
Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 715

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Asoftware defect predictionmethod with

metric compensation based on feature

selection and transfer learning∗

Jinfu CHEN1,2, Xiaoli WANG1,2, Saihua CAI†‡1,2, Jiaping XU1, Jingyi CHEN1, Haibo CHEN1

1School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
2Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace, Jiangsu University, Zhenjiang 212013, China

†E-mail: caisaih@ujs.edu.cn

Received Sept. 30, 2021; Revision accepted Feb. 5, 2022; Crosschecked Mar. 3, 2022; Published online Apr. 4, 2022

Abstract: Cross-project software defect prediction solves the problem of insufficient training data for traditional
defect prediction, and overcomes the challenge of applying models learned from multiple different source projects
to target project. At the same time, two new problems emerge: (1) too many irrelevant and redundant features in
the model training process will affect the training efficiency and thus decrease the prediction accuracy of the model;
(2) the distribution of metric values will vary greatly from project to project due to the development environment
and other factors, resulting in lower prediction accuracy when the model achieves cross-project prediction. In the
proposed method, the Pearson feature selection method is introduced to address data redundancy, and the metric
compensation based transfer learning technique is used to address the problem of large differences in data distribution
between the source project and target project. In this paper, we propose a software defect prediction method with
metric compensation based on feature selection and transfer learning. The experimental results show that the model
constructed with this method achieves better results on area under the receiver operating characteristic curve (AUC)
value and F1-measure metric.

Key words: Defect prediction; Feature selection; Transfer learning; Metric compensation
https://doi.org/10.1631/FITEE.2100468 CLC number: TP311.5

1 Introduction

With the rapid development of information
technology, software has been widely used in applica-
tions (Malhotra, 2015; Wahono, 2015). However, due
to coding errors and incorrect understanding of soft-
‡ Corresponding author
* Project supported by the National Natural Science Founda-
tion of China (Nos. 62172194 and U1836116), the National Key
R&D Program of China (No. 2020YFB1005500), the Leading-
edge Technology Program of Jiangsu Provincial Natural Science
Foundation, China (No. BK20202001), the China Postdoctoral
Science Foundation (No. 2021M691310), the Postdoctoral Sci-
ence Foundation of Jiangsu Province, China (No. 2021K636C),
and the Future Network Scientific Research Fund Project, China
(No. FNSRFP-2021-YB-50)

ORCID: Jinfu CHEN, https://orcid.org/0000-0002-3124-5452;
Saihua CAI, https://orcid.org/0000-0003-0743-1156
c© Zhejiang University Press 2022

ware requirements, problems often occur in software
(Chen X et al., 2018), and the defective software can
cause incalculable losses once deployed. Software de-
fect prediction is an important technique to ensure
software quality and safety (Hall et al., 2012), which
improves the quality of software products by iden-
tifying classes or modules with defects in advance
to effectively allocate testing resources (Tsuda et al.,
2019).

In the past two decades, many software defect
prediction methods have been proposed to predict
defects in a single project (called within-project de-
fect prediction, or WPDP) (Wu et al., 2017), which
trains the defect prediction model using a historical
labeled dataset from the same project. The high

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

716 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

similarity and high coupling between modules in the
same project allow the defect prediction model to
achieve a good prediction performance. However, it
is difficult to obtain enough historical data from the
same project to train the model in practical appli-
cations, and because of the lack of historical data,
the constructed model cannot achieve a high per-
formance (Wan et al., 2020). A simple solution to
this problem is to build a defect prediction model
for the target project using high-quality datasets
collected from other projects; this is called cross-
project defect prediction (CPDP) (Ryu et al., 2017;
Tabassum et al., 2020). CPDP is less accurate than
WPDP (Liu et al., 2019) due to the distribution of
metric values between the source and target project
datasets (Iqbal et al., 2020). This problem has al-
ready attracted wide attention from researchers. For
example, Watanabe et al. (2008) proposed a met-
ric compensation method to improve the similarity
between the source project and target project, but
this method focuses only on using the source project
to unilaterally adapt to the data distribution of the
target project and do not consider the effect of redun-
dant features on the efficiency of model training. In
contrast, we would like to achieve bidirectional adap-
tation of the data distribution between the source
project and target project. In addition, when the
dimensionality of the project’s features is too high,
the spatial and temporal efficiency of model train-
ing affects the prediction accuracy of the model. If
these two challenges can be solved, the defect pre-
diction performance can be greatly improved. Our
approach solves the bidirectional adaptation prob-
lem by combining metric compensation and trans-
fer learning, and solves the dimensionality problem
using the Pearson feature selection method. These
solutions are the main contributions of this paper.

Based on the metric compensation technique,
in this paper we propose a new method called pe-
UpMeCom, that is, metric compensation based on
transfer learning (Li et al., 2020b) and Pearson fea-
ture selection (Wang et al., 2010), to construct an
efficient model for CPDP. peUpMeCom consists of
two main components: feature selection (Saidi et al.,
2019) and bidirectional metric compensation based
on transfer learning (Rahman and Devanbu, 2013).
In the model training phase, redundant features that
are not related to the defect category are filtered
out according to the Pearson coefficients (Yu et al.,

2015; Shippey et al., 2019). The distribution differ-
ence of the features between the source project and
target project is then reduced using a combination
of transfer component analysis (TCA) and bidirec-
tional metric compensation (Madeyski and Jureczko,
2015; Chen JY et al., 2019). The main contributions
of this paper are as follows:

1. We propose a CPDP method (peUpMeCom)
that combines Pearson feature selection and bidirec-
tional metric compensation, which improves predic-
tion accuracy of the model.

2. We introduce the Pearson feature selection
method to filter redundant features that are unre-
lated to the defect category to improve the training
efficiency of the model.

3. We use a combination of TCA and bidirec-
tional metric compensation to reduce variability in
the feature distribution of the source project and tar-
get project, thus improving the similarity between
projects.

2 Related works

In recent years, many studies have been con-
ducted in the field of software defect prediction
(Chen JY et al., 2020). Due to limitations such as in-
sufficient historical data, CPDP is also emerging as a
popular research direction (Guo et al., 2018). CPDP
trains prediction models using enough training data
from existing source projects and then applies the
model to the target project to obtain prediction re-
sults. Existing research focuses mainly on the follow-
ing aspects of CPDP methods: reducing the differ-
ences in data distribution between the source project
and target project, removing features that are irrel-
evant and redundant for model construction, and
solving the class imbalance problem. These methods
have also shown strong feasibility in experimental
studies.

2.1 Reducing data distribution differences

The main study of CPDP was carried out by
Briand et al. (2002), in which a prediction model was
developed using linear regression. The localization
of defect-prone classes was accurately predicted and
such a model outperforms most irregular models in
terms of class size. However, the predicted failure
probabilities were not representative because of the
variation between different projects.

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 717

To increase the distribution similarity of the fea-
tures between the source project and target project,
Nam et al. (2013) proposed a combination of nor-
malization and TCA and then proposed the TCA+
method. This method first selects an optimal nor-
malization method according to the target data.
Then, TCA is applied to determine the mapping
of the training and target data to the homogeneous
metric space. The method can automatically select
the best data normalization method after analyzing
the characteristics of the source project and target
project with the assistance of a set of pre-learned
rules, so that the source project and target project
have similar feature distributions.

In addition, Watanabe et al. (2008) proposed
a metric compensation method. This method at-
tempts to effectively improve the similarity between
the source project and target project using the target
set to adjust the data distribution of the source set
(Li et al., 2020a). They analyzed the effect of CPDP
between a Java project and C++ project. The met-
ric compensation method was found to be effective in
improving the accuracy and recall of CPDP, with a
large increase in recall. Another improvement of the
method was proposed; Herbold et al. (2018)’s idea
was that it is better to let the training data adapt to
the data distribution of the target set than to let the
target set adapt to the data distribution of the source
set during training. However, these two methods ad-
just only the data distribution in one direction, which
lacks some flexibility. In addition, for projects with
a large volume of data, these approaches consume
too much time for model training, which reduces the
model’s prediction efficiency.

