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Abstract: We propose a competitive binary multi-objective grey wolf optimizer (CBMOGWO) to reduce the heavy computational
burden of conventional multi-objective antenna topology optimization problems. This method introduces a population competition
mechanism to reduce the burden of electromagnetic (EM) simulation and achieve appropriate fitness values. Furthermore, we
introduce a function of cosine oscillation to improve the linear convergence factor of the original binary multi-objective grey
wolf optimizer (BMOGWO) to achieve a good balance between exploration and exploitation. Then, the optimization performance
of CBMOGWO is verified on 12 standard multi-objective test problems (MOTPs) and four multi-objective knapsack problems
(MOKPs) by comparison with the original BMOGWO and the traditional binary multi-objective particle swarm optimization
(BMOPSO). Finally, the effectiveness of our method in reducing the computational cost is validated by an example of a
compact high-isolation dual-band multiple-input multiple-output (MIMO) antenna with high-dimensional mixed design variables
and multiple objectives. The experimental results show that CBMOGWO reduces nearly half of the computational cost compared
with traditional methods, which indicates that our method is highly efficient for complex antenna topology optimization problems.
It provides new ideas for exploring new and unexpected antenna structures based on multi-objective evolutionary algorithms
(MOEAs) in a flexible and efficient manner.
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1 Introduction

In recent years, antenna design has been given
considerations for multiple performance indicators si‐
multaneously, e.g., wideband or multiband, high gain

or efficiency, and compact size (Dong et al., 2019a).
Electromagnetic (EM) simulation has always been an
integral part of the evaluation and optimization of
antenna systems (Pietrenko-Dabrowska et al., 2020).
In the traditional approaches, hundreds or even thou‐
sands of design cycles are implemented to optimize
the antenna parameters of an initial antenna topology.
However, this process usually relies on the designers’
expertise and involves tedious work, which might not
generate satisfactory results.

Antenna optimization based on evolutionary
algorithms (EAs) opened a new door for antenna de‐
sign because it relieves the reliance on antenna design
experience. Multi-objective EAs have been success‐
fully applied to antenna design, such as the genetic
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algorithm (GA) (Panduro et al., 2005; Lin et al.,
2012; Chirikov et al., 2013), particle swarm optimi‐
zation (PSO) (Li YL et al., 2013; Gupta et al., 2020),
the differential evolution (DE) algorithm (Chen and
Wang, 2012; Li R et al., 2017; Kaur et al., 2019), the
non-dominated sorting genetic algorithm (NSGA)
(Kim and Walton, 2006; Panduro et al., 2013; Bin
et al., 2020), and the multi-objective evolutionary al‐
gorithm based on decomposition (MOEA/D) (Carvalho
et al., 2012; Li QQ et al., 2020a). Among these opti‐
mization methods, some transform multiple optimiza‐
tion goals into an objective function in particular ways,
while others adopt the multi-objective version of intel‐
ligent optimization algorithms. However, the above-
mentioned antenna optimization methods based on
continuous EAs require a particular antenna shape as
a starting point, and then search for and optimize part
of the antenna sizes within a given range, which poses
the challenge of relying on the knowledge of antenna
designers and also limits the diversity of antenna
geometries.

Due to the limitation of antenna optimization
designs based on continuous EAs, automatic antenna
topology optimization based on binary EAs has been
developed to optimize the antenna topology. Topology
optimization, also known as pixel optimization, dis‐
cretizes the design space into small pixels represented
by a matrix with “1” (conductor) and “0” (air).
Zhang L et al. (2019) designed antenna topology for
maximum bandwidth combining GA with the method
of moments. Dong et al. (2018) proposed an improved
binary particle swarm optimization (BPSO) algorithm
to acquire a high-dimensional, multifunctional, and
compact fragment-type antenna. Jia and Lu (2019)
applied a hybrid Taguchi BPSO to EM optimization
problems. Zhu et al. (2019) used a hybrid topology op‐
timization method to realize the isolation structure of
a multiple-input multiple-output (MIMO) antenna.
Li QQ et al. (2020b) integrated PSO and MOEA/D to
design a compact high-isolation MIMO antenna. A
multi-objective evolutionary algorithm based on de‐
composition combined with enhanced genetic opera‐
tors (MOEA/D-GO) was used to design an ultrawide‐
band planar antenna (Du et al., 2020). The above
methods based on binary EAs no longer restrict the
initial antenna structure. However, they also face the
challenge that the EM simulation cost tremendously

increases with the number of iterations and populations
in EAs. Therefore, the problem of high computational
cost remains.

The combination of neural network and antenna
design reduces the computational burden of antenna
optimization design to a certain extent. However, there
is a non-negligible computational cost to obtain the
training and test datasets of the neural network. In an‐
tenna design, the cost of acquiring training datasets
through physical testing or EM simulation software
is very high. Moreover, the size of the dataset of the
training neural network is often related to the anten‐
na variables to be optimized, and the more variables
there are, the larger dataset is needed (Bataineh and
Marler, 2017; Li CM et al., 2020). To optimize 10
antenna variables, Dong et al. (2019b) obtained 190
sets of training data and 10 sets of testing data to
train and test the back propagation neural network
(BPNN). Our research team collected 220 sets of data
to train and test the radial basis function neural net‐
work (RBFNN) to optimize 10 design variables for
the antenna (Dong et al., 2019a). Dhaliwal and Pattnaik
(2017) used 40 sets of data to train artifical neural
network (ANN) to optimize two design variables for
a compact fractal antenna. Pietrenko-Dabrowska et al.
(2020) found that 400 sets of training data were appro‐
priate for training Kriging surrogates to optimize a
triple band uniplanar dipole antenna and a quasi-
Yagi antenna with 10 design variables. The above-
mentioned antenna design types based on neural net‐
works all belong to the size design with continuous de‐
sign variables, and the number of antenna variables to
be optimized is always around 10. In antenna topology
optimization, there are usually tens or even hundreds
of design variables, and the number of training sets
will also increase greatly, which requires a huge com‐
putational cost. Therefore, it is currently not feasible
to train neural networks with tens and hundreds of
datasets for antenna topology optimization.

