converges to the optimal solution set in proba-
bility. The mutation operator Tm : S → S carried
out on a single individual is a random mapping.

Traditional mutation operators can hardly cope
with such a complex optimization problem. There-
fore, we design four optional suboperators based on
the existing methods. For X , the individual to be op-
erated on, these suboperators are defined as follows:

1. Replacement: Replace task Ni ∈ X by task
Nj /∈ X . Both Ni and Nj are selected with an equal
probability from all the candidates. This operator is
designed to perform a small-range optimization near
the previous solution.

2. Insertion: Select a new task Nj /∈ X and gen-
erate the insertion position i < l randomly; then,
insert Nj between xi and xi+1, where xi, xi+1 ∈ X

are two adjacent genes in X . Since gene xi corre-
sponds to a certain task, in what follows we use task
xi in X for simplicity. By this operation, a new task
will be added into the route without changing the
existing ones.

3. Swap: Switch the positions of tasks xi, xj ∈
X , whose indexes are selected randomly. This oper-
ation explores whether the fitness can be improved
by changing the order of two tasks.
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4. Inversion: The randomly selected task se-
quence [xi, xi+1, . . . , xj ] ∈ X is inverted to replace
itself. This operator adjusts the order of tasks more
efficiently.

These suboperators are illustrated in Fig. 5.
One of the suboperators is chosen randomly each
time the mutation is performed.

N1

N2

N3

N4

N6

N1 N2

N3

N4

N6

N5

N1

N2

N5

N4

N6

Replacement

N1

N2

N3

N5

0

N1 N2

N3

N5
N4

N1

N2

N4

N3

N5

Insertion

N1

N2

N3

N4

N5

N1 N2

N3

N4

N5

N1

N2

N4

N3

N5

Inversion

N1

N2

N4

N3

N5

N1 N2
N3

N4 N6

N5

N1

N2

N5

N3

N4

Swap

N6 N6

Fig. 5 Optional suboperators in the mutation oper-
ation (the dotted and solid lines represent the routes
before and after being operated on, respectively)

3.3 Rebirth operator with greedy strategy

Due to the limitation of the AUV’s durability,
some newly generated individuals do not satisfy in-
equality (5). To settle this problem, discarding the
infeasible individuals or giving up the final tasks (Ev-
ers et al., 2014) is a practical method. However,
these processes are nearly equal to discarding part
of the information acquired during the evolution. To
improve the efficiency of the optimization using in-
feasible individuals, a novel rebirth operator is de-
signed. The rebirth operation maps an individual
from the infeasible solution space to the feasible so-
lution space:

Tr : �SΩ → Ω, (17)

where Ω = {X |X ∈ S, TX ≤ Tmax} is the feasible so-
lution space and �SΩ is the complement space of Ω.

This operator aims at minimizing the profit loss
when some tasks have to be abandoned to satisfy the
total cost restriction. Therefore, the problem can be
formulated as follows:

min f(y1, y2, . . . , yl) =

l∑

i=1

piyi

s.t.

{ ∑l
i=1 ΔTiyi ≥ TX − Tmax,

yi ∈ {0, 1} (1 ≤ i ≤ l),

(18)

where X = [x1, x2, . . . , xn] is the individual to be
optimized, yi determines whether task xi will be
deleted, and ΔTi is the running time that can be
saved by deleting task xi. This problem can be re-
garded as a variant KP, which is NP-complete. Prob-
lem (18) has to be solved several times in each itera-
tion during the evolution, and hence a huge amount
of computation is required to find the global optimal
solution. The greedy algorithm is an effective tool to
find the local optimal solution of KP. The proposed
rebirth operator is inspired by the greedy strategy,
which makes full use of the domain knowledge. The
basic idea of the greedy strategy is to first get rid of
the tasks with low profits and high costs.

Following the crossover and mutation opera-
tions, the rebirth operation will be performed if
TX > Tmax. The cost effectiveness of xi is defined as
ρi, satisfying the following expression:

ρi = piΔT−1
i , i = 1, 2, . . . , l. (19)

Following the greedy strategy, the task to be deleted
is determined by

xd = argmin
xi∈X

ρi, (20)

and the new individualX ′ is formed by the remaining
tasks. To ensure that the route defined by X ′ can be
completed within the battery life, the operation will
be repeated until

k∑

j=1

ΔTj ≥ TX − Tmax, (21)

where k is the number of times that the deletion is
executed.