2.2 Deletion of redundant features

It has been shown that too many irrelevant and
redundant features in a dataset can lead to degra-
dation in the performance of the defect prediction
model. He et al. (2015) proposed a solution from
the viewpoint of feature selection that first analyzed
different datasets and selected different feature sub-
sets. Finally, the correlation between the features
in the subsets was further analyzed, redundant fea-
tures were removed, and minimized feature subsets
were constructed in each dataset.

Similarly, with the transformation of the above
idea, Amasaki et al. (2015) started with the target
project and tried to remove irrelevant feature in-

stances. Because the instances in the target projects
were not labeled, they used unsupervised learning
methods to identify these irrelevant feature instances
to improve the prediction accuracy of the model.

2.3 Resolving class imbalances

Class imbalance problems are common in soft-
ware defect datasets (Siers and Islam, 2015). There
are more classes without defects than classes with de-
fects, which results in low prediction accuracy of pre-
diction models for defective classes. The currently
available class imbalance methods (Peng et al., 2019)
can be briefly divided into two categories: (1) cost-
sensitive learning methods (McBride et al., 2019), a
type of method that achieves class balance by setting
different costs for different types of prediction errors;
(2) sampling methods, including the random under
sampling, random oversampling, and synthetic mi-
nority oversampling technique (SMOTE) methods
(Purnami and Trapsilasiwi, 2017). Fukushima et al.
(2014) and Kamei et al. (2016) reduced the num-
ber of majority class instances in the training set
using the random under sampling method, so the
number of majority class instances was consistent
with the number of minority class instances to bal-
ance the defective classes. However, this method
discards a large amount of defect-free data, which
may cause deviation in the model prediction results.
To solve this problem, Ryu et al. (2014, 2016) pro-
posed the value-cognitive boosting with support vec-
tor machine (VCB-SVM) method. The method first
calculates the similarity weight of each instance in
the source project based on the dataset of the target
project, and then constructs the defect prediction
model using a boosting method based on an SVM.

After a comprehensive and holistic analysis of
the advantages and disadvantages of the above pro-
posed methods, we propose our method, i.e., peUp-
MeCom. Compared with traditional methods men-
tioned above, our method achieves better results,
using metric compensation based on feature selec-
tion and transfer learning to resolve the differences
between the source project and target project.

3 The proposed method

In this section, we propose a metric compensa-
tion method called peUpMeCom. peUpMeCom con-
sists of two main phases: (1) Features are filtered

718 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

according to Pearson coefficients. Those features
with a strong correlation with the defect category
are selected, whereas redundant features with low
or no correlation are removed. (2) Upgrade metric
compensation (upMeCom) is used to reduce vari-
ance distribution of the source project and target
project. upMeCom is a bidirectional metric com-
pensation method based on transfer learning.

Fig. 1 shows the overall process of defect pre-
diction of the proposed peUpMeCom method. As
shown in Fig. 1, the first step in building the model is
to collect feature instances from the source project.
Because the datasets used in the experimental ap-
plication are abstract numerical representations of
projects, which include defect prediction metrics
such as complexity metrics, module size metrics, pro-
gram length, and the number of conditional state-
ments, the values of these collected initial metrics are
represented as initial feature instances in the study.

After the initial features of the source project
have been collected, all instances of the feature set
are traversed. The correlation coefficient is calcu-
lated between each feature and the defect category;
then, feature correlation analysis is performed and

Source project S Target project T

Initial
feature sets

Subset of
relevant
features

Subset of
final features

Source project S´ Target project T´

Feature correlation
analysis

Feature
redundancy

analysis

TCA+metric
compensation

Target project T*

Metric
compensation

Train Test

Prediction
result

Pearson feature
selection

Prediction
model

Source project S*

Mapping space

Source project S´ Target project T´

TCA mapping

Fig. 1 Overall process of the proposed method for
building a model

feature redundancy is determined based on the mag-
nitude of the correlation coefficient between the fea-
ture and the category. Too few features cannot fully
represent the defective features of a project, and too
many features can cause inefficiencies in model train-
ing. Before testing the test set, we select some data
from each dataset to verify the appropriate number
of features. Based on the Pearson correlation coeffi-
cient array, we record the area under the receiver op-
erating characteristic curve (AUC) of the model with
10, 12, 15, 18, and 20 features. The experimental re-
sults are shown in Table 1, where we can see that the
AUC for the test set peaks when the model includes
18 or more features. Therefore, the threshold value
for the number of features is set to 18; that is, af-
ter obtaining the array of correlation coefficients in
descending order, the features corresponding to the
top 18 coefficients are selected to form the feature
subset. Then, a bidirectional metric compensation
method based on the transfer learning technique is
applied to the projects. Initially, the project data is
mapped to a latent feature space using TCA. Then,
based on the low-dimensional features obtained from
the prior process, the metric compensation technique
is used to enhance the similarity between the source
and target data distributions.

Table 1 AUC values for different number of features

Source=>target
AUC

Number=10 12 15 18 20

EQ=>JDT 0.592 0.599 0.615 0.628 0.623
EQ=>LC 0.614 0.627 0.657 0.684 0.669

JDT=>PDE 0.620 0.622 0.635 0.644 0.645
JDT=>ML 0.565 0.581 0.626 0.638 0.629
PDE=>ML 0.564 0.571 0.598 0.604 0.605
EQ=>ML 0.552 0.561 0.571 0.573 0.571

CM1=>JM1 0.537 0.543 0.565 0.610 0.616
KC1=>JM1 0.505 0.518 0.538 0.577 0.572
KC2=>JM1 0.507 0.540 0.572 0.602 0.595
PC1=>JM1 0.517 0.533 0.548 0.572 0.566
CM1=>KC1 0.581 0.598 0.623 0.644 0.648
KC2=>KC1 0.555 0.596 0.625 0.658 0.641
PC1=>KC1 0.599 0.606 0.614 0.642 0.643
CM1=>KC2 0.509 0.524 0.567 0.655 0.655
CM1=>PC1 0.558 0.563 0.587 0.605 0.605
KC2=>PC1 0.548 0.551 0.582 0.649 0.644
Safe=>Zxing 0.532 0.539 0.546 0.578 0.571

Safe=>Apache 0.525 0.530 0.556 0.607 0.596
Apache=>Safe 0.647 0.676 0.735 0.825 0.823

Apache=>Zxing 0.517 0.539 0.553 0.587 0.587
Zxing=>Safe 0.617 0.617 0.697 0.705 0.701

Zxing=>Apache 0.525 0.545 0.576 0.637 0.622

Best results are in bold

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 719

The algorithmic flow of the peUpMeCom
method is shown in Algorithm 1, in which the fea-
ture selection phase is described at steps 1 and 2, the
data transformation phase is described from steps 3
to 12, and the prediction phase ends from steps 13
to 15. First, the correlation coefficient between each
feature and the defect category is calculated by Pear-
son correlation analysis, and then the final subset of
features for training is selected based on the coeffi-
cient array R. After that, TCA is used to select the
common characteristics of the source project and tar-
get project and map them to latent space ϕ. Then,
the instance data in the transformed source project is
traversed using a for loop. For each metric, a weight
is assigned to the original metric value using the met-
ric compensation method, so the compensated data
value becomes more similar to the learned data, thus
enhancing the resemblance between projects. The
process will be described in detail next.

Algorithm 1 peUpMeCom
Input: Labeled source project S

Output: Unlabeled target project T

1: Define a coefficient correlation array R = {r1, r2, ..., rm}
2: Define a feature subset F , F = seti if AUC(seti) is

maximum
3: Define S = [(sxi , yxi)]

n1
i=1 and T = [tqi]

n2
i=1. Find a

mapping space ϕ for S and T , such that the value of
Dist(ϕ (S) , ϕ (T)) is minimized

4: Define the mapped source dataset S′ = {s1, s2, ..., sm}
and the target dataset T ′ = {t1, t2, ..., tm}

5: loop
6: for j in metrics of S′ do
7: for i in samples of T ′ do

8: t′ji =
t
j
i×mean(sj)

mean(tj)

9: s′ji =
s
j
i×mean(tj)

mean(sj)

10: end for
11: end for
12: end loop
13: For final source project S∗ and target project T ∗, feed

S∗ into a decision tree classifier for model training
14: Applying the model to T ∗

15: return Prediction class label for T ∗

For selection of machine learning classifiers,
we use a decision tree classification model. Cur-
rently, there are several machine learning classifica-
tion methods, and different classification techniques
are applicable to different domains. The commonly
used classifiers include naive Bayes (Habibi et al.,
2018), SVM (Shuai et al., 2013), linear discriminant
analysis (Lv, 2019), and decision tree (Marian et al.,
2016). According to an experimental comparison of

the defect prediction performances of these four clas-
sifiers based on six datasets, the decision tree clas-
sifier outperforms the other three classifiers in most
cases, both in terms of PofB20 and F1-score metrics
(Yang et al., 2017). In light of experimental experi-
ence, we choose the decision tree as the classifier for
peUpMeCom in this study. In addition, the classifi-
cation criterion for the defect category is determined
by matching the features contained in the data to be
tested with the path of the feature nodes of the con-
structed decision tree. The information represented
by the leaf nodes in the matching path is the defect
category information of the data to be tested. For
entity data with a given unknown label, the predic-
tion information of the entity category is obtained
by traversing from the root node to the leaf nodes.