In this work, a competitive binary multi-objective
grey wolf optimizer (CBMOGWO) for improving
the efficiency of antenna optimization is proposed to
pose the challenges of high-dimensional mixed vari‐
ables and multiple objectives. The multi-objective grey
wolf optimizer (MOGWO) (Mirjalili et al., 2016)
shows superior search performance compared with
the classic multi-objective particle swarm algorithm
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(MOPSO) (Coello et al., 2004) and MOEA/D (Zhang
QF and Li, 2007) due to its social leadership and
hunting technology. Based on MOGWO, the contri‐
butions of this work are given below: (1) introduc‐
ing the competition mechanism to divide the popula‐
tion into several parts, so as to reduce the difficulty of
calculation (Aldhafeeri and Rahmat-Samii, 2019);
(2) replacing the linear convergence factor with the
cosine oscillation convergence factor to achieve a
better balance between exploration and exploitation;
(3) designing a compact high-isolation dual-band
MIMO antenna topology with high-dimensional mixed
variables. In our example, CBMOGWO obtains the
Pareto solution sets with only half the time of the ori‑
ginal BMOGWO and BMOPSO, which indicates that
the proposed CBMOGWO method not only has good
optimization performance but also greatly improves
the design efficiency.

2 Background

2.1 Problem formulation of multi-objective antenna
topology optimization

Antenna is a converter between EM waves pro‑
pagating in free space and guided waves propagat‐
ing on a transmission line. Due to different application
scenarios, the types and shapes of antennas are highly
diverse. However, any antenna can be topologically
optimized to obtain satisfactory antenna performance.
Take a planar monopole antenna as an example.
Figs. 1a and 1c show the antenna before and after

topology optimization, respectively. In the multi-
objective antenna topology optimization process, the
design vector x is formed by the material of all pixels
of the antenna patch. The constraint is that x is a
vector of 0 and 1 in the binary code. Binary code “0”
means that the material is non-conductive (like air),
and binary code “1” means that the material is a con‐
ductor, as shown in Fig. 1b. The objective function fk(x)

( k = 1, 2, ..., K) is usually a function related to antenna

performance indicators such as return loss, gain, and
isolation (Balanis, 2016). In general, the problem of
multi-objective antenna topology optimization is for‐
mulated as follows:

min F ( x ) = ( )f1 ( x ) , f2 ( x ) , ..., fK ( x )
T

s.t. x ∈ {0,1}dim,
(1)

where dim represents the dimension of the optimiza‐
tion problem. The goal of multi-objective antenna
topology optimization is to achieve non-dominated so‐
lutions, which is also known as the Pareto front (Koziel
and Ogurtsov, 2013; Koziel and Bekasiewicz, 2016).
In other words, multi-objective antenna topology op‐
timization aims to find a trade-off among the perfor‐
mance indicators of the antenna without knowledge of
the detailed structure of the antenna.

2.2 MOGWO and binary MOGWO

The powerful optimization ability of the grey wolf
optimizer (GWO) (Mirjalili et al., 2014b) promotes the
development of MOGWO to solve multi-objective pro‑
blems (MOPs). The details of GWO are described in
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Fig. 1 Diagram of antenna topology optimization: (a) antenna structure before optimization; (b) mapping between the
physical antenna structure and binary vector x; (c) antenna structure after optimization
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Section 1 of the supplementary materials. In MOGWO,
the social hierarchy components of a grey wolf popu‐
lation are still the three leaders (alpha (α), beta (β), and

delta (δ) wolves) and the candidate solutions (omega
(ω) wolf). Note that the social leadership relationship
of MOGWO is different from that of GWO in that
there is no dominant relationship among its three
leaders.

The hunting process of the MOGWO algorithm
is the same as that of GWO. The following formulae
are the same as Eqs. (S5)–(S7) in the supplementary
material for the mathematical modeling of prey hunted
by grey wolves in MOGWOs:

Dp = |Cq∙Xp − X | , (2)

Xq = Xp − Aq∙( Dp ), (3)

X ( t + 1) = ( X1 ( t ) + X2 ( t ) + X3 ( t ) ) /3, (4)

where ( p, q ) ∈ {(α,1), ( β, 2 ), (δ, 3)}, t is the current

iteration, Xp is the position vector of the prey, X indi‐
cates the position vector of a grey wolf, and A and C
are coefficient vectors, calculated as follows:

A = 2ar1 − a, (5)

C = 2r2, (6)

where r1 and r2 are random vectors in [0,1], and the
convergence factor a=2−2t/T, linearly decreasing
from 2 to 0 throughout the iterations. A is an impor‐
tant parameter that affects the exploration and exploi‐
tation of algorithms. The candidate solutions tend to
diverge from the prey when |A|>1, and converge to‐
wards the prey when |A|<1. Details on A can be found
in the description of GWO in supplementary mate‐
rials (the roles of A in MOGWO and GWO are ex‐
actly the same).