Based on the greedy strategy, the newly de-
signed rebirth operator can save those individuals
who were destined to be weeded out. As a result,
the average fitness of the population is improved,
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giving the evolution a boost. Meanwhile, because
the new information does not come from the existing
feasible individuals, the diversity of the population
is ensured, which allows the optimization to continue
without premature convergence.

The algorithm of the whole GGA is given in
Algorithm 1.

4 Global route planning with stochas-
tic local path cost

The stochastic path cost leads to a situation as
follows: the AUV may have to give up subsequent
tasks because it has already spent too much time in
completing the early tasks, and the remaining energy
is not enough to finish the plan completely. If the
stochastic feature of the path cost is not considered,
the optimization result may be less robust, which
causes a high probability of obtaining an unsatisfac-
tory result in practice.

Algorithm 1 Greedy strategy based genetic algo-
rithm (GGA) for route planning
1: Input the geographical map, ocean current map, and

information of task set N ′

2: Set the maximum number of iterations imax and the
proper population size K

3: Generate the initial population X0

4: for i = 0 to imax do
5: Xi+1 = ∅

6: Calculate the fitness of each X ∈ Xi

7: for j = 1 to K do
8: Select the parents Xp1 and Xp2 from Xi by

roulette, and generate the crossover points ran-
domly. X′ = Tc(X) = [Xp1,1,Xp2,2] is the first
intermediate individual

9: if There exist repetitive nodes {Nr} then
10: Delete repetitive tasks in X′

11: end if
12: Select one mutation suboperator to operate on X′.

X′′ = Tm(X′) is noted as the second intermediate
individual

13: while Ti > Tmax do
14: Renew the list of ΔT

15: for k = 1 to |X| do
16: ρk = pkΔT−1

k

17: end for
18: Nd = argmin

xk∈X′′
ρk, X′′ = X′′ −Nd

19: end while
20: Xnew = X′′

21: Add Xnew into Xi+1

22: end for
23: end for
24: Xoptimal = argmax

X∈Ximax

J(X)

25: return Xoptimal

4.1 Local path planning

The optimal local path is the physical path Pi,j

from Ni to Nj . By following it, the AUV depart-
ing from Ni and targeting Nj can accomplish its
journey using the minimum time. The AUV’s water-
referenced velocity vA is constant if we assume that
its thrust power is constant (Zeng et al., 2020). The
AUV’s ground-referenced velocity vG is the resultant
of vA and the water velocity vC. The energy con-
sumption is consequently proportional to the time
consumption. Therefore, the optimal path from Ni

to Nj satisfies the following expression:

Pi,j = argmin
P

∫
v−1
G dP, (22)

under the constraints:

P ∩ T = ∅, (23)

and
MAUV = 0, (24)

where T is the forbidden region occupied by land and
other obstacles, and MAUV is the kinematic model
of the AUV.

The map of the operation water area and the
detectable ocean current and obstacles will be sent
to the local path planner before the departure. The
planner will output the optimal path, by following
which the AUV can avoid any collision and finally
arrive at Nj . Moreover, the ocean current can be
used effectively and thus the energy is saved.

The DE-based path planner is used to act as
the local path planner. DE is an improved version
of GA, and it is usually used for multi-dimensional
real-valued functions. A path in DE is defined by
a series of way points (WPs), and the chromosome
that represents this path is formed by the coor-
dinates that are arranged in order. For example,
P = [N1,WP1,WP2, N2] forms a unique path from
N1 to N2. However, such a path composed of a
couple of straight lines is difficult for the AUV to
follow, because sharp maneuvers are certainly tough
and uneconomical. The B-spline method is an effi-
cient tool for path smoothing (Cai and Yao, 2020);
therefore, it is adopted to smooth the local path to
satisfy the constraint of the AUV’s kinematic model.
This process is shown in Fig. 6.