3.1 Pearson-based feature selection

Defect prediction datasets suffer commonly
from the problem of dimensional catastrophe; the
redundant and irrelevant features contained in the
dataset can lead to decreased performance, excessive
complexity, and extensive defect prediction model
training time. Because feature selection can effec-
tively alleviate this problem, it is necessary to select
features that have a significant impact on the model
before training it. There are two main types of fea-
ture selection methods: wrapper method and filter
method (Thejas et al., 2021). The wrapper method
treats the selection of subsets as a search and opti-
mization process. By constantly comparing the com-
bined effect of various feature subsets, the optimal
feature subset is finally selected, but this method is
prone to overfitting.

The filter method filters features based on
weight order. For the defect prediction domain
knowledge studied in this study, an initial indicator
system needs to be established for relevance screen-
ing before predicting the software module, and the
completed filtered indicator system is put into a ma-
chine learning classifier for training to produce re-
sults. The main relevance-based feature selection
methods are Pearson coefficient, Spearman coeffi-
cient, and Kendall coefficient, which were described
in detail in Grimm and Nesselroade (2018). Cor-
relation coefficients are generally used to determine
whether two variables are correlated and how closely
they are related to each other. The Spearman and
Kendall coefficients are generally appropriate for

720 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

variables of constant order. The Pearson coefficient
is generally used to analyze the degree of correla-
tion between characteristics and response variables.
The module defect category is a constant-ratio vari-
able that exhibits non-linear trend fluctuations, and
there is some correlation between software module
features and defect category predictions (i.e., there
is variation in the extent to which software module
features contribute, to defect category predictions).
Cai et al. (2020) used Pearson coefficient to mea-
sure the correlation between module measures and
module category linear correlation to filter out the
impact. Therefore, in this study, Pearson correla-
tion coefficients are used to filter the features; this
method selects features that are strongly correlated
with the defect class to form a subset of features for
training the model. The main process of Pearson
feature selection is shown in Fig. 2. A Pearson cor-
relation coefficient is a linear correlation coefficient,
and is used to reflect the degree of linear correlation
between two variables, with the correlation coeffi-
cient r ranging from −1 to 1. The larger the abso-
lute value of r, the stronger the correlation. Given
a project dataset S, the number of samples and the
feature dimensions are denoted by n and m, respec-
tively. The jth feature of the ith sample is denoted as
sji . The class label of this sample is represented as yi,
and the correlation coefficient of the ith feature with
the defect class is calculated using Eq. (1), which is

denoted by the correlation coefficient r:

r =

n∑

i=1

siyi − 1

n

n∑

i=1

si
n∑

i=1

yi
√

n∑

i=1

s2i −
1

n

(
n∑

i=1

si

)2
√

n∑

i=1

y2i −
1

n

(
n∑

i=1

yi

)2
,

(1)
where si represents the independent variable (e.g.,
a metric) and yi represents the dependent variable
(e.g., clean or buggy).

Through the calculation of the correlation coeffi-
cients of m features and defect categories, an array of
coefficients, denoted by R = {r1, r2, ..., rm}, is con-
stituted. Then, an ordered array of correlation coeffi-
cients is obtained, denoted by R′ = {ri′, rj ′, ..., rm′},
which is sorted by the values of elements in R from
the largest to the smallest. The subscripts of the
coefficients in R represent the subscripts of the fea-
tures in the dataset. Then, the model trained by m
feature subsets is experimented on the validation set,
and the impact of m features on the prediction per-
formance of the model is evaluated with the AUC,
where the feature with the largest AUC is selected
as the best feature subset for training the defect pre-
diction model.

3.2 Metric compensation based on transfer
learning

After obtaining the best subset of the features
through feature selection, we combine TCA and

Original data

Class-lable
learning

Pearson coefficient
calculation

Rank Selected features

Relevance
analysis

Related metrics

Single metric

Pearson feature selection

Fig. 2 Overall process of Pearson feature selection

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 721

bidirectional metric compensation techniques to fur-
ther reduce the data distribution difference between
the source project and target project. The over-
all process of metric compensation based on transfer
learning is shown in Fig. 3. First, we use TCA to
explore the potential common factors between the
source project and target project, and then project
them into the learned feature space to reduce the dis-
tribution differences of the data between the source
domain and target domain, while preserving the orig-
inal data structure. Assume that the data matrix of
the source project is S = [(sxi , yxi)]

n1

i=1, and that
the data matrix of the target project after feature
selection is T = [tqi]

n2

i=1, where n1 and n2 denote
the numbers of samples of the source project and
target project respectively, tqi denotes data instance
information in the target dataset, sxi is the sample
data information in the source project, and yxi de-
notes the defect information corresponding to this
sample. The purpose of TCA is to attempt to learn
a transformation ϕ that maps the original data from
the source domain and target domain into a space
where the differences between the domains are small
and the variance is large. Assuming that transforma-
tion ϕ : Pm → Pn maps the original m-dimensional
feature vector into an n-dimensional subspace, the
objective of TCA can be expressed as

argmin {Dist(ϕ(S), ϕ(T)) + λP (ϕ)}
s.t. constraints on ϕ(S) and ϕ(T),

(2)

where Dist(ϕ(S), ϕ(T)) is measured by the maxi-
mum mean difference (MMD), P (ϕ) is a regulariza-
tion term to prevent overfitting, and λ ≥ 0 is a trade-

off parameter to control the effects of regularization.
MMD is calculated as follows:

MMD =

∥
∥
∥
∥
∥

1

n1

n1∑

i=1

ϕ(sxi)−
1

n2

n2∑

i=1

ϕ(tqi)

∥
∥
∥
∥
∥

2

. (3)

Transformation expressions can be expressed as
ϕ(x) = xΩ, where Ω ∈ Pm×n is a matrix that maps
m-dimensional feature vectors to n-dimensional fea-
ture vectors. After learning the transformation us-
ing TCA, the transformed data can be represented
by ϕ(S) = SΩ and ϕ(T) = TΩ.

In the space mapped by TCA, the source project
data is represented as S′ = {s1, s2, ..., sm}, and the
target project is represented as T ′ = {t1, t2, ..., tn}.
Subsequently, we apply a bidirectional metric com-
pensation technique to the processed source and tar-
get project data. Denoting the jth metric in the
ith sample data of the source project as sji , we as-
sign a weight to each metric in the source project to
make the transformed metric more consistent with
the distribution of the target data. The jth metric
mentioned here is not sorted according to a certain
method, but refers to the default sort order of the
metric elements in the downloaded project dataset.
Similarly, we adopt the idea of weighting for the tar-
get project metrics to make the transformed target
data fit the source project data after training. The
weight is set to the ratio of the mean value of the
specified metric of the source project to that of the
target project. The two-way conversion can improve
the training efficiency and accuracy of the model.
The transformed source project metric is denoted by
s′ji , and the target project metric is denoted by t′ji .

Source dataset Metric values
after adaptation

Target dataset

Previous domain Latent feature space

Transfer
learning

Downscaled
source dataset

Downscaled
target dataset

TCA: find common features
Metric

compensation Source
metrics

Target
metrics

Adaptation

Defect
prediction

model

Train

Unlabeled data
Test

Label

Prediction

Fig. 3 Overall process of metric compensation based on transfer learning

722 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

The specific formulas used in the metric compensa-
tion process are as follows:

t′ji =
tji ×mean(sj)

mean(tj)
, (4)

s′ji =
sji ×mean(tj)

mean(sj)
, (5)

where mean(sj) denotes the mean value of the jth

metric in all samples of the source project, and
mean(tj) denotes the mean value of the jth metric
in all sample data of the target project. Finally, the
processed source project data is fed into a decision
tree classifier for training the model, and the trained
model is then used to predict the defects of the target
data.

