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Abstract: Power dispatch is a core problem for smart grid operations. It aims to provide optimal operating points
within a transmission network while power demands are changing over space and time. This function needs to be
run every few minutes throughout the day; thus, a fast, accurate solution is of vital importance. However, due to
the complexity of the problem, reliable and computationally efficient solutions are still under development. This
issue will become more urgent and complicated as the integration of intermittent renewable energies increases and
the severity of uncertain disasters gets worse. With the recent success of artificial intelligence in various industries,
deep learning becomes a promising direction for power engineering as well, and the research community begins to
rethink the problem of power dispatch. This paper reviews the recent progress in smart grid dispatch from a deep
learning perspective. Through this paper, we hope to advance not only the development of smart grids but also the
ecosystem of artificial intelligence.
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1 Introduction

Power systems can be traced back to the Pearl
Street station and its distribution network built by
Thomas Edison (Kundur, 1994). They were first
built to support lighting systems only, but soon
spread to provide energy for many other applica-
tions with the accelerated adoption of electrification
technologies (Mai et al., 2018). This revolution is
still ongoing. For example, we see more and more
electric vehicles running on the road in daily life. In
fact, a reliable supply of electricity has already be-
come a cornerstone of our digital economy (Walsh,
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2013), and it is of vital importance in many areas,
including transportation (Jaller et al., 2020), finance
(Oughton et al., 2017), food and agriculture (Zim-
merman R et al., 2016), and epidemic prevention and
control (Liu ZF, 2020). Its increasing importance
indicates increasing complexities, and smart grids
are believed to be the next-generation power system
(Gharavi and Ghafurian, 2011; Wen GH et al., 2021)
for meeting the increasing requirements.

Smart grid will be much more complicated than
traditional power systems. It is essentially an electri-
cal grid enhanced by information technology (Hos-
sain et al., 2012), which turns the electrical grid into
an intelligent system. The features of smart grids
and conventional power grids are summarized in
Table 1. The main benefits of smart grids include the
following: (1) efficiency—smart grids enable greater
utilization of generators and lines; (2) resilience—
smart grids ensure a more reliable supply of
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Table 1 Smart grid and conventional power grid features (Mohamed and Eltamaly, 2018)

Item Smart grid Conventional power grid

1 Cyber-physical system Electromechanical system
2 Sensors throughout the network Few sensors
3 Relatively distributed generators Relatively centralized generators
4 Automatic monitoring Manual monitoring
5 More reliable and resilient Suffering more from failures and blackouts
6 Consumers have many choices Consumers have few choices

electricity, especially against disasters; (3)
sustainability—smart grids permit greater pen-
etration of renewable energy sources; (4) market-
enabling—smart grids allow more choices and
therefore lower energy bills.

Power dispatch is a kernel problem that must
be addressed in fulfilling the smart grid promise
(Gandhi et al., 2016). With the purpose of deciding
a best strategy for power generation, transmission,
and even consumption, smart grid dispatch connects
different components within the whole system. In
particular, demand is always changing over space and
time, which requires dispatch methods to be reliable
and computationally efficient (Hasan et al., 2020).
Furthermore, with the increased integration of inter-
mittent renewable energies (Huang et al., 2015; Wen
YF et al., 2016) and the severity of uncertain disas-
ters getting worse (Huang et al., 2017a, 2017b), the
generation and transmission parts of grids are now
becoming more and more uncertain, which makes the
smart grid dispatch problem even more challenging
than ever before.

Artificial intelligence (AI) is now a popular tech-
nology in various industries (Wu F et al., 2020). It
promises to revolutionize almost all kinds of tough
problems by switching the original problem to a
data-driven one. This is a new paradigm for scientific
research (Hey et al., 2009) and has proved its power
and efficiency in many real-world applications such
as computer vision (Ibrahim et al., 2020), natural
language processing (Cambria and White, 2014), and
speech recognition (Haridas et al., 2018). Recently, it
has also attracted much attention in the power engi-
neering community (Bose, 2017) from both academia
and industries.