The standard evolutionary operations (Mah-
moud Zadeh et al., 2019) are included in the plan-
ner. Chromosomes are composed of genes, which
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are the coordinates of the control points arranged in
sequence. During the optimization, the evaluator as-
sesses each path, and the result will be deemed as the
gist of the evolution. In the global route-planning
problem, the task set N contains l elements. The
possibility of navigation exists between any two of
the tasks in the absence of strong prior knowledge
(which is common). Consequently, the l × l triangle
path cost matrix C is formed and sent to the route
planner to form the basis of the subsequent global
optimization.

N1

N2

WP1

WP2

Fig. 6 A local path from N1 to N2

4.2 Sampling-based route evaluator

Taking the uncertainty of the path cost into con-
sideration, the AUV may have to give up some tasks
for the sake of its safety. Different from the planning,
when the AUV finds that it has spent too much time
on the initial tasks, which have already been com-
pleted, it has to discard the tasks at the end of the
route. Therefore, the total profit in one test is rep-
resented as follows:

Jr =

n∑

i=1

pxi − V =

n∑

i=1

pxi −
n∑

i=n−k+1

pxi , (25)

where V is the profit shortage caused by the deletion
of the k tasks at the end of the sequence.

Assume that X = [x1, x2, . . . , xn] is one poten-
tial solution of the instance. The total profit loss
brought about by the task deletion is naturally the
superposition of the deleted tasks’ profits. For sim-
plicity, we define the Euclidean distance ‖xi−xi+1‖
as the cost from xi to xi+1 (for simplicity, we use the
normal form to represent a point (e.g., xi) while the
bold form to represent the corresponding position for
calculation (e.g., xi)). The time saved by deleting
xj (2 < j < n) will be

ΔTj = −‖xj+1 − xj−1‖+
j∑

i=j−1

‖xi+1 − xi‖. (26)

If xj and xj−1 are deleted simultaneously, the time
saved will be

ΔT{j,j−1} = −‖xj+1 − xj−2‖+
j∑

i=j−2

‖xi+1 − xi‖.

(27)
Because

ΔTj +ΔTj−1 =‖xj − xj−1‖ − ‖xj+1 − xj−1‖

−‖xj−xj−2‖+
j∑

i=j−2

‖xi+1−xi‖,

(28)
it follows that ΔT{j,j−1} = ΔTj + ΔTj−1, which
indicates that the system does not satisfy the super-
position principle (i.e., the problem is nonlinear).

Consequently, in spite of the mathematical for-
mulation of the stochastic local path cost presented
in Eqs. (9)–(12), the nonlinearity of the problem
leads to the difficulty in describing the time con-
sumption of one route analytically in a large in-
stance, because a slight difference in one local path
cost may dramatically affect the whole route. There-
fore, the sampling-based method is adopted to esti-
mate the cost of possible routes.

The expectation of the time cost of a local path
is given by Eq. (12). However, the total time expec-
tation of a route is not the superposition of that of
its local paths. Estimation is implemented to replace
the deterministic local path cost with the average
value of the sample distribution (SD), which is ob-
tained from m Monte Carlo simulations. Specifically,
for route X , we have

T =
1

m

m∑

i=1

Ti, (29)

where Ti is given by Ti =
∑|X|+1

j=1 tj , and tj is the
time cost of the jth local path of X , which is sampled
from Eq. (11). Meanwhile, if Ti > Tmax, the tasks
at the end of X will be discarded one by one until
the time constraint is met. A larger m leads to a
more exact approximation and costs more comput-
ing resources. An example of the PDF and SD of
one local path where m = 100 is presented in Fig. 7.
The expectation of the path cost calculated accord-
ing to Eq. (12) is 830.98 s, while that obtained from
the Monte Carlo simulations is 833.33 s. The ap-
proximation is satisfactory, and our subsequent tests
will prove that the additional computational expense
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caused by the sampling is acceptable. It is hence fea-
sible to replace the PDF with SD in route planning.
Algorithm 2 illustrates this process in pseudo-codes.
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Fig. 7 Probability density function (PDF) and sample
distribution (SD) of the local path Pi,j