4 Experiments

We conducted several experiments to verify that
the combination of feature selection and bidirectional
metric compensation based on transfer learning can
improve the performance of the defect prediction
model. We used the NASA metric data program
(MDP), Relink, and AEEEM datasets in these ex-
periments. Each instance in the dataset represents a
module, and the granularity of the module represen-
tation is different for different datasets; for the NASA
MDP dataset, the module granularity is method,
while for AEEEM, the module granularity is class,
and for the Relink dataset, the module granularity
is file. Dataset details are presented in Table 2.

4.1 Dataset description

The NASA MDP repository has been widely
used for software defect prediction. We selected five
projects from this repository that have the same met-
rics in our experiments. Each project represents a
NASA software system that contains the correspond-
ing defect marking data and various static code met-
rics. The static code metrics of the NASA MDP
repository include size, complexity, etc., which are
closely related to software quality. Because our ap-
proach was carried out in homogeneous CPDP, we
chose five datasets that share the same 21 metric
structures in the NASA MDP dataset for the exper-
iments. This dataset is large; therefore, to verify
the validity of the method, for selecting the source
and target project pairs for subsequent experiments,

Table 2 Details of the selected datasets

Dataset Project
Number of Percentage of Number of
instances buggy instances metrics

NASA MDP

JM1 10 885 19.3% 21
KC1 2109 15.4% 21
KC2 522 20.4% 21
PC1 1109 6.94% 21
CM1 498 9.84% 21

AEEEM

EQ 324 39.8% 61
JDT 997 20.7% 61
LC 691 9.3% 61
ML 1862 13.2% 61
PDE 1292 16.1% 61

Relink
Apache 194 50.5% 26

Safe 56 39.3% 26
Zxing 399 29.6% 26

we used random matching to select 10 data pairs for
experiments.

AEEEM is a collection of apache lucene (LC),
equinox (EQ), eclipse JDT core (JDT), eclipse PDE
UI (PDE), and Mylyn (ML) projects. Each dataset
consists of 61 metrics: 17 source code metrics, 5 prior
defect metrics, 5 change entropy metrics, 17 source
code entropy metrics, and 17 source code churn
metrics.

The Relink dataset includes 26 metrics, all of
which focus on code complexity. The items analyzed
were Apache HTTP Server, Safe, and Zxing, which
are widely used in defect prediction. We can see that
with only 56 instances in the Safe dataset, it is dif-
ficult to support the model training. We chose this
dataset because it could be compared with the exper-
imental data obtained from the TCA method. In ad-
dition, to address the problem of small sample of data
instances in the Safe dataset, the SMOTE oversam-
pling method was used to expand the sample in our
experiments to mitigate the problem appropriately.

4.2 Baseline comparison

To evaluate the performance of the proposed pe-
UpMeCom method, three methods, that is, meCom
(the original metric compensation) (Watanabe et al.,
2008), meCom17 (the improved metric compensa-
tion) (Herbold et al., 2018), and the TCA method
(Nam et al., 2013), were used as the baselines.

1. meCom (original metric compensation)
(Watanabe et al., 2008)

meCom is an effective CPDP method that im-
proves the homogeneity between the training data

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 723

and target data by adjusting the target data to en-
sure that it fits the distribution of the source data.
Because the averages of each metric value are differ-
ent between different projects, the authors thought
that these values needed to be normalized. They con-
sidered the following compensation method: Suppos-
ing that error-prone files of project A are predicted
using the training data of project B, then the test
data will be compensated as follows:

m̂i(s
∗) =

mi(s
∗)×mean(mi(S))

mean(mi(S∗))
, (6)

where m̂i(s
∗) denotes the sth metric value of the

ith instance in project A after compensation, mi(s
∗)

denotes the original metric value, mean(mi(S)) de-
notes the mean value of the sth metric of all instances
in project A, and mean(mi(S

∗)) denotes the mean
value of the sth metric of all instances in project B.

2. meCom17 (improved metric compensation)
(Herbold et al., 2018)

meCom17 is an outstanding CPDP method that
improves the homogeneity between the training data
and target data by standardizing the training data
instead of the target data. The authors’ idea is that
instead of using the target set to adapt to the data
distribution of the training set, it is better to adapt
to the data distribution of the target set at the time
of training. The target data will be compensated as
follows:

m̂i(s) =
mi(s)×mean(mi(S

∗))
mean(mi(S))

, (7)

where m̂i(s) denotes the sth metric value of the ith

instance in project B after compensation and mi(s)

denotes the original metric value.
3. TCA
The main motivation for TCA is that there

may be some common underlying factors between
the source domain and target domain, although the
characteristics of the observed domains are different.
To reveal the underlying factors, the domains are
projected onto a new space, which is called the po-
tential space. In this way, the differences between do-
mains can be reduced and the original data structure
can be preserved. In other words, TCA attempts to
learn a transformation ϕ to map the original data in
the source domain and target domain to a potential
space, where the differences between different do-
mains are small and the variance of the transformed

data is large. Before applying TCA, we apply min-
max normalization to pre-process the data which is
commonly used in machine learning literature. Nor-
malization is performed so that all features of the
dataset have the same weight and it is useful for
classification.

4.3 Evaluation of prediction models

In this study, AUC and F1-measure are used
as the evaluation criteria. A good prediction model
should have high precision and high recall, but high
recall is often achieved at the cost of low precision.
Consequently, we use F1-measure to evaluate the
performance, which is used to measure the harmonic
average of the precision and recall. F1-measure and
AUC are defined as

F1-measure =
2× precision× recall

precision + recall
, (8)

AUC =

∑
i∈positiveClass ranki − M(1+M)

2

M ×N
, (9)

where precision is defined as TP/(TP+FN) and re-
call is defined as FP/(FP+TN). Herein, TP, TN,
FP, and FN are defined in Table 3. ranki represents
the ordinal number of the ith sample (the probabil-
ity score is ranked from the smallest to the largest,
in the rank position) and M and N are the num-
bers of positive and negative samples respectively;
∑

i∈positiveClass ranki indicates that only the ordinal
numbers of positive samples are summed.

Table 3 Defect prediction results

Number of instances

Defective Non-defective

Predicted as defective TP FP

Predicted as non-defective FN TN

4.4 Experimental results

4.4.1 RQ1: How well does our approach perform?

Scheme 1 To verify the effectiveness of the pro-
posed peUpMeCom method, we compared it with
three baseline methods based on the NASA MDP,
Relink, and AEEEM datasets. Taking the AEEEM
dataset as an example, when EQ is selected as the
source project and JDT is selected as the target
project, it can be expressed as EQ=>JDT, where

724 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

the left side of “=>” indicates the source project and
the right side of “=>” indicates the target project.
In addition, to verify that the advantages of the pe-
UpMeCom method are fully demonstrated, for the
same set of source dataset and target dataset, we
conducted 500 experiments for all methods. The av-
erage values of all experiments based on the AEEEM,
Relink, and NASA MDP datasets were calculated as
the final experimental results, which are shown in Ta-
bles 4, 5, and 6, respectively. To statistically analyze
the detailed prediction results of the dataset, we also
used a statistical test, that is, the Wilcoxon rank
sum test. The confidence level in the experiments
was selected as 95%. The specific results in terms
of AUC and F1-measure of the statistical tests are

reported in Tables 7 and 8, respectively. In addition,
we drew the experimental result of each experiment
in box plots to analyze the stability of the proposed
model.