AI itself has gone through several ups and
downs, and interested readers are referred to
Buchanan (2005) for more details. The most recent
resurgence of AI is powered by deep learning (Le-
Cun et al., 2015; Goodfellow et al., 2016), which is

part of a broader family of machine learning meth-
ods that are based on artificial neural networks with
representation learning. On one hand, deep learning
can handle a huge amount of data where other ma-
chine learning methods often fail. On the other hand,
the power industries are obtaining more and more
data due to the wide spread of advanced information
and communication technologies (Huang et al., 2019)
such as phasor measurement units (PMU), micro
phasor measurement units (µPMU), and advanced
meter infrastructures. As a result, many scholars
have been trying to apply deep learning to problems
of smart grid dispatch, with the hope of tackling the
issues that remain unsolved by traditional methods.
This motivated us to write this paper to summarize
what has been done already and where deep learn-
ing is headed regarding smart grid dispatch. Note
that other machine learning methods, such as ran-
dom forests (Rahman et al., 2020) and logistic regres-
sion (Rudin et al., 2012; Eskandarpour and Khodaei,
2017), will not be the focus of this paper.

2 Smart grid dispatch problems

Mathematically, smart grid dispatch is an opti-
mization problem that can be formulated as follows:

min f(x)

s.t.
{

g(x) = 0,

h(x) ≤ 0,

(1)

where x represents decision variables (e.g., outputs
of generators), f(x) represents the objective func-
tion (e.g., total cost of all the generators), and g(x)

and h(x) represent equality constraints (e.g., power
balance constraints) and inequality constraints (e.g.,
output limits of generators), respectively. Under
different assumptions or for different requirements,
smart grid dispatch problems will have different for-
mulations. Herein, we summarize some popular for-
mulations that are often used in power engineering.
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2.1 Economic dispatch

The economic dispatch problem is the process
of allocating generation among different generating
units to achieve the minimum operating cost (Wood
et al., 2013). It is the simplest formulation of smart
grid dispatch and is often used for real-time opera-
tion. The formulation is as follows:

min c(PG)

s.t.

{ ∑
G PG −∑

D PD = 0,

Pmin
G ≤ PG ≤ Pmax

G ,

(2)

where PG and PD represent the generator outputs
and load demands, respectively. G is the set of power
generators and D is the set of load demands. c(PG) is
the total cost function, which can be nonlinear (e.g.,
quadratic function c(PG) =

∑
(α + βPG + γP 2

G) is
often used) or linear (i.e., c(PG) =

∑
(α + βPG)).

The first constraint is the power balance constraint,
without considering the power flow through trans-
mission lines. The second constraint presents the
limits of generator outputs.

The classical economic dispatch problem targets
minimization of the operating costs as shown above.
With the increasing concern about environmental
matters, other costs, such as carbon emission cost,
can also be included (Yin et al., 2018). In addition,
network loss cost is often considered (Zeng et al.,
2014), especially for electricity market applications.

2.2 Optimal power flow

Economic dispatch is quite successful when the
flows within transmission lines are at a low level.
However, with quickly increasing demand for elec-
tricity, transmission lines were soon working close to
their capacities, and a fear of line overloading led
to the concept of optimal power flow (Carpentier,
1979).

As an extension of the classical economic dis-
patch problem, optimal power flow is an optimiza-
tion problem that solves the economic dispatch prob-
lem and power flow equations simultaneously (Wood
et al., 2013). Its original formulation is as follows:

min c(PG)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

PG − PD − V (GV cosΘ +BV sinΘ) = 0,

QG −QD − V (GV sinΘ −BV cosΘ) = 0,

−Pmax
L ≤ XΘ ≤ Pmax

L ,

Pmin
G ≤ PG ≤ Pmax

G ,

Qmin
G ≤ QG ≤ Qmax

G ,
(3)

where PG, QG, PD, QD, V , G, B, and Θ indicate the
generator active output, generator reactive output,
load active demand, load reactive demand, voltage
magnitude, the real part of the node admittance ma-
trix, the imaginary part of the node admittance ma-
trix, and the voltage angle difference, respectively.
X is the reactance matrix of transmission lines, and
Pmax
L represents the transmission capacity. The first

two constraints address the power flow equations,
the third constraint addresses the transmission line
constraints, and the last two constraints address the
limits of generator outputs.