Algorithm 2 Evaluation of route X
1: Input route X and path cost matrix C

2: Input time limitation Tmax

3: Set the number of Monte Carlo simulations m

4: for i = 1 to m do
5: for j = 1 to |X|+ 1 do
6: Look up C to obtain the deterministic path cost tdj
7: Generate the stochastic path cost tsj based on SD
8: end for
9: Ti =

∑|X|+1
j=1 tsj

10: while Ti > Tmax do
11: X = X −Nend

12: Generate ts|X|+1
based on SD

13: Ti = Ti − tsend − tsend−1 + ts|X|+1
14: end while
15: end for
16: T = 1

m

∑m
i=1 Ti

17: return T

5 Simulation results and discussion

In this section, the GGA and the sampling-
based route evaluator are tested to clarify their su-
periority. The GGA containing the newly designed
operators is included in the planning system, where a
DE-based path planner is used as the local path plan-
ner. The site of the tests is set in the sea around Luxi
Island, Zhejiang Province, China, covering an area of
5 km×7 km. The kinematic parameters of the AUV
are set according to the AUV TH-B050R produced
by Tianhe Maritime, Xi’an, China. A test instance of
the route-planning problem with deterministic path

cost is solved using the GGA planner proposed in
Section 3. Furthermore, the sampling-based route
evaluator described in Section 4 is tested when the
stochastic path cost is taken into account. The sim-
ulations are implemented in MATLAB R2017b on
a computer with an Intel i7-8700 CPU and 16 GB
RAM.

5.1 Route planning with deterministic path
cost

The AUV works off the coast of Luxi Island.
Forty tasks whose importance is quantified as differ-
ent dimensionless integers are scattered in this area,
making up the task set. The AUV launched at the
starting spot is urged to complete some of these tasks
and arrive at the recovery station to be picked up. In
this subsection, the local path cost is considered as
deterministic, so the local paths and their costs are
determined by the DE-based path planner.

The AUV travels at a constant ground-
referenced speed of 4 kn (about 2.06 m/s), and the
battery duration is set as 10 800 s. The GGA is
tested and the result is compared with that from
three GAs that use traditional operators. The differ-
ences between the GGA and the others are described
as follows:

1. GA1: Traditionally, there is only one form of
mutation in the GA. For a chromosome to be op-
erated on, the mutation operator selects one of the
tasks and turns it into another. In other words, only
the replacement is adopted in the mutation process.
By contrast, the GGA adopts four kinds of mutation
suboperators as designed in Section 3.2.

2. GA2: Uniform crossover is deemed to be ad-
vanced in many pieces of research. We compare the
GA where the uniform crossover is used with our
algorithm, which applies the single-point crossover
strategy.

3. GA3: The greedy strategy based rebirth op-
erator is newly proposed in this research. Following
the traditional method, GA3 deletes those individu-
als that are in the infeasible space and generates new
ones to fill the gaps. We investigate the improvement
due to the rebirth operator.

As for the items not mentioned, the test
algorithm (GGA) is consistent with the others. In
other words, there is only one difference between the
test algorithm and each control algorithm. The pa-
rameters of these algorithms are listed in Table 1.
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The planning result of the GAA in one test is
presented in Fig. 8: the AUV departs from the start-
ing station (marked by the triangle), passes through
the task spots marked by circles (task profits are
marked next to these circles), and finally reaches
the destination (marked by the square). The route
given by the planner is represented by a set of dashed
lines, and the task spots to be visited are marked by
crosses. Note that the dashed lines indicate only
routes but not physical paths, which explains why
they intersect the terrestrial area painted in black.

To draw a convincing conclusion, we perform 60
Monte Carlo simulations and list the results in Ta-
ble 2, wherein the values of the residual time, total
profit, and CPU time are the average of the Monte
Carlo simulations. In Fig. 9, the variation of the
total profit of the algorithms during the evolution
is illustrated. Finally, the GGA earns the profit of
1051.2, which is 4.7% higher than that of the al-
gorithm with monotonous mutation operator (GA1)
(Ferreira et al., 2014) and 19.9% higher than that of
the algorithm with crossover strategy (GA2) (Mah-
moud Zadeh et al., 2018). The operations of inser-
tion, inversion, and swap are essentially equivalent to
repeatedly performing the replacement, which is the
most classical mutation operation. However, they
are more purposeful, which enhances the local opti-
mization capability of the algorithm. The uniform
crossover is efficient in many cases, but the sparsity
of the feasible solution of the route-planning prob-
lem undermines its validity severely. In other words,
too many individuals in the new generation will be
infeasible if uniform crossover is adopted. Further-