Finding 1 Tables 4–6 show the experimental
results of meCom, meCom17, TCA, and peUpMe-
Com based on the selected datasets. These tables
show that in most cases, our method presents a
clear advantage based on the experimental datasets,
in terms of both AUC and F1-measure, and out-
performs the meCom, meCom17, and TCA meth-
ods. Taking the AUC metric as an example, for
EQ=>JDT based on the AEEEM dataset, peUp-
MeCom improves the AUC value by 0.023 com-
pared to meCom, by 0.025 compared to meCom17,

Table 4 Comparison results among different methods based on the AEEEM dataset

Source=>target
AUC F1-measure

meCom meCom17 TCA peUpMeCom meCom meCom17 TCA peUpMeCom

EQ=>JDT 0.663 0.661 0.572 0.686 0.658 0.655 0.410 0.684
EQ=>LC 0.665 0.664 0.565 0.688 0.682 0.681 0.231 0.703

JDT=>PDE 0.647 0.647 0.548 0.661 0.616 0.618 0.278 0.633
JDT=>ML 0.626 0.626 0.530 0.635 0.525 0.523 0.240 0.541
PDE=>ML 0.606 0.605 0.534 0.623 0.612 0.613 0.226 0.625
EQ=>ML 0.594 0.594 0.522 0.609 0.560 0.561 0.241 0.597

Best results are in bold

Table 5 Comparison results among different methods based on the Relink dataset

Source=>target
AUC F1-measure

meCom meCom17 TCA peUpMeCom meCom meCom17 TCA peUpMeCom

Safe=>Apache 0.633 0.634 0.435 0.656 0.587 0.590 0.511 0.628
Safe=>Zxing 0.553 0.555 0.470 0.581 0.411 0.413 0.387 0.539

Apache=>Safe 0.649 0.655 0.389 0.780 0.591 0.595 0.413 0.777
Apache=>Zxing 0.566 0.563 0.528 0.610 0.427 0.424 0.362 0.585

Zxing=>Safe 0.612 0.613 0.384 0.678 0.482 0.486 0.372 0.674
Zxing=>Apache 0.588 0.584 0.551 0.634 0.487 0.481 0.480 0.601
Best results are in bold

Table 6 Comparison results among different methods based on the NASA MDP dataset

Source=>target
AUC F1-measure

meCom meCom17 TCA peUpMeCom meCom meCom17 TCA peUpMeCom

CM1=>JM1 0.607 0.606 0.522 0.625 0.513 0.516 0.309 0.556
KC1=>JM1 0.594 0.592 0.536 0.613 0.549 0.552 0.311 0.575
KC2=>JM1 0.608 0.609 0.567 0.628 0.548 0.544 0.349 0.586
PC1=>JM1 0.598 0.598 0.523 0.614 0.469 0.463 0.239 0.518
CM1=>KC1 0.645 0.647 0.525 0.665 0.582 0.599 0.275 0.639
KC2=>KC1 0.687 0.677 0.598 0.697 0.672 0.634 0.403 0.678
PC1=>KC1 0.653 0.654 0.501 0.676 0.589 0.596 0.202 0.643
CM1=>KC2 0.661 0.667 0.524 0.702 0.572 0.583 0.314 0.648
CM1=>PC1 0.616 0.621 0.549 0.646 0.542 0.560 0.255 0.605
KC2=>PC1 0.648 0.622 0.588 0.653 0.613 0.573 0.264 0.621

Best results are in bold

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 725

Table 7 Statistical test results between meCom and
peUpMeCom in terms of AUC

Source=>target p-value Effect size

EQ=>JDT 2.16× 10−123 1.41
EQ=>LC 5.82× 10−82 1.32

JDT=>PDE 5.94× 10−89 1.43
JDT=>ML 5.88× 10−85 1.64
PDE=>ML 1.55× 10−82 1.33
EQ =>ML 2.69× 10−75 1.21

CM1=>JM1 2.38× 10−43 1.05
KC1=>JM1 2.72× 10−45 1.28
KC2=>JM1 5.20× 10−52 1.64
PC1=>JM1 1.61× 10−38 1.55
CM1=>KC1 7.79× 10−51 1.48
KC2=>KC1 2.21× 10−14 0.73
PC1=>KC1 2.87× 10−37 1.06
CM1=>KC2 3.34× 10−69 1.55
CM1=>PC1 4.52× 10−10 1.52
KC2=>PC1 0.006 0.55

Safe=>Apache 2.98× 10−10 0.80
Safe=>Zxing 2.06× 10−17 0.84

Apache=>Safe 5.61× 10−159 2.36
Apache=>Zxing 1.36× 10−33 1.39

Zxing=>Safe 8.19× 10−26 1.35
Zxing=>Apache 2.18× 10−26 0.91

Table 8 Statistical test results between meCom and
peUpMeCom in terms of F1-measure

Source=>target p-value Effect size

EQ=>JDT 1.71× 10−56 0.73
EQ=>LC 5.45× 10−46 0.60

JDT=>PDE 3.24× 10−43 1.21
JDT=>ML 9.08× 10−15 0.76
PDE=>ML 3.38× 10−11 0.54
EQ =>ML 3.19× 10−26 0.70

CM1=>JM1 5.30× 10−28 0.71
KC1=>JM1 6.97× 10−9 0.53
KC2=>JM1 1.44× 10−22 1.28
PC1=> JM1 4.61× 10−24 1.07
CM1=> KC1 1.22× 10−45 1.19
KC2=>KC1 1.13× 10−7 0.52
PC1=>KC1 8.05× 10−31 1.01
CM1=> KC2 4.64× 10−56 1.28
CM1=> PC1 1.20× 10−6 1.18
KC2=>PC1 0.0483 0.6

Safe=>Apache 3.53× 10−9 0.64
Safe=>Zxing 4.22× 10−62 1.60

Apache =>Safe 6.43 × 10−146 2.61
Apache=>Zxing 7.21× 10−86 3.16

Zxing=>Safe 7.11× 10−71 2.48
Zxing=>Apache 1.32× 10−38 1.36

and by 0.114 compared to TCA. For Apache=>Safe
based on the Relink dataset, there is an improve-
ment of 0.131 over meCom, 0.125 over meCom17,
and 0.391 over TCA. For the NASA MDP dataset
with CM1=>KC2, our method represents an im-

provement of 0.041 compared to meCom, 0.035 com-
pared to meCom17, and 0.178 compared to TCA.
These results show that our method constitutes a
better prediction model for defect prediction when
dealing with differences in data distribution across
different domains compared to the baseline meth-
ods. This is attributed to the feature selection and
TCA dimensionality reduction techniques. Pearson
feature selection is used to eliminate features that
are not relevant to the defect category prediction,
while the metric compensation technique based on
transfer learning ensures the similarity of the data
distribution between the source project and target
project in a low-dimensional space, which leads to
an increase in the prediction accuracy of the model.

From the perspective of statistical test results,
we can see from Tables 7 and 8 that all the p-values
are less than 0.05 and that all the effect-size values
are more than 0.5, confirming the significant differ-
ence between our method and the baseline method.
Figs. 4, 5, and 6 show the prediction performances
in terms of AUC and F1-measure metrics of different
methods based on the NASA MDP, AEEEM, and
Relink datasets, respectively. Most of the predicted
values of the peUpMeCom method are higher than
those of the baseline methods, and there are almost
no outliers in the experimental data; most of the data
resides in the box of the box-line plot, which implies
high stability of the proposed method for model pre-
diction performance.

4.4.2 RQ2: How does Pearson feature selection af-
fect the prediction performance of the model?

Scheme 2 To evaluate the impact of the Pear-
son feature selection method on the model predic-
tion performance, we compared a model that was
trained using full metrics with a model that was
trained using the optimal subset of features selected
using the feature selection method, and conducted
experiments based on the NASA MDP, Relink, and
AEEEM datasets. The specific results of the predic-
tion examples based on the AEEEM, NASA MDP,
and Relink datasets are shown in Tables 9, 10, and
11, respectively. For all projects, to make the ex-
perimental data more convincing, experiments using
the same dataset maintained the same experimental
environment. In addition, we plotted the results for
each set of experiments as box plots to verify the
stability of the method for model prediction.