The above problem is a highly nonlinear and
nonconvex optimization problem, which makes it
quite difficult to solve for practical usage. As a result,
a linear approximation called direct current (DC)
optimal power flow is often used in research and in-
dustry. Here, decision variables in the DC optimal
power flow formulation correspond to active genera-
tor outputs only. Generally, it is believed that DC
optimal power flow gives a good approximation of
the original optimal power flow problem (i.e., alter-
nating current (AC) optimal power flow) and is much
faster and easier to apply (Wood et al., 2013). DC
optimal power flow has the following formulation:

min c(PG)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

PG − PD −BΘ = 0,

−Pmax
L ≤ XΘ ≤ Pmax

L ,

Pmin
G ≤ PG ≤ Pmax

G .

(4)

The optimal power flow problem provides a
building block for many other smart grid dispatch
applications (Chatzos et al., 2020), and is almost the
most popular formulation for smart grid dispatch.

2.3 Unit commitment

In economic dispatch and optimal power flow, it
is assumed that there are NG generating units work-
ing in the power system. Under this assumption
for the economic dispatch problem and the optimal
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power flow problem, we aim to find an optimal op-
erating point for grids. Nevertheless, the optimal
subset of the complete set of generating units re-
mains undecided, which results in the problem of
unit commitment (Sheble and Fahd, 1994; Padhy,
2004; Tejada-Arango et al., 2020).

A general formulation of unit commitment is as
follows:

min
∑
t

(
c1(PG,t) + c2(uG,t) + c3(suG,t) + c4(sdG,t)

)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
G PG,t −

∑
D PD,t = 0,

uG,tP
min
G ≤ PG,t ≤ uG,tP

max
G ,

uG,t = uG,t−1 + suG,t − sdG,t,∑
t suG,t ≥ SUG,∑
t sdG,t ≥ SDG,

(5)
where c1(·), c2(·), c3(·), and c4(·) indicate the fixed
cost, variable cost, startup cost, and shutdown cost
of generating units, respectively. uG,t, suG,t, and
sdG,t indicate the commitment decision, startup de-
cision, and shutdown decision, respectively. The first
constraint addresses the power balance constraints,
the second constraint addresses the generator out-
put constraints, the third constraint addresses the
unit status, and the last two constraints address the
minimum up- and down-time constraints.

Unit commitment is often used for day-ahead
generation scheduling. The desired output is the
commitment status, which is binary. As a result, the
unit commitment problem is a mixed-integer opti-
mization problem, which is more complicated than
the economic dispatch problem.

2.4 Security-constrained dispatch

Contingencies are things that might happen to a
system for various reasons, for example, natural dis-
asters (Huang et al., 2017a, 2017b) or human attacks
(Xiang et al., 2018). The above formulations, how-
ever, do not consider contingencies, which can lead
to load shedding or even large blackouts when dis-
ruptions happen. As a result, it is necessary to take
into account contingencies as constraints in smart
grid dispatch problems.

Contingency analysis models single-failure
events (e.g., one line fails) or multiple equipment
failure events (e.g., two transmission lines fail at
the same time) (Wood et al., 2013). According to

whether corrective actions are allowed when inte-
grating contingencies in smart grid dispatch formula-
tions, security-constrained dispatch problems can be
categorized into preventive security-constrained dis-
patch and corrective security-constrained dispatch
(Xu et al., 2014). Taking the contingencies of
transmission line outages in DC optimal power flow
problems as an example, the preventive security-
constrained optimal power flow problem can be for-
mulated as follows:

min c(PG)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

PG − PD −BΘ = 0,

−Pmax
L,c ≤ XΘ ≤ Pmax

L,c ,

Pmin
G ≤ PG ≤ Pmax

G ,

(6)

where the subscript c indicates the set of contingen-
cies that will be taken into account.