MOGWO adopts two important components that
are very similar to those in MOPSO (Coello et al.,
2004), the archive and the leader selection strategy,
which are described in detail in the supplementary mate‐
rials. MOGWO is designed to solve the MOP of con‐
tinuous space as the grey wolf continuously moves to
any point in the search space. When MOGWO is ap‐
plied to antenna topology optimization, the solution
vectors can be restricted to binary values. Then, the
continuous MOGWO evolves to BMOGWO. This

mapping relation refers to the method proposed by
Emary et al. (2016). In this approach, the updated
grey wolf position vector is forced to be binary, de‐
scribed mathematically below:

X (t + 1) =

ì

í

î

ïïïï

ïïïï

1, if S ( )X d
1 ( t ) + X d

2 ( t ) + X d
3 ( t )

3
⩾rand,

0, otherwise, (7 )

where rand represents a random number in [0, 1], d
represents the d th dimension of X, and S (∙) denotes

the sigmoid function, whose mathematical expression
is as follows:

S ( x ) =
1

1 + exp (−10 (x − 0.5) )
. (8)

3 Competitive binary MOGWO

In antenna optimization, the number of calcula‐
tions of the fitness value is equivalent to the number
of EM simulations. They both increase proportionally
with the population size and the number of iterations,
resulting in high computational cost. To overcome
this difficulty, we apply the idea of competition to
BMOGWO to reduce the number of EM simulations.
Then, the convergence factors are changed from linear
to cosine oscillations to achieve a better balance be‐
tween exploration and exploitation than the original
BMOGWO.

3.1 Population competition

In this subsection, a competition mechanism is pro‐
posed to reduce the computational cost, and its general
concept and idea of competition to CBMOGWO
are illustrated in Fig. 2. The mechanism has two main
components: population division and population posi‐
tion update. In this competition mechanism, the pop‐
ulation size is N. Grey wolves are randomly selected to
compete in pairs x i, x j∈X (i, j=1, 2, … , N, i≠j), and
each grey wolf participates in the competition only
once.

Population division: When two competing grey
wolves x i , x j (i≠j) have a dominant relationship x i≻x j

(i≠j), x i is divided into the first winner population
X 1

w, x i ∈ X 1
w, and x j is divided into the first loser
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population X 1
l , x j∈X 1

l . Otherwise, x i∈X 1
l and x j∈X 1

w.
The population into which x i and x j are divided changes
with their dominance. If x i and x j (i≠j) do not domi‐
nate each other, we define the population to which they
are assigned as

ì
í
î

x i ∈ X 2
w, x j ∈ X 2

l , if rand > 0.5,

x i ∈ X 2
l , x j ∈ X 2

w, else,
(9)

where X 2
w and X 2

l represent the second winner and
loser population, respectively.

Population position update: We assume that the
population sizes of X 1

w and X 2
w are m and n, respec‐

tively. Therefore, we can infer that the population sizes
of X 1

l and X 2
l are also m and n, respectively, where

m+n=N/2. The four populations after division can be
expressed mathematically as X 1

w = ( x 1
wl, x 1

w2,…, x 1
wm ),

X 2
w = ( x 2

w1, x 2
w2,…, x 2

wn ), X 1
l = ( x 1

l1, x 1
l2,…, x 1

lm ), and

X 2
l = ( x 2

l1, x 2
l2,…, x 2

ln ). It should be emphasized that

the statuses of X 1
w and X 2

w are not the same due to the

way by which they are generated (the former depends

on the dominant relationship, and the latter is ran‐

domly generated). X 2
w has a greater chance to enter

the next generation through updates, while X 1
w gener‐

ally enters the next generation directly. Only when

the number of X 2
w is insufficient, will X 1

w make up.

The possibility of Xw (X t
w = [ X 2

w X 1
w ] , X t

w=x t
wi, i=

1, 2,…, m+n ) being updated is controlled by a thresh‐

old Θ ranged in [0,(m+n)/N], where t is the current it‐

eration number. Then, the number of populations that

have the opportunity to update the positions in Xw

is p=Θ×N. x t
wi ( i=1, 2,… , p ) is the population that

obtained the renewed license, and x t
wi (i=p+1, p+2,…,
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Fig. 2 Competition mechanism and its application to antenna topology optimization
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m+n) is the population that goes directly to the X t+1.
We can make out that Θ<n/N leads to p<n, and

x t
wi (i=1, 2,…, p) all come from X 2

w. That is to say,
only when Θ>n/N (p>n), x t

wi ( i=1, 2,…, n ) belong

to X 2
w and x t

wi ( i=n+1, n+2,…, p ) belong to X 1
w, will

some of the X 1
w have a chance to update their posi‐

tions. The positions of x t
wi ( i=1, 2,…, p ) are updated

in the same way as BMOGWO, with only three leaders
leading the way. The difference is that the conver‐
gence factors that control their update will be further
improved to optimize the search, as described in
Section 3.2.

Obviously, before moving on to the next itera‐
tion, all X l=x t

li(i=1, 2,… , m+n) will be updated, along
with some Xw, where x t

li ( i=1, 2,…, m ) all come from

X 1
l , and x t

li(i=m+1, m+2,… , m+n) all belong to X 2
l .