726 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

CM1=
>J

M1

KC1=
>J

M1

KC2=
>J

M1

PC1=
>J

M1

CM1=
>K

C1

KC2=
>K

C1

PC1=
>K

C1

CM1=
>K

C2

CM1=
>P

C1

KC2=
>P

C1

0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74

A
U

C

meCom meCom17
TCA

peUpMeCom

CM1=
>J

M1

KC1=
>J

M1

KC2=
>J

M1

PC1=
>J

M1

CM1=
>K

C1

KC2=
>K

C1

PC1=
>K

C1

CM1=
>K

C2

CM1=
>P

C1

KC2=
>P

C1

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

F1
-m

ea
su

re

meCom meCom17
TCA

peUpMeCom

(b)(a)
Source=>target Source=>target

Fig. 4 Performance plots of different techniques based on the NASA MDP dataset: (a) AUC; (b) F1-measure

EQ=>JDT
EQ=>LC

EQ=>ML

JDT=>ML

JDT=>PDE
PDE=>ML

0.4

0.5

0.6

0.7

0.8

A
U

C

meCom meCom17 TCA peUpMeCom

EQ=>JDT
EQ=>LC

EQ=>ML
JDT=>ML

JDT=>PDE
PDE=>ML

0.2

0.4

0.6

0.8

1.0

F1
-m

ea
su

re

meCom meCom17 TCA peUpMeCom

(b)(a)
Source=>target Source=>target

Fig. 5 Performance plots of different techniques based on the AEEEM dataset: (a) AUC; (b) F1-measure

Safe
=>

Apa
ch

e

Safe
=>

Zxin
g

Apa
ch

e=
>S

afe

Apa
ch

e=
>Z

xin
g

Zxin
g=

>S
afe

Zxin
g=

>A
pa

ch
e

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C

0.15

0.45

0.55

0.65

0.85

F1
-m

ea
su

re

(b)(a)
Source=>targetSource=>target

meCom meCom17 TCA peUpMeCom

Safe
=>

Apa
ch

e

Safe
=>

Zxin
g

Apa
ch

e=
>S

afe

Apa
ch

e=
>Z

xin
g

Zxin
g=

>S
afe

Zxin
g=

>A
pa

ch
e

0.25

0.35

0.75

meCom meCom17 TCA peUpMeCom

Fig. 6 Performance plots of different techniques based on the Relink dataset: (a) AUC; (b) F1-measure

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 727

Finding 2 Figs. 7, 8, and 9 show the predic-
tion results of the feature selection method based on
the NASA MDP, AEEEM, and Relink datasets re-
spectively. Tables 9, 10, and 11 show the AUC and
F1-measure values that are specific to the predicted
cases, based on the AEEEM, NASA MDP, and Re-
link datasets respectively, with larger F1-measure
and AUC values in bold in the tables. For the NASA
MDP, Relink, and AEEEM datasets, in most cases
(not generalized to 100% cases), the experimental re-
sults after feature selection are better than the origi-
nal results. Taking EQ=>JDT in Table 9 for exam-
ple, the original AUC value without feature selection
is 0.639, and the AUC value after using the Pearson

Table 9 Results of the original data and Pearson
feature selection based on the AEEEM dataset

Source=>target
AUC F1-measure

Original Pearson Original Pearson

EQ=>JDT 0.639 0.686 0.653 0.684
EQ=>LC 0.657 0.688 0.673 0.703

JDT=>PDE 0.646 0.661 0.615 0.633
JDT=>ML 0.605 0.635 0.596 0.541
PDE=>ML 0.596 0.623 0.587 0.625
EQ=>ML 0.582 0.609 0.594 0.597

Best results are in bold

Table 10 Results of the original data and Pearson
feature selection based on the NASA MDP dataset

Source=>target
AUC F1-measure

Original Pearson Original Pearson

CM1=>JM1 0.570 0.625 0.453 0.556
KC1=>JM1 0.545 0.613 0.517 0.575
KC2=>JM1 0.585 0.628 0.501 0.586
PC1=>JM1 0.564 0.614 0.405 0.518
CM1=>KC1 0.637 0.665 0.557 0.639
KC2=>KC1 0.617 0.697 0.554 0.678
PC1=>KC1 0.636 0.676 0.547 0.643
CM1=>KC2 0.676 0.702 0.608 0.648
CM1=>PC1 0.609 0.646 0.517 0.605
KC2=>PC1 0.621 0.653 0.563 0.621

Best results are in bold

Table 11 Results of the original data and Pearson
feature selection based on the Relink dataset

Source=>target
AUC F1-measure

Original Pearson Original Pearson

Safe=>Apache 0.633 0.656 0.589 0.628
Safe=>Zxing 0.556 0.581 0.413 0.539

Apache=>Safe 0.651 0.780 0.593 0.777
Apache=>Zxing 0.568 0.610 0.432 0.585

Zxing=>Safe 0.616 0.678 0.487 0.674
Zxing=>Apache 0.590 0.634 0.494 0.601

Best results are in bold

feature selection method is 0.686; the experimental
result is 7.35% better than the original one, and sim-
ilarly, the F1-measure is increased by 4.75%. It is
obvious that the Pearson feature selection method
has improved the prediction efficiency of the model.
The main reason is that deleting redundant features
that are unrelated to the defect category effectively
reduces the model training time and weakens the
interference of redundant features on the model pre-
diction, thus improving the prediction performance
and accuracy of the model.

4.4.3 RQ3: Does the transfer learning technique im-
prove metric compensation?

Scheme 3 To validate the contribution of trans-
fer learning to the bidirectional metric compensation
technique in model prediction performance, we con-
ducted experiments based on these three datasets
using different metric compensation methods. To
demonstrate the effectiveness of the experiments,
two baseline methods were chosen for comparison:
meCom and meCom17. One project was then se-
lected as the target project, and the remaining
projects were used as the source datasets for train-
ing the model. As an example, when CM1 is used
as the test set, JM1, KC1, KC2, and PC1 are used
together as the training set for model training. Five
hundred experiments were conducted on the same
project of experimental data, and the average of the
experimental values was taken as the final result for
this target dataset; the results are shown in Table 12.
In addition, to confirm the stability of the method,
we plotted the prediction results of each set of ex-
periments as box plots, and the comparison of the
experimental results of the same set under different
methods is shown in Fig. 10.
Finding 3 Fig. 10 shows the AUC values
for CPDP based on the three datasets for the
method combining transfer learning and bidirec-
tional metric compensation compared to the tradi-
tional metric compensation methods. Table 12 shows
the average multiple-to-one CPDP results for sev-
eral project prediction cases. From Table 12 and
Fig. 10, we can see that the model combining trans-
fer learning and bidirectional metric compensation
achieves a higher AUC than the baselines in most
cases. Taking the KC1 target set as an example
((CM1+JM1+KC2+PC1)=>KC1), upMeCom can
improve the average AUC value by 0.05 (0.628–

728 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

0.4

0.5

0.7

F1
-m

ea
su

re
(a) (b)

Source=>target Source=>target
CM1=

>J
M1

KC1=
>J

M1

KC2=
>J

M1

PC1=
>J

M1

CM1=
>K

C1

KC2=
>K

C1

PC1=
>K

C1

CM1=
>K

C2

CM1=
>P

C1

KC2=
>P

C1

0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76

A
U

C

Original Pearson

0.3

0.6

0.8
Original Pearson

CM1=
>J

M1

KC1=
>J

M1

KC2=
>J

M1

PC1=
>J

M1

CM1=
>K

C1

KC2=
>K

C1

PC1=
>K

C1

CM1=
>K

C2

CM1=
>P

C1

KC2=
>P

C1

Fig. 7 Performance plots of feature selection based on the NASA MDP dataset: (a) AUC; (b) F1-measure

EQ=>JDT
EQ=>LC

EQ=>ML
JDT=>ML

JDT=>PDE
PDE=>ML

0.55

0.60

0.65

0.70

0.75

A
U

C

F1
-m

ea
su

re

(b)(a)
Source=>target Source=>target

EQ=>JDT
EQ=>LC

EQ=>ML
JDT=>ML

JDT=>PDE

PDE=>ML

Original Pearson

0.52

0.58

0.62

0.68

0.54

0.56

0.60

0.64

0.66

0.70

0.72 Original Pearson

Fig. 8 Performance plots of feature selection based on the AEEEM dataset: (a) AUC; (b) F1-measure

0.50

0.60

0.75

A
U

C

Safe=>Apache

Safe=>Zxin
g

Apache=>Safe

Apache=>Zxin
g

Zxin
g=>Safe

Zxin
g=>Apache

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-m

ea
su

re

(a) (b)
Source=>targetSource=>target

Safe=>Apache

Safe=>Zxin
g

Apache=>Safe

Apache=>Zxin
g

Zxin
g=>Safe

Zxin
g=>Apache

Original Pearson

0.55

0.65

0.70

0.80

0.85 Original Pearson

Fig. 9 Performance plots of feature selection based on the Relink dataset: (a) AUC; (b) F1-measure