Similarly, we can present the formulation of
corrective security-constrained optimal power flow
problems as follows:

min c(PG,c)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

PG,c − PD −BΘc = 0,

−Pmax
L,c ≤ XΘc ≤ Pmax

L,c ,

Pmin
G ≤ PG,c ≤ Pmax

G .

(7)

Note that contingencies will greatly increase the
scale of the optimization problem, and therefore the
solution of smart grid dispatch problems will be
much harder.

3 Deep learning solutions

Many methods have been developed for smart
grid dispatch problems. For example, Newton-based
methods (Sun et al., 1984) and interior-point meth-
ods (Capitanescu and Wehenkel, 2013) have been
thoroughly investigated and widely used. However,
these methods have to repeatedly solve the challeng-
ing dispatch problems, which could hardly meet the
fast-growing requirements of reliability and compu-
tational efficiency. As a result, in contrast to the
above mathematical optimization methods, scholars
began to investigate the application of deep learning
methods for smart grids. After briefly introducing
the deep learning basics in Section 3.1, we review the
recent progress. This progress can be divided into
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three categories, whose logic, along with the logic of
traditional mathematical optimization methods, is
summarized in Fig. 1. Herein, type-1, type-2, and
type-3 correspond to end-to-end learning, constraint
set learning, and iterative process learning, respec-
tively, and they will be reviewed in Sections 3.2–3.4.
Different methods provide different pipelines to de-
rive dispatch decisions from a given system state.
Our taxonomy of deep learning solutions is shown in
Table 2.

3.1 Deep learning basics

We focus on deep learning, especially deep neu-
ral networks in this study. Let us use �x to represent
the input data of smart grid dispatch problems (e.g.,
power system state), and �y to represent the output
data (e.g., grid dispatch decision). The aim of deep
learning methods is to derive an optimal model f(·)
to capture the relationship between �x and �y. In other
words, the following problem will be minimized to
learn the pattern between �x and �y:

L(f) = E{�(�yi, f(�xi))}. (8)

Here, �xi and �yi represent the input and output parts
of a given sample i. Function �(·) measures the
difference between f(�x) and �y, and is also known
as the loss function or empirical risk. For clas-
sification problems, we often use 0/1-loss, namely,
�(�yi, f(�xi)) = 0 if �yi = f(�xi) and �(�yi, f(�xi)) = 1 if
�yi �= f(�xi). For regression problems, square-loss is
often used, namely, �(�yi, f(�xi)) = (�yi − f(�xi))2.

3.2 End-to-end learning

As illustrated in Fig. 1, smart grid dispatch
end-to-end learning refers to training a complex ma-
chine learning model to directly learn the inputs
and outputs of the original optimization problems.
The power of the end-to-end learning philosophy has
been demonstrated in many tasks, for example, im-
age recognition (He et al., 2016), self-driving cars
(Bojarski et al., 2016), and three-dimensional (3D)
object detection (Zhou Y and Tuzel, 2018). Thus,
the straightforward brute-force technique has been
almost the most popular direction in deep learning
applications. Typical works on end-to-end learning
methods for smart grid dispatch problems are listed
in Table 2.

Pan et al. (2019) developed a deep neural net-
work approach called DeepOPF for the DC optimal
power flow problem. The DeepOPF approach uses a
multi-layer feed-forward neural network to learn the
mapping between power demand and generator out-
put. In this paper, generator limit constraints were
guaranteed by the Sigmoid activation function, and
a penalty function was proposed to deal with trans-
mission line limit constraints. Because the line limits
cannot be exactly satisfied, a post-processing proce-
dure was activated when lines got overloaded. Note
that power balance equations were there to derive
line flow when power demands and power generators
were derived.