Since X 1
l and X 2

l are generated in different ways, we
set up different location update methods for them. X 1

l

is produced because of being dominated; in addition
to the three leaders’ influence on its direction, it is
influenced by the X 1

w who dominates it, which means
that it should also learn from X 1

w to determine the di‐
rection. We mathematically describe the improved
distance update method of X 1

l as follows:

ì

í

î

ïïïï

ï
ïï
ï

Dp = ||Cq∙Xp − ( λ l∙X l + λw∙Xw ) ,

( p, q ) = {(α, 1), ( β, 2 ), (δ, 3) } ,

λ l + λw = { 1 }dim,

(10)

where Xw is the position of X 1
w and X l is the position

of X 1
l . dim is the dimension of design variables x. λ l

and λw are the weights we assign to X 1
l and X 1

w, re‐
spectively, where λ l ( λ l1, λ l1,…, λ l dim ) is a random

vector in [0, 0.5], and λw ( λw1, λw1,…, λw dim ) varies

with λ l at [0.5, 1]. |λw|>|λ l| is to increase the influence

of X 1
w on X 1

l and to guide its movement direction.
Other formulae that affect the position update of X 1

l are
the same as in BMOGWO. Since the randomly gener‐
ated X 2

l is not dominated, its direction is still deter‐
mined only by three leaders, and there is no need to
learn from X 2

w. Its position update is the same as the
traditional way in BMOGWO. After the position up‐
dates are completed, we can obtain X t+1=[ X 2 ( t + 1)

w X t
w

X 1( t + 1)
l X 2 ( t + 1)

l ].

The application of the competition mechanism
to antenna topology optimization is depicted in the

lower part of Fig. 2. We can observe that one part of
the current antenna topologies needs to perform posi‐
tion update and EM simulation calculation using the
competition mechanism. The other part of the antenna
does not need to be updated; thereby, much time origi‐
nally used for EM simulation can be saved. It is rea‐
sonable that our proposed CBMOGWO can reduce
considerable computational cost due to the existence
of the competitive mechanism.

3.2 Convergence factor of cosine oscillation

In the competition mechanism, not all grey wolves
are updated in each iteration, which greatly reduces
the diversity of the population. Otherwise, the balance
of exploration and exploitation will need to be im‐
proved. A detailed analysis of the development and
exploration in MOGWO can be found in Section 2 of
the supplementary materials.

Improvement of convergence factor a: We make
up for the above shortcomings by improving the con‐
vergence factor (a) of x t

wi ( i=1, 2,…, p ). We improve

a that decreases linearly with the number of itera‐
tions to cosine oscillation in this population. x t

wi ( i=

1, 2,…, p ) are affected by the improved convergence

factor of cosine oscillation, so they hunt in a way dif‐
ferent from X l, and their position changes are more
random, which increases the diversity of the popula‐
tion to a certain extent. The improved convergence
factor is called anew, and its mathematical formula is
as follows:

anew =

ì

í

î

ïïïï

ï
ïï
ï

1 − 2
t
T
− sin (0.5 ( rand − 0.5) ), t <

2
T

,

2 − 2
t
T
− sin (0.5 ( rand − 0.5) ), t⩾ 2

T
,

(11)

where rand represents a random number in [0, 1].
Accordingly, when i=1, 2, …, p, ai=anew; when i=p+

1, p+2, … , N, ai=a. The comparison of a before and
after the improvement (a and anew) is shown in Fig. 3.
We can see that, when t<2/T, anew<a leads to Anew<A,
bringing the expected weaker exploration capability
compared to X l. When t⩾2/T, the cosine oscillation
of anew above and below a sometimes makes Anew>A
to avoid the local search being too concentrated,
where Anew corresponds to anew. Therefore, the updat‐
ing of x t

wi ( i=1, 2,…, p ) with anew could balance the
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exploration intensity, different from X l’s strong ex‐
ploration at the initial stage of iteration. At the later
stage of iteration, anew makes the local search inten‐
sity of the population more reasonable compared
with the fixed reduction of a, and it helps explore
more areas where possible solutions exist.

The basic framework of CBMOGWO is shown
in Procedure 1 in the supplementary materials. It is
expected that the method proposed in this paper can
not only improve the optimization performance of
BMOGWO but also significantly reduce the calcula‐
tion cost of antenna optimization design.

4 Numerical experiments

In this section, our proposed CBMOGWO is
compared with two well-known algorithms, BMOPSO
and the original BMOGWO.

4.1 Experimental setup

For BMOPSO, the following initial parameters
are chosen:

ϕ1 = ϕ2=2.05;

ϕ = ϕ1 + ϕ2=5.1;

Inertia weight w = χ =
2

ϕ − 2 + ϕ2 − 4ϕ
;

Personal coefficient C1=χ × ϕ1;

Social coefficient C2=χ × ϕ2.

For common parameters in the three algorithms,
the following initial parameters are chosen:

Grid inflation parameter α=0.1;
Leader selection pressure parameter β=4;

Number of grids per each dimension: 10.
To evaluate the performance of CBMOGWO,

12 standard multi-objective test problems (MOTPs)

proposed in CEC2009 (Zhang QF et al., 2009) were
selected, ranging from UF1 to UF12, including seven
bi-objective test problems, three tri-objective test
problems, and two five-objective test problems. These
are shown in Tables S1‒S3 in the supplementary ma‐
terials. The above 12 test problems are all continuous
test problems, and thus 15 bits were used to represent
each continuous variable in binary form (Mirjalili et al.,
2014a; Zhang QF et al., 2009). Therefore, the dimen‐
sions of grey wolves are calculated as follows:

Dimgrey wolf = Dimfunction × 15, (12)

where Dimgrey wolf indicates the dimension of each
grey wolf in CBMOGWO, and Dimfunction is the di‐
mension of a particular test problem. The population
size and the maximum number of iterations were both
set to 100, and the dimension of the design variable
was set to 10; in other words, the grey wolves’ dimen‐
sion was 150 (10×150). Furthermore, we evaluated the
performance of the proposed algorithm for the multi-
objective knapsack problems (MOKPs). The test pro‑
blems of MOKPs were provided on the evolutionary
multi-objective optimization platform PlatEMO (Tian
et al., 2017). A binary MOKP with m knapsacks and
d candidate items can be described as

min F ( )x = ( )1 − x P

subject to ì

í

î

ïïïï

ïïïï

xW ⩽ C,

xi ⊂ x and xi ∈ {0, 1} ,

i = 1, 2,…, d,

(13)

where x= (x1, x2…, xd) represents a scheme. If xi=1,
the ith item is selected in scheme x; otherwise, it is
unselected. F ( x ) is an m-dimensional vector that

records the total profit of unselected items in each
knapsack. P and W represent the profit and weight
matrices of d items in each knapsack, respectively. C
is the maximum capacity vector of m knapsacks. Since
the variable dimension of our designed antenna was
not too high, we conducted only MOKP experiments
with 250 items (i.e., d=250). Regarding the number of
targets, the performance of the proposed CBMOGWO
on MOKPs with 2, 3, 4, and 5 targets was evaluated
(i.e., M=2, 3, 4, 5).

The value of Θ also affects the performance of
the proposed algorithm. If Θ is too small, there will

Fig. 3 Convergence factors before and after improvement
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be fewer updated individuals, and the algorithm’s op‐
timization ability will be poor. If Θ is too large, the
computational cost will be greatly increased, espe‐
cially of the antenna design problem. Θ is set to ba‑
lance the likelihood of updates to X 1

w and X 2
w, thus

helping balance the exploration and exploitation of
the algorithm. Since X 1

w and X 2
w are generated in dif‐

ferent ways (X 1
w is generated by the dominance rela‐

tionship, whereas X 2
w is randomly generated), to make

the algorithm more efficient, as many X 2
w as possible

should be updated, but X 1
w should not be updated at

all. We find that setting Θ=0.1 maintained the proba‐
bility of X 1

w and X 2
w updates in a good dynamic ba‑

lance. Note that X 2
w gives priority to update, and

when X 2
w is less than 10% of the total population, X 1

w

will make up the difference.
To quantitatively compare the performance of

each algorithm, the inverted generational distance
(IGD) (Ishibuchi et al., 2015) and hypervolume (HV)
(Zitzler and Thiele, 1999) were selected to evaluate
the convergence and diversity of the algorithm. The
first metric, IGD, was proposed, and its calculation
formula is as follows:

IGD =
1
n∑i = 1

n

di , (14)

where n represents the number of points in the true
Pareto front. The true Pareto fronts of the standard
MOTPs are obtained by Zhang QF et al. (2009)
through mathematical derivation and extensive exper‐
iments. In some engineering problems there is no true
Pareto front, such as MOKPs and antenna design.
The parameter di is the distance between the ith point
on the true Pareto front and the closest point in the
obtained Pareto solution set, calculated using the
Euclidean distance formula. Although the Euclidean
distance calculation method is used, di is essentially
different from the Euclidean distance because the
objective function does not have the dimension of dis‐
tance. Furthermore, IGD is flawed as a metric when
the dimensions of multiple objective functions are
not exactly the same (unless the objective functions
are converted to dimensionless ones) (Marler and
Arora, 2004, 2009). Regarding the metric of IGD, the
smaller the IGD value, the better the comprehensive
performance of the algorithm. Since some engineering

problems do not have a true Pareto front, IGD cannot
be used to evaluate the performance of the algorithm.
HV is a test metric that can evaluate the performance
of the algorithm in this case, and the mathematical
description of HV is as follows:

HV = Leb (∪ s
i = 1vi ), (15)

where Leb stands for the Lebesgue measure and is
used to measure the volume, s represents the number
of Pareto solutions obtained, vi represents the HV
formed by the reference point and the ith solution in
the solution set. In the numerical experiment, since
the true Pareto fronts of the 12 test problems all exist,
the reference point we chose is the true non-dominated
solution set. The larger the HV value, the better the con‐
vergence, uniformity, and universality of the algorithm.

4.2 Discussion of results on MOTPs

Fig. 4 shows the distributions of the Pareto opti‐
mal solutions obtained by BMOPSO, BMOGWO,
and CBMOGWO on the bi- and tri-objective test pro‑
blems in the objective function space. The Pareto op‐
timal solution obtained by CBMOGWO was closest
to the true Pareto front. Therefore, CBMOGWO had
better optimization performance according to the solu‐
tion set distribution. All algorithms were run indepen‐
dently 30 times on each test problem, and the statisti‐
cal results of IGD for these 30 trials are provided in
Table S4 in the supplementary materials. The number
of objectives considered in the corresponding test is
shown in parentheses. It can be observed from Table S4
that CBMOGWO had lower average IGD values than
the original BMOGWO and traditional BMOPSO for
all instances. Meanwhile, CBMOGWO provided the
best IGD values except for UF2, UF5, and UF11. Even
for the worst IGD measurements of non-dominated so‐
lutions, CBMOGWO outperformed the two other algo‐
rithms. In terms of the median IGD value, CBMOGWO
still provided the best non-dominated solution for all
the test problems. According to the statistical results
of the standard deviation, CBMOGWO yielded the
smallest IGD variance, which verified the stability
of its optimization performance. The significance of
the above results is also illustrated in Fig. S1 in the
supplementary materials. The boxplots of CBMOGWO
were lower than that those of BMOGWO and
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BMOPSO for all test problems, and narrower than
those of BMOGWO except for UF7 and UF11. IGD
is a valuable metric to test the overall performance
of the algorithm. Through the above analysis of the
statistical results of IGD values, it can be concluded
that CBMOGWO has better convergence and diver‐
sity. Fig. S2 in the supplementary materials presents
the evolution curves of the average IGD value for
each algorithm at each test instance. These results indi‐
cated that CBMOGWO was better than BMOGWO
and far superior to BMOPSO in all instances. For

most of the test problems, CBMOGWO converged
the fastest, which is meaningful in dealing with com‐
plex engineering problems, such as antenna topology
optimization.