Table 1 Parameter setting of GAs

Parameter Value

Population size 100
Number of iterations 1000
Elite proportion 0.05
Proportion of new individuals 0.05
Mutation probability 0.05
Crossover probability 0.8

more, the GGA outperforms GA3, which does not
adopt the rebirth operator, by 24.6% in terms of to-
tal profit. The stability of the algorithms is shown
in Fig. 10. In addition to the more satisfactory me-
dian, the deviation of the GGA results is significantly
lower than that of its competitors.

5.2 Route planning with stochastic path cost

In this subsection, the performance of the
sampling-based route evaluator is discussed when the
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Fig. 9 Variation of the total profit in 1000 iterations
(average of 60 Monte Carlo simulations)

Table 2 Results of 60 Monte Carlo simulations

Algorithm Available time (s) Residual time (s) Total profit Minimum profit Maximum profit CPU time (s)

GGA 10 800 29.3 1051.2 984 1128 12.94
GA1 10 800 41.8 1004.0 809 1074 19.54
GA2 10 800 39.8 876.5 691 1062 9.84
GA3 10 800 71.8 843.4 692 996 7.60
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Fig. 10 Comparison of the stability of GGA, GA1,
GA2, and GA3 (the central mark, bottom and top
edge marks on each box indicate the 50th, 25th, and
75th percentiles, respectively, and the whiskers ex-
tend to the most extreme data points that do not
consider outliers, while outliers are noted individu-
ally by “+”)

local path cost is stochastic. The GGA route plan-
ner (GGARP) and the sampling-based GGARP (S-
GGARP) are tested. The AUV carries out the same
tasks as in the previous tests in the same ocean re-
gion, and its speed follows the previous setting. The
battery duration is set as 7200 s, and the stochas-
tic local path cost is set as described in Section 2.2.
We set σ = 0.2tij and λ = 2 × 10−3tij , where tij is
calculated by the DE-based local path planner be-
forehand. Besides, we assume that each unplanned
maneuver takes additional 60 s to avoid the collision,
i.e., Δtm = 60 s.

One typical planning result is presented in
Fig. 11. Apparently, most of the tasks in the paths
given by the two planners are the same, while the
differences lie in the order of these tasks and the se-
lection of certain tasks in the initial and final moving
stages. S-GGARP tends to arrange the tasks with
low profits at the end of the route. By doing so,
when the running time exceeds its plan so much that
the AUV has to give up the last tasks, the profit
shortage can be minimized. For example, S-GGARP
gives up the task with profit 9 at the beginning of
the voyage and includes the task with profit 19 at
the end of the route. GGARP does not take the
stochastic path cost into consideration; the expected
returns given by GGARP and S-GGARP are close.
It is obvious from Fig. 12 that GGARP maintains its
advance during the evolution. It suggests that the
expected profit of GGARP is steadily higher than
that of S-GGARP.
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Fig. 11 Routes given by GGARP (a) and S-GGARP
(b)

However, the actual profit that the AUV can
achieve by following the GGARP route is often lower
than expected. The reason is that S-GGARP is more
discreet, which means that it inclines to ensure that
the AUV can complete the planned tasks as much
as possible when unplanned events occur. By con-
trast, GGARP tries to use every second available to
improve the total profit and ignores the future un-
certainty. If the situation deviates from the plan,
the AUV may have to give up some tasks with high
profits. For example, the deterministic running time
values of the routes in Fig. 11 are 7140.5 s (GGARP)
and 6721.5 s (S-GGARP). If an obstacle appears and
it takes the AUV 60 s to avoid the collision, the value
of total time consumption will be 7200.5 s (GGARP)
and 6781.5 s (S-GGARP). The AUV following the
GGARP route has to give up the task with the profit
of 59 to avoid running out of energy on its way, while
the AUV following the S-GGARP route has to give
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up nothing. Finally, the obtained profit of the former
(746) is lower than that of the latter (815). To testify
the performance of the planners, each planning re-
sult of the 60Monte Carlo simulations is tested in 100

different environments, where the ocean current and
moving obstacles are generated randomly according
to the preset parameters. The results show that the
tested profit of the GGARP route is obviously lower
than the expected one, while that of the S-GGARP
route is almost consistent with the expected profit
(Fig. 13).