Based on the above work, Pan et al. (2021a)
extended the DeepOPF approach to the security-
constrained DC optimal power flow problem. Their
case studies showed that the proposed approach can

System
state

Dispatch
decision

Mathematical optimization

Deep learning
(end-to-end learning)

Deep learning
(constraint set learning) Mathematical optimization

Mathematical optimization Deep learning
(iterative process learning)

Type-1

Type-2

Type-3

Fig. 1 Logic summary of deep learning solutions
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Table 2 Taxonomy and representative publications on deep learning solutions

Category Subcategory Publications

End-to-end learning

Yin et al. (2018, 2020), Fioretto et al. (2019), Pan et al. (2019, 2021a,
2021b), Chatzos et al. (2020), Duchesne et al. (2020a),
Owerko et al. (2020), Venzke et al. (2020a), Yan and Xu (2020),
Zamzam and Baker (2020), Zhao et al. (2020), Zhou YH et al. (2020)

Constraint set learning
Identify constraints Ardakani and Bouffard (2018), Deka and Misra (2019),

Chen YZ and Zhang (2020), Yang et al. (2020b)
Replace constraints King et al. (2016), Liu TJ et al. (2020), Venzke et al. (2020b),

Yang et al. (2020a), Hu et al. (2021)

Iterative process learning
Initialize solvers Diehl (2019), Jamei et al. (2019), Biagioni et al. (2020),

Chen LJ and Tate (2020)
Replace solvers Baker (2020), Robson et al. (2020)

speed up the computation by up to two orders of
time, compared to the Gurobi solver (Gurobi Opti-
mization, 2019). As a cost, 18.3% of solutions might
be infeasible before the post-processing procedure in
the worst case, and 0.2% optimality loss on average
would be unavoidable.

Pan et al. (2021b) also investigated the Deep-
OPF approach for the AC optimal power flow prob-
lem. Because explicit expressions of penalty gradi-
ents are unavailable, AC power flow equations make
the widely used training methods (e.g., stochastic
gradient descent (Le et al., 2011) and Adam (Kingma
and Ba, 2015)) fail. Thus, a two-point zero-order
optimization method was proposed in Pan et al.
(2021b) to compute the estimated gradient during
training. The effectiveness of the proposed method
was verified through a small-scale test system, but
evaluation of DeepOPF for medium- or large-scale
AC optimal power flow problems still needs further
research.

As an improvement of DeepOPF, DeepOPF+
was recently proposed (Zhao et al., 2020). It is also
based on a multi-layer feed-forward neural network,
but tries to deal with the feasibility issue that re-
mains in previous methods. The idea is to calibrate
the generation limits and transmission line limits
during training dataset preparation. The benefit
is that a post-processing procedure is no longer re-
quired to guarantee the generation limits and trans-
mission line limits. As a result, further computation
acceleration can be guaranteed. It was also reported
that a larger calibration magnitude will lead to a
larger optimality loss, while a higher feasibility rate
can be achieved.

Encouraged by Pan et al. (2019), Zamzam and

Baker (2020) investigated how to learn the mapping
from system loading to optimal generation setpoints
and voltages with deep neural networks for the AC
optimal power flow problem. Similar to the limi-
tation in Pan et al. (2019), operational constraints
cannot be guaranteed directly by the deep learning
method in Zamzam and Baker (2020). To alleviate
this issue, a fast iterative procedure based on the
power flow problem is required to recover a feasi-
ble solution. Note that transmission line constraints
were ignored in Zamzam and Baker (2020).

To analyze the robustness of deep neural net-
work methods used in the above works, Venzke
et al. (2020a) introduced a framework based on
mixed-integer linear programming to obtain worst-
case guarantees for DC optimal power flow prob-
lems. Three conditions were considered: (1) maxi-
mum constraint violations, (2) maximum distances
between the predicted and optimal decision vari-
ables, and (3) maximum distance between the pre-
dicted and optimal solution values. The results on
a range of PGLib-OPF networks (Babaeinejadsa-
rookolaee et al., 2021) up to 300 buses showed that
the worst-case guarantees can be up to one order of
magnitude larger than the empirical lower bounds by
conventional methods. Nevertheless, the worst-case
guarantees can be reduced to an acceptable level by
training on a larger input domain.