The statistical results of HV values for another
metric to MOP are shown in Table S5 in the supple‐
mentary materials. In all instances, CBMOGWO pro‐
vided the largest average HV value. With the excep‐
tion of UF10, CBMOGWO obtained the non-dominated
solution with the best HV value. From the statistical
results of the worst HV value, CBMOGWO was highly

Fig. 4 Obtained Pareto optimal solutions by BMOPSO, BMOGWO, and CBMOGWO for UF1 to UF10
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advantageous over BMOPSO, and CBMOGWO was
also superior to the original BMOGWO, except for
UF1, UF3, UF8, and UF9. As for the non-dominated
solution with a median HV value, it can be observed
that CBMOGWO provided a larger HV value except
for UF9. Regarding the standard deviation of HV
values, the solution set obtained by CBMOGWO
was more stable than those obtained by the original
BMOGWO and traditional BMOPSO, except for UF1,
UF7, UF10, and UF11. Fig. S3 in the supplementary
materials describes the significance of the above
statistical variables from another perspective. The
boxplots of CBMOGWO were higher than those of
BMOGWO and BMOPSO in all instances and nar‐
rower than those of BMOGWO except for UF3 and
UF11. The larger the HV value, the better the conver‐
gence, uniformity, and diversity of the algorithm.
Therefore, it can be stated that CBMOGWO has stron‐
ger optimization ability in dealing with MOP. Fig. S4
in the supplementary materials presents the evolution
curves of the average HV value for each algorithm
for 12 test problems. It is obvious that CBMOGWO
not only converged faster but also achieved a larger HV
value, which shows that CBMOGWO has achieved a
good balance between exploration and exploitation.

In addition, it is known that CBMOGWO up‐
dates only about half of the population in each itera‐
tion due to the characteristics of the competition
mechanism. However, through the above statistical
analysis of the two metrics including IGD and HV, it
can still obtain better optimization capability than the
original BMOGWO and is far superior to the tradi‐
tional BMOPSO. Therefore, it can be concluded that
our proposed CBMOGWO has robust optimization
performance.

4.3 Discussion of results on MOKPs

Furthermore, we conducted a series of tests on
binary MOKPs to eliminate the effect of rewriting con‐
tinuous variables in binary form. Fig. 5 shows the Pareto
optimal solutions obtained by BMOPSO, BMOGWO,
and CBMOGWO on the bi- and tri-objective MOKPs.
MOKPs are minimization problems, so the closer the
obtained Pareto optimization solution to the negative
direction of each coordinate axis, the better the optimi‐
zation performance of the corresponding algorithm.
From the comparison of Pareto optimization solutions

obtained by different algorithms in Fig. 5, the solu‐
tion set obtained by CBMOGWO was closer to the
negative direction of each coordinate axis than the
two other. In addition, we performed quantitative
statistical analysis. Since there is no true Pareto front
for MOKPs, the IGD value cannot be obtained to
evaluate different algorithms. Therefore, this problem
can be evaluated using only the HV value. From the
statistical results on the MOKP problem in Table S6
in the supplementary materials, the HV values (aver‐
age, best, and worst) of the Pareto solution set obtained
by CBMOGWO were larger. In terms of the stand‑
ard deviation, although the standard deviation of the
CBMOGWO was not always the smallest, it was still
within an acceptable range. Fig. S5 in the supplemen‐
tary materials depicts the degree of dispersion of the
HV values. First, it can be observed that the boxplot
of the HV value obtained by CBMOGWO was higher,
which indicates that the Pareto solution set obtained by
this algorithm more uniform and diverse. Second, the
boxplot obtained by CBMOGWO was much narrower
than that of BMOGWO in MOKP with M=3, and
close to that of BMOGWO for other instances, which
shows that CBMOGWO has stable optimization abi‑
lity. Fig. S6 in the supplementary materials presents
the evolution of the HV value with the number of
iterations on MOKPs. The HV value of the Pareto
solution set obtained by CBMOGWO was always
significantly higher than those of the two other algo‐
rithms in the evolution process. From the above
discussion, it can be concluded that our proposed
CBMOGWO performs better than the original
BMOGWO and the classic BMOPSO.

5 Compact high-isolation dual-band MIMO

antenna design with high-dimensional mixed

variables

The high efficiency of the proposed CBMOGWO
in antenna topology optimization was verified by a de‐
sign example of MIMO antenna. With the develop‐
ment of wireless terminal equipment, the space for
placing the antenna is becoming gradually smaller, and
the antenna structure is getting more compact. In the
miniaturized MIMO antenna, the coupling between
the antennas becomes stronger due to the more
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compact antenna structure. These coupled energies can
greatly affect the radiation performance of the antenna;
therefore, compact MIMO antennas with high isola‐
tion are in high demand in current fifth-generation tech‐
nology, as well as in the forthcoming sixth-generation
wireless communication systems (Jehangir and Sharawi,
2020). In general, in the conventional antenna optimi‐
zation design using EAs, there is usually only one type
of optimization, either size optimization with contin‐
uous variables or topology optimization with binary
variables. Moreover, automatic multi-objective antenna
designs usually deal with only two optimization ob‐
jectives (Dong et al., 2019a, 2019b). In our MIMO an‐
tenna design, we used CBMOGWO to optimize both
the continuous design variables and the binary design
variables with highly variable dimensions and multi‐
ple optimization objectives.