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 729

0.578) compared to meCom and by 0.085 (0.628–
0.543) compared to meCom17. This indicates that
the combination of transfer learning and metric com-
pensation can effectively improve the model predic-
tion performance. One reason for this performance
improvement is that the fusion of the TCA tech-
nique allows the training and testing samples to re-
tain the maximum attribute features of the data in
the low-dimensional feature space. Another reason is
that traditional metric compensation methods tend
to transform the data in one direction, whereas our
bidirectional metric compensation combines the idea
of bidirectional metric value conversion with a fur-
ther reduction of the variability of the source and
target project feature distributions. In addition, it
can be seen from the box-line plots in Fig. 10 that

Table 12 AUC obtained from the upMeCom and
other metric compensation methods

Target project
AUC

meCom meCom17 upMeCom

CM1 0.573 0.569 0.612
JM1 0.555 0.542 0.561
KC1 0.578 0.543 0.628
KC2 0.609 0.601 0.671
PC1 0.599 0.601 0.615
EQ 0.664 0.680 0.695
JDT 0.597 0.619 0.644
LC 0.631 0.642 0.671
ML 0.582 0.588 0.608
PDE 0.591 0.588 0.618
Safe 0.685 0.683 0.730
Zxing 0.588 0.572 0.594

Apache 0.619 0.612 0.681
Best results are in bold

Target project

Fig. 10 AUC values under different metric compen-
sation methods

the experimental data derived from our method is
basically outlier-free, which indicates that the model
constructed by this method is relatively stable.

5 Discussions

5.1 Insights learned from our empirical study

Our empirical study reveals some important
facts that provide new insights to further advance
CPDP research. Our comprehensive experimental
results show that the metric compensation technique
combining feature selection and transfer learning can
improve CPDP performance. In particular, this
technique can shorten model training time and ef-
fectively improve prediction accuracy of the model.
Such findings provide important insight and guid-
ance for future research: when predicting defects,
if the data dimensionality is too large, the ideas of
feature dimensionality reduction and enhanced data
distribution similarity can be fused to provide new
research directions for the development of CPDP
techniques.

5.2 Threats to validity

Two potential threats to the effectiveness of the
experiment are presented here. Threats to internal
validity come mainly from experimental deviations
due to parameter settings and the replication of the
comparison methods. Most of the compared meth-
ods in the experiment are not available with their
source codes, so some specific information like pa-
rameter settings is unknown and there is probably
some variation in the baselines. Although we exper-
imented exactly as mentioned in the literature, our
reproducible results do not exactly match the origi-
nal outcome. We overcame this threat by adjusting
the parameter settings to choose the best combina-
tion of parameters.

The main external threat to validity is dataset
bias. In this study, we selected 13 datasets from
NASA MDP, Relink, and AEEEM for experimental
validation of the proposed defect prediction model.
However, it is still unknown how well the models that
are constructed using this method will perform when
applied to other applications.

730 Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731

6 Conclusions

To address the inefficiency of defect prediction
models caused by the large variability of data distri-
bution between the source project and target project,
we propose a metric compensation method based on
transfer learning and feature selection. First, peUp-
MeCom uses the Pearson feature selection method
to filter out redundant features that are not rele-
vant to the defect category prediction. The corre-
lation coefficient between each feature and the de-
fect category is calculated, and the irrelevant fea-
tures are removed based on the correlation coeffi-
cient ranking to reduce training time of the model.
After that, TCA is introduced to map the data fea-
tures to a low-dimensional space, while preserving
the original data characteristics. Then, using the
bidirectional metric compensation technique, we en-
hance the feature distribution similarity between the
source project and target project, thereby improv-
ing the performance of CPDP. Extensive experimen-
tal results verify that our peUpMeCom method ef-
fectively improves the prediction accuracy in both
AUC value and F1-measure, and outperforms the
traditional metric compensation techniques.

Contributors
Jinfu CHEN and Saihua CAI designed the research.

Xiaoli WANG, Saihua CAI, and Jiaping XU processed the

data. Jinfu CHEN, Xiaoli WANG, and Saihua CAI drafted

the paper. Xiaoli WANG, Jiaping XU, Jingyi CHEN, and

Haibo CHEN finished the experiments. Jingyi CHEN and

Haibo CHEN helped organize the paper. Jinfu CHEN, Xiaoli

WANG, and Saihua CAI revised and finalized the paper.

Compliance with ethics guidelines
Jinfu CHEN, Xiaoli WANG, Saihua CAI, Jiaping XU,

Jingyi CHEN, and Haibo CHEN declare that they have no

conflict of interest.

References
Amasaki S, Kawata K, Yokogawa T, 2015. Improving cross-

project defect prediction methods with data simplifica-
tion. Proc 41st Euromicro Conf on Software Engineer-
ing and Advanced Applications, p.96-103.
https://doi.org/10.1109/SEAA.2015.25

Briand LC, Melo WL, Wüst J, 2002. Assessing the applica-
bility of fault-proneness models across object-oriented
software projects. IEEE Trans Softw Eng, 28(7):706-
720. https://doi.org/10.1109/TSE.2002.1019484

Cai JC, Xu K, Zhu YH, et al., 2020. Prediction and analysis
of net ecosystem carbon exchange based on gradient

boosting regression and random forest. Appl Energy,
262:114566.
https://doi.org/10.1016/j.apenergy.2020.114566

Chen JY, Yang YT, Hu KK, et al., 2019. Multiview transfer
learning for software defect prediction. IEEE Access,
7:8901-8916.
https://doi.org/10.1109/ACCESS.2018.2890733

Chen JY, Hu KK, Yu Y, et al., 2020. Software visualization
and deep transfer learning for effective software defect
prediction. Proc ACM/IEEE 42nd Int Conf on Software
Engineering, p.578-589.
https://doi.org/10.1145/3377811.3380389

Chen X, Zhao YQ, Wang QP, et al., 2018. MULTI: multi-
objective effort-aware just-in-time software defect pre-
diction. Inform Softw Technol, 93:1-13.
https://doi.org/10.1016/j.infsof.2017.08.004

Fukushima T, Kamei Y, McIntosh S, et al., 2014. An
empirical study of just-in-time defect prediction using
cross-project models. Proc 11th Working Conf on Min-
ing Software Repositories, p.172-181.
https://doi.org/10.1145/2597073.2597075

Grimm LG, Nesselroade KPJr, 2018. Statistical Applications
for the Behavioral and Social Sciences (2nd Ed.). John
Wiley & Sons, Hoboken, USA.

Guo YC, Shepperd M, Li N, 2018. Bridging effort-aware pre-
diction and strong classification: a just-in-time software
defect prediction study. Proc 40th Int Conf on Software
Engineering: Companion Proceeedings, p.325-326.
https://doi.org/10.1145/3183440.3194992

Habibi PA, Amrizal V, Bahaweres RB, 2018. Cross-project
defect prediction for web application using naive Bayes
(case study: petstore web application). Proc Int Work-
shop on Big Data and Information Security, p.13-18.
https://doi.org/10.1109/IWBIS.2018.8471701

Hall T, Beecham S, Bowes D, et al., 2012. A systematic liter-
ature review on fault prediction performance in software
engineering. IEEE Trans Softw Eng, 38(6):1276-1304.
https://doi.org/10.1109/TSE.2011.103

He P, Li B, Liu X, et al., 2015. An empirical study on
software defect prediction with a simplified metric set.
Inform Softw Technol, 59:170-190.
https://doi.org/10.1016/j.infsof.2014.11.006

Herbold S, Trautsch A, Grabowski J, 2018. A comparative
study to benchmark cross-project defect prediction ap-
proaches. Proc 40th Int Conf on Software Engineering,
p.1063. https://doi.org/10.1145/3180155.3182542

Iqbal T, Cao Y, Kong QQ, et al., 2020. Learning with out-
of-distribution data for audio classification. Proc IEEE
Int Conf on Acoustics, Speech and Signal Processing,
p.636-640.
https://doi.org/10.1109/ICASSP40776.2020.9054444