Despite the lower expected profit, S-GGARP
dramatically outperforms its counterpart in the
tests. Table 3 lists the performances of the two al-
gorithms after implementing 100 tests. It is difficult
for the AUV to complete the GGARP route because
the measurement and trajectory tracking errors and
unpredictable obstacles are not taken into account.
This leads to the abandonment of some high-profit
tasks when the vehicle takes too much time in the
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Fig. 12 Expected profits of GGARP and S-GGARP
(average of 100 Monte Carlo simulations)
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Fig. 13 Expected and tested profits of GGARP and
S-GGARP in Monte Carlo simulations

early moving stage. Consequently, the average profit
of the GGARP route in the tests is 6.4% lower than
the expected one. Meanwhile, S-GGARP takes the
localization and trajectory tracking uncertainty into
consideration. Therefore, the total profits in the
plan are coincident with those in the test, and S-
GGARP is 5.5% more profitable than GGARP. Be-
sides, the lower standard deviation reflects that S-
GGARP is more robust and that its result is more
predictable. S-GGARP spends more computing time
than GGARP, because the sampling method con-
sumes considerable computing resources. However,
limited additional computing is acceptable, because
the computing speed can be dramatically improved
using the evolutionary algorithm’s parallel version
with system-on-a-programmable-chip (SoPC) (Tsai
et al., 2011), and the route planning does not need
to be completed online in most cases.

Table 3 Performance of GGARP and S-GGARP
when the path cost is stochastic

Route Average profit Average profit Standard CPU
planner (expected) (tested) deviation time (s)

GGARP 798 747.15 64.92 10.72
S-GGARP 790 788.45 16.17 40.40

To further clarify the superiority of the proposed
planner, planners using the three GAs with unim-
proved operators (GA1RP, GA2RP, and GA3RP) are
also tested in the scenario in this subsection. The re-
sults of 40 Monte Carlo tests are listed in Table 4.
The results indicate that the proposed S-GGARP
significantly improves the optimization results of the
existing methods.

Table 4 Expected and tested profits of route planners
when the path cost is stochastic

Route planner Total profit (expected) Total profit (tested)

GA1RP 749 700.20
GA2RP 674 606.55
GA3RP 663 599.80
GGARP 789 746.85

S-GGARP 791.5 790.15

6 Conclusions

In this study, a GA-based AUV route planner
has been proposed using the novel rebirth opera-
tor and the sampling-based route evaluator. The
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developed planner leads the AUV to carry out a se-
ries of tasks selectively within the limited battery
life and maximize the total profit when the mea-
surement and trajectory tracking errors are not ne-
glectable and dynamic obstacles are unpredictable.
The deterministic local path cost between any two
tasks has been calculated by the DE-based planner
and then delivered to the global route planner. In
the proposed GGA, traditional evolutionary opera-
tors have been improved to enhance the algorithm’s
capability for the AUV route-planning problem. Be-
sides, the novel greedy strategy based rebirth opera-
tor has been integrated into the evolution process to
improve the performance of the algorithm when deal-
ing with large instances. Based on the deterministic
local path cost, the stochastic local path cost has
been considered as a random variable influenced by
the moving uncertainty and undiscovered dynamic
obstacles. The evaluation of each possible route has
been executed by sampling from the PDFs of the
local path costs, and the sampling-based route-cost
estimator has been embedded in the route planner.
The simulation results demonstrated that the plan-
ner performs effectively in the uncertain ocean envi-
ronment, and the superiority of the proposed planner
over traditional GA-based route planners has been
testified.

Future work will focus on extending the pro-
posed algorithms to multi-AUV collaborative opera-
tion, including task assignment, online coordination,
and low-communication information sharing.
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