Fioretto et al. (2019) explored a deep learning
approach called OPF-DNN for highly efficient and
accurate solutions of AC optimal power flow prob-
lems. The OPF-DNN method consists of a deep
neural network architecture and Lagrangian dual-
ity. Here, Lagrangian duality was used to deal
with the physical and engineering constraints. The
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OPF-DNN method was verified on systems up to
300 buses and results showed that it is faster than the
DC optimal power flow approximation solved with
IPOPT (Wächter and Biegler, 2006) by at least two
orders of magnitude.

The OPF-DNN method was revisited in Chatzos
et al. (2020). The authors improved the algorithm
design and training procedures, and through the case
study in a French 3400-bus transmission system, the
effectiveness of the proposed framework on large-
scale power systems was verified. The biggest finding
was that high-fidelity approximations of large-scale
optimal power flow problems can be solved within
milliseconds.

Because smart grids can be viewed as a graph,
Owerko et al. (2020) proposed using graph neural
networks in an imitation learning framework to solve
AC optimal power flow problems. Graph neural net-
works (Wu ZH et al., 2021) belong to a class of neural
networks that map the inputs to the output with con-
sideration of the underlying graph. Case studies on
the IEEE 30-bus system and IEEE 118-bus system
were provided. The results showed that graph neural
networks can lead to lower root mean squared errors.

Zhou YH et al. (2020) applied deep reinforce-
ment learning to solve the AC optimal power flow
problem. A deep neural network agent was trained
by the state-of-the-art proximal policy optimization
algorithm to derive an optimal policy for the rein-
forcement learning framework. To further increase
the training speed and performance of the deep neu-
ral network agent, they used another independent
neural network to learn a better initialized policy.

Yan and Xu (2020) applied a Lagrangian-based
deep reinforcement learning method to solve real-
time optimal power flow problems. The Lagrangian
relaxation approach was proposed to deal with the
operational constraints, and a policy model based
on a deep deterministic policy gradient was used to
update parameters of the deep neural network. Sim-
ulations were conducted to show that the proposed
method can derive decisions continuously in real time
for the IEEE 118-bus system.

Duchesne et al. (2020a) dealt with the day-
ahead unit commitment and economic dispatch de-
cision ranking problem with deep neural networks.
This problem is different from the above problems
because it belongs to the field of reliability man-
agement for smart grid dispatch. Running a very

large number of security-constrained optimal power
flow problems for all the day-ahead decisions is im-
practical, so a deep learning method was used to
assess day-ahead decisions and rank them according
to next-day operating costs. Multi-task learning was
also used to provide more information about differ-
ent cost values such as preventive redispatch cost,
preventive load shedding cost, and preventive wind
curtailment cost.

Yin et al. (2018) used a deep learning method to
replace the traditional automatic generation control
method. The method consists of two deep neural
networks connected by a “selector,” which was de-
signed to determine the optimal next state in the
next states predicted by the first neural network. A
“relaxed operator” was used after the second neural
network to ensure that the constraints of generating
units are met. The feasibility of the proposed method
was verified through the IEEE New-England power
system, Hainan power grid, and IEEE 118-bus power
system.

Yin et al. (2020) extended the work in Yin et al.
(2018) to scenarios where the number of generators
and the topology of systems are not fixed. An ex-
pandable deep learning method was proposed for dy-
namic expandable future smart grids. The proposed
method consists of basic deep neural networks and
expanding operation which makes the neural net-
works expandable. A 118-bus power system and a
13 659-bus system were used to verify the effective-
ness of the proposed method.

3.3 Constraint set learning

While end-to-end learning is elegant and pow-
erful, it may be inefficient (Glasmachers, 2017) and
the operational constraints in smart grid dispatch
problems can hardly be satisfied exactly. An alterna-
tive is to use deep learning to predict the constraint
set for mathematical optimization models (Type-2
in Fig. 1). The constraint set learning method works
as an intermediate step between deep learning and
mathematical optimization. As a result, traditional
algorithms such as interior-point methods and sim-
plex methods can be significantly accelerated. In
fact, some complex smart grid dispatch problems
might even be downgraded to have analytic solutions
when the filtered constraints are simple.