The initial MIMO antenna model to be optimized
is shown in Fig. 6. The antenna was fed by a 50-Ω
microstrip line and printed on an FR4 substrate with
a thickness of 1.6 mm, a permittivity of 4.4, and a
loss tangent of 0.02. The design goal was to make
sure that the isolation was more than 10 dB in the
3.5 GHz WiMAX and 5.2/5.8 GHz WLAN bands,
while S11 maintained a value lower than −10 dB within
working frequencies. S11 is a performance indicator of
the antenna. The larger the absolute value of S11 (that
is, return loss), the better the impedance matching of
the antenna in this frequency band, and the more the
radio waves that can be transmitted. In general, if
S11<−10 dB, the antenna can work in this frequency
band. Isolation is another performance indicator of
the antenna (represented by S12 in dual-port antennas),

referring to the degree of interference between two

antennas. The greater the isolation, the less the inter‐

ference between the antennas, and the better the

antennas can transmit and receive radio waves. The

multi-objective functions can be described as

min

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

f1 = max S11 (n1 ), n1 = 1, 2,…, N1,

f2 = max S12 (n1 ), n1 = 1, 2,…, N1,

f3 = max S11 (n2 ), n2 = 1, 2,…, N2,

f4 = max S12 (n2 ), n2 = 1, 2,…, N2,

f5 = max S12 (n3 ), n3 = 1, 2,…, N3,

(16)

where f1 and f2 are to ensure that the working fre‐

quency band around the 3.5 GHz WiMAX bands is

available, while f3 and f4 are for 5.2/5.8 GHz WLAN

bands. The parameter f5 is to ensure that the isolation

Fig. 5 Pareto optimal solutions obtained by BMOPSO, BMOGWO, and CBMOGWO for MOKPs

Fig. 6 Initial structure of the MIMO antenna
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is still more than 10 dB in the remaining frequency
band. n1, n2, and n3 are the particular sampling fre‐
quency points in the first, second, and remaining
frequency bands, respectively. N1, N2, and N3 repre‐
sent the numbers of sampling points in the three fre‐
quency bands.

In this MIMO antenna design, the continuous
variables included the width of the substrate w, feed‐
er w1, and ground w2, and the distance between the
feeder and substrate d, where 20⩽w⩽30, 2⩽w1⩽3,
3⩽w2⩽5, and 4⩽d⩽6 mm. The binary parameters
were related to the topology optimization of the
shape of the radiator with a bilaterally symmetric
structure. The left half of the radiator was dispersed
into 10×10 small elements, and the size of each ele‐
ment was (w−4)/20×14.6/10 mm2. The overlap length
of each small element was 10% of the side length to
ensure the accuracy of the EM simulation. As for the
parameter setting of the algorithm, the population
size and iteration number were both set to 30, and Θ=
0.1. The algorithm’s dimensions are composed of 100
(half of the number of pixels in the radiator) binary
variables and four continuous variables. Each algo‐
rithm was run independently 10 times.

Some of the MIMO antenna topologies obtained
by CBMOGWO are shown in Fig. 7, and their corre‐
sponding continuous design variables are shown in
Table 1. Due to limited space, we present only four
antenna topologies and their performance results. As

seen from Fig. 8, all MIMO antennas realized over
10 dB return loss and isolation levels within the
preset operating frequency bands of 3.5, 5.2, and 5.8
GHz. The simulation and measurement results were in
good agreement with the acceptable error range. Fig. 9
presents the simulated and measured radiation pat‐
terns in the three principal planes for elements 1
and 2 at 3.5, 5.2, and 5.8 GHz, showing a good
agreement between the simulation and measurement
results. Furthermore, some complementary characteris‐
tics for the two-element patterns were observed at the
same frequency, indicating the pattern diversity to
combat multipath fading. Fig. 10 shows the calculated
envelop correlation coefficient (ECC) of the optimized
MIMO antenna 2. In the whole operation band, the
ECC values were better than the acceptable criterion
of less than 0.3, which indicated that a desirable diver‐
sity capability was achieved by the optimized MIMO
antenna.

Furthermore, compared with previous MIMO
antenna design results (Table 2), our designed dual-
band MIMO antenna had smaller size and higher iso‐
lation degree with lower design complexity. Compared
with the design methods in the literature (Sharawi
et al., 2012; Kumar, 2016; Ding et al., 2017; Ren and
Zhao, 2019) that rely on antenna designers and EM
software, our CBMOGWO-based design method had
the lowest design complexity. In addition, compared
with previous optimization methods (Table 3), our

Fig. 7 Part of the MIMO antenna optimized by CBMOGWO: (a) antenna 1; (b) antenna 2; (c) antenna 3; (d) antenna 4;
(e) top view of the fabricated antenna 2; (f) bottom view of the fabricated antenna 2
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design had a higher variable dimension, more variable
types, and more design objectives. Obviously, our de‐
sign also had the highest complexity compared to the
designs in the literature (Dong et al., 2019b; Jia and Lu,
2019; Du et al., 2020). The above demonstrated that
the proposed CBMOGWO is the most effective among
the antenna topology designs.