Kamei Y, Fukushima T, McIntosh S, et al., 2016. Studying
just-in-time defect prediction using cross-project mod-
els. Empir Softw Eng, 21(5):2072-2106.
https://doi.org/10.1007/s10664-015-9400-x

Li K, Xiang ZL, Chen T, et al., 2020a. BILO-CPDP: bi-level
programming for automated model discovery in cross-
project defect prediction. Proc 35th IEEE/ACM Int
Conf on Automated Software Engineering, p.573-584.
https://doi.org/10.1145/3324884.3416617

Li K, Xiang ZL, Chen T, et al., 2020b. Understanding the
automated parameter optimization on transfer learning

Chen et al. / Front Inform Technol Electron Eng 2022 23(5):715-731 731

for cross-project defect prediction: an empirical study.
Proc ACM/IEEE 42nd Int Conf on Software Engineer-
ing, p.566-577.
https://doi.org/10.1145/3377811.3380360

Liu C, Yang D, Xia X, et al., 2019. A two-phase transfer
learning model for cross-project defect prediction. In-
form Softw Technol, 107:125-136.
https://doi.org/10.1016/j.infsof.2018.11.005

Lv WD, 2019. Method and application of data defect analysis
based on linear discriminant regression of far subspace.
Cluster Comput, 22(2):4277-4282.
https://doi.org/10.1007/s10586-018-1861-4

Madeyski L, Jureczko M, 2015. Which process metrics
can significantly improve defect prediction models? An
empirical study. Softw Qual J, 23(3):393-422.
https://doi.org/10.1007/s11219-014-9241-7

Malhotra R, 2015. A systematic review of machine learning
techniques for software fault prediction. Appl Soft
Comput, 27:504-518.
https://doi.org/10.1016/j.asoc.2014.11.023

Marian Z, Mircea IG, Czibula IG, et al., 2016. A novel
approach for software defect prediction using fuzzy de-
cision trees. Proc 18th Int Symp on Symbolic and Nu-
meric Algorithms for Scientific Computing, p.240-247.
https://doi.org/10.1109/SYNASC.2016.046

McBride R, Wang K, Ren ZY, et al., 2019. Cost-sensitive
learning to rank. Proc 33rd AAAI Conf on Artificial
Intelligence, p.4570-4577.
https://doi.org/10.1609/aaai.v33i01.33014570

Nam J, Pan SJ, Kim S, 2013. Transfer defect learning. Proc
35th Int Conf on Software Engineering, p.382-391.
https://doi.org/10.1109/ICSE.2013.6606584

Peng ML, Zhang Q, Xing XY, et al., 2019. Trainable
undersampling for class-imbalance learning. Proc 33rd

AAAI Conf on Artificial Intelligence, p.4707-4714.
https://doi.org/10.1609/aaai.v33i01.33014707

Purnami SW, Trapsilasiwi RK, 2017. SMOTE-least square
support vector machine for classification of multiclass
imbalanced data. Proc 9th Int Conf on Machine Learn-
ing and Computing, p.107-111.
https://doi.org/10.1145/3055635.3056581

Rahman F, Devanbu P, 2013. How, and why, process metrics
are better. Proc 35th Int Conf on Software Engineering,
p.432-441. https://doi.org/10.1109/ICSE.2013.6606589

Ryu D, Choi O, Baik J, 2014. Improving prediction robust-
ness of VAB-SVM for cross-project defect prediction.
Proc IEEE 17th Int Conf on Computational Science
and Engineering, p.994-999.
https://doi.org/10.1109/CSE.2014.198

Ryu D, Choi O, Baik J, 2016. Value-cognitive boosting
with a support vector machine for cross-project defect
prediction. Empir Softw Eng, 21(1):43-71.
https://doi.org/10.1007/s10664-014-9346-4

Ryu D, Jang JI, Baik J, 2017. A transfer cost-sensitive
boosting approach for cross-project defect prediction.
Softw Qual J, 25(1):235-272.
https://doi.org/10.1007/s11219-015-9287-1

Saidi R, Bouaguel W, Essoussi N, 2019. Hybrid feature
selection method based on the genetic algorithm and
Pearson correlation coefficient. In: Hassanien AE (Ed.),
Machine Learning Paradigms: Theory and Application.
Springer, Cham, p.3-24.
https://doi.org/10.1007/978-3-030-02357-7_1

Shippey T, Bowes D, Hall T, 2019. Automatically identifying
code features for software defect prediction: using AST
N-grams. Inform Softw Technol, 106:142-160.
https://doi.org/10.1016/j.infsof.2018.10.001

Shuai B, Li HF, Li MJ, et al., 2013. Software defect predic-
tion using dynamic support vector machine. Proc 9th

Int Conf on Computational Intelligence and Security,
p.260-263. https://doi.org/10.1109/CIS.2013.61

Siers MJ, Islam Z, 2015. Software defect prediction using a
cost sensitive decision forest and voting, and a potential
solution to the class imbalance problem. Inform Syst,
51:62-71. https://doi.org/10.1016/j.is.2015.02.006

Tabassum S, Minku LL, Feng DY, et al., 2020. An inves-
tigation of cross-project learning in online just-in-time
software defect prediction. Proc ACM/IEEE 42nd Int
Conf on Software Engineering, p.554-565.
https://doi.org/10.1145/3377811.3380403

Thejas GS, Garg R, Iyengar SS, et al., 2021. Metric and
accuracy ranked feature inclusion: hybrids of filter and
wrapper feature selection approaches. IEEE Access,
9:128687-128701.
https://doi.org/10.1109/ACCESS.2021.3112169

Tsuda N, Washizaki H, Honda K, et al., 2019. WSQF: com-
prehensive software quality evaluation framework and
benchmark based on SQuaRE. Proc IEEE/ACM 41st

Int Conf on Software Engineering: Software Engineer-
ing in Practice, p.312-321.
https://doi.org/10.1109/ICSE-SEIP.2019.00045

Wahono RS, 2015. A systematic literature review of software
defect prediction: research trends, datasets, methods
and frameworks. J Softw Eng, 1(1):1-16.

Wan ZY, Xia X, Hassan AE, et al., 2020. Perceptions,
expectations, and challenges in defect prediction. IEEE
Trans Softw Eng, 46(11):1241-1266.
https://doi.org/10.1109/TSE.2018.2877678

Wang HJ, Khoshgoftaar TM, Napolitano A, 2010. A com-
parative study of ensemble feature selection techniques
for software defect prediction. Proc 9th Int Conf on
Machine Learning and Applications, p.135-140.
https://doi.org/10.1109/ICMLA.2010.27

Watanabe S, Kaiya H, Kaijiri K, 2008. Adapting a fault
prediction model to allow inter languagereuse. Proc
4th Int Workshop on Predictor Models in Software En-
gineering, p.19-24.
https://doi.org/10.1145/1370788.1370794

Wu F, Jing XY, Dong XW, et al., 2017. Cross-project and
within-project semi-supervised software defect predic-
tion problems study using a unified solution. Proc
IEEE/ACM 39th Int Conf on Software Engineering
Companion, p.195-197.
https://doi.org/10.1109/ICSE-C.2017.72

Yang XL, Lo D, Xia X, et al., 2017. TLEL: a two-layer
ensemble learning approach for just-in-time defect pre-
diction. Inform Softw Technol, 87:206-220.
https://doi.org/10.1016/j.infsof.2017.03.007

Yu JL, Benesty J, Huang GP, et al., 2015. Optimal single-
channel noise reduction filtering matrices from the Pear-
son correlation coefficient perspective. Proc IEEE Int
Conf on Acoustics, Speech and Signal Processing, p.201-
205. https://doi.org/10.1109/ICASSP.2015.7177960

	Introduction
	Related works
	Reducing data distribution differences
	Deletion of redundant features
	Resolving class imbalances

	The proposed method
	Pearson-based feature selection
	Metric compensation based on transfer learning

	Experiments
	Dataset description
	Baseline comparison
	Evaluation of prediction models
	Experimental results
	RQ1: How well does our approach perform?
	RQ2: How does Pearson feature selection affect the prediction performance of the model?
	RQ3: Does the transfer learning technique improve metric compensation?

	Discussions
	Insights learned from our empirical study
	Threats to validity

	Conclusions