To verify the optimization capability of the pro‐
posed CBMOGWO in antenna topology optimiza‐
tion, we still used multi-objective metrics for evalua‐
tion. The calculation of the IGD value requires the
true Pareto solution set, which is difficult to obtain for
engineering optimization problems such as antenna
topology optimization. Therefore, the HV value was
used to evaluate the optimization ability of the three
algorithms. Since the true Pareto solution set was un‐
known, [1, 1, 1, 1, 1] was selected as our reference
point. The evolution of the average HV value of 10
times with the number of iterations is shown in Fig. 11.

It can be observed that the convergence curve of
CBMOGWO was always higher than those of the
two other algorithms. The final average HV values
are shown in Table 4. The HV value of the Pareto so‐
lution set obtained by CBMOGWO was obviously
larger. The above analysis demonstrates that the Pare‐
to solution set obtained by CBMOGWO in this com‐
pact MIMO antenna topology optimization example
was better compared with the original BMOGWO
and traditional BMOPSO.

Next, our proposed method was compared to
BMOGWO and BMOPSO in terms of CPU time. Each
EM simulation took about 144 s on a 64-bit operat‐
ing system with 16 GB RAM and a 3.7 GHz i5 pro‐
cessor. To improve the experimental efficiency, we car‐
ried out parallel calculation on the population of the
algorithm in each iteration (simultaneous calculation
of four populations each time was supported). In
CBMOGWO, the computational cost was greatly re‐
duced due to the reduction in the number of popula‐
tions requiring location updates and the number of
EM simulations. Table 4 shows that the number of
EM simulations of BMOGWO and BMOPSO was
930, while that of CBMOGWO was only 570. The
design time of CBMOGWO was only 59.71% of that
of BMOGWO. This reduction of optimization time is
significant for antenna topology optimization.

Fig. 8 Simulated and measured S-parameter of the MIMO antenna (only antenna 2 is fabricated and measured): (a) antenna
1; (b) antenna 2; (c) antenna 3; (d) antenna 4. References to color refer to the online version of this figure

Table 1 Continuous parameters obtained in the topology
optimization of the MIMO antenna

Parameter

w (mm)

w1 (mm)

w2 (mm)

d (mm)

Antenna 1

25.2

2.3

4.6

5.4

Antenna 2

27.6

2.1

4.0

5.4

Antenna 3

28.1

2.3

4.4

5.5

Antenna 4

27.0

2.4

4.2

5.3
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6 Conclusions

In this paper, an efficient and cost-effective al‐

gorithm, named CBMOGWO, is proposed for antenna

topology optimization. First, the competitive mechanism

is used to reduce the number of calls to EM simulation

to reduce calculation costs. Then, we introduce the

cosine oscillation function into the linear convergence

Fig. 9 Radiation patterns for the obtained MIMO antenna
2 at different frequencies (elements 1 and 2 are the two
element structures of the antenna). References to color refer
to the online version of this figure

Fig. 10 Calculated ECC of the optimized MIMO antenna 2

Table 2 Performance comparison between the optimized MIMO design and previous work

Reference

Ding et al., 2017

Ren and Zhao, 2019

Sharawi et al., 2012

Kumar, 2016

This paper (antenna 2)

Antenna size (mm3)

36×27×0.8

150×7.5×0.8

50×100×1.56

31×20×1.6

24.6×27.6×1.6

Operation band (GHz)

2.31‒2.95

3.4‒3.6, 4.8‒5.0

2.4‒2.9

3.8‒7.8

3.2‒3.6, 5.0‒6.0

Isolation (dB)

17

15

12

10

16

Design complexity

High

High

Moderate

Moderate

Low

Table 3 Optimization comparison between the proposed CBMOGWO and previous work

Reference

Dong et al., 2019b

Jia and Lu, 2019

Du et al., 2020

This paper

Optimization technique

MOEA/D

HTBPSO

MOEA/D-GO

CBMOGWO

Parameter type

Continuous

Binary

Binary

Mixed

Dimension

21

80

44

104

Number of objectives

2

1

3

5

Problem complexity

Low

Moderate

Moderate

High

Fig. 11 Evolution of the average HV value in antenna
topology optimization

Table 4 Comparison of optimal performance and compu‐
tational cost between different antenna optimizations

Optimization
aproach

BMOPSO
BMOGWO
CBMOGWO

Average
HV

0.9145
0.9500
0.9996

Number of EM
simulations

930
930
570

Average CPU time
Total (h)

7.98
8.24
4.92

Relative (%)
96.84

100.00
59.71
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factor of the original BMOGWO to balance explora‐
tion and exploitation. Furthermore, we verify the
effectiveness of CBMOGWO on 12 standard MOTPs
and four MOKPs. Finally, the high efficiency of our
method in antenna topology optimization is validated
with the design example of a compact dual-band
MIMO antenna with high-dimensional mixed design
variables and multiple objectives. CBMOGWO re‐
quires only about 60% of the time consumed by the
traditional BMOGWO and BMOPSO, which shows
that our method is highly adaptable even for complex
design problems. It provides new ideas for fast antenna
optimization design based on MOEAs with increased
degree of freedom and helps explore new and unex‐
plored antenna structures with satisfactory perfor‐
mance. Moreover, our proposed competition mecha‐
nism is not only applicable to BMOGWO, but can be
migrated to more EAs. The proposed time-saving
CBMOGWO is not limited to antenna topology optimi‐
zation, but can also be applied to other computationally
complex engineering problems such as filter design
and microwave circuit design. In the future, we aim
to explore the dimension reduction of antenna design
variables to further reduce the computational cost.
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