A hot field is active constraint set learning
(Misra et al., 2019), where active constraints mean
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the constraints that are satisfied with equality in the
corresponding optimization problem. For example,
Deka and Misra (2019) took advantage of deep neu-
ral network based classifiers to learn optimal active
constraints from uncertainty realization. Given an
uncertain injection scenario, the proposed classifi-
cation method can derive the corresponding active
constraints, which can then be used to calculate the
results of DC optimal power flow problems. It was
shown that the deep learning method is superior to
the traditional ensemble policy method in both speed
and performance.

Chen YZ and Zhang (2020) proposed a deep
neural network to learn the mapping between power
loads and the optimal system cost, but interpreted
the gradient of neural networks as dual variables,
which could be used to identify active constraints in
the DC optimal power flow problem. The proposed
method is error-correcting and proved to be an order
of magnitude faster than the state-of-the-art linear
programming solvers.

Yang et al. (2020b) proposed a deep learning
based pre-screening method to identify active con-
straints of security-constrained economic dispatch
problems. To deal with topology changes that might
occur in a system, a fast tuning strategy based on
transfer learning was also provided. The authors ver-
ified the effectiveness of their method on the IEEE
30-bus system, IEEE 118-bus system, and a practical
661-bus utility system.

Umbrella constraints are different from active
constraints. They are the constraints that form the
feasible set of solutions, which makes active con-
straints a subset of umbrella constraints in the same
problems (Ardakani and Bouffard, 2018). Regard-
ing the umbrella constraint set, deep learning is not
yet applied for smart grids. A related work is Ar-
dakani and Bouffard (2018), in which a single-layer
neural network was applied to learn the optimal um-
brella constraints for the security-constrained opti-
mal power flow problem. The input is a specific
demand scenario and the output is the umbrella set
corresponding to that scenario. A customized train-
ing algorithm was proposed to replace the traditional
backpropagation algorithm to avoid false negative
errors. However, the proposed method has weaker
learning ability than deep learning methods, and
thus 2864 neural network models are required for
2864 constraints.

Both active constraint set learning and umbrella
constraint set learning aim to identify effective con-
straints for mathematical optimization. In addition,
deep learning methods can be used to replace some
constraints for smart grid dispatch problems. For
example, Yang et al. (2020a) and Hu et al. (2021)
focused on replacing power flow equations with deep
learning methods. Here, Yang et al. (2020a) con-
structed a deep neural network to learn the prob-
abilistic power flow calculation for smart grid dis-
patch, and Hu et al. (2021) encoded physical knowl-
edge of the grid to regularize neural networks to solve
the overfitting problem.

Venzke et al. (2020b) focused on the more chal-
lenging AC optimal power flow problems with dy-
namic security constraints. The authors first used a
deep neural network to solve the AC optimal power
flow problem including dynamic security constraints.
Then, they reformulated the nonlinear activation
function with binary constraints and the deep neu-
ral network was transformed into mixed-integer con-
straints. Taking into account the above constraints
in a mathematical optimization model, the authors
tackled the issue of how to consider dynamic security
constraints for optimal power flow problems.

Liu TJ et al. (2020) also investigated how to
take advantage of deep learning methods to incorpo-
rate dynamic security constraints into optimal power
flow problems. First, a Bayesian neural network was
trained by the “Bayes by Backprop” method (Blun-
dell et al., 2015) for confidential dynamic security
assessment. Then, a security-constrained optimal
power flow problem was reformulated by replacing
dynamic security constraints with the above neural
network model. Finally, the Bayesian optimization
method was used to solve the smart grid dispatch
model embedded with deep learning constraints.

King et al. (2016) focused on transient stability-
constrained optimal power flow problems. The au-
thors proposed to replace the dynamic and transient
stability constraints with a critical clearing time con-
straint. Then, the critical clearing time constraint
was approximated by a neural network model. As
a result, dynamic simulations during traditional op-
timization methods were no longer required in the
proposed method, and the computational burden of
dynamic simulations was therefore removed.

The performances of constraint set learning and
end-to-end learning were compared in a simple way



Huang et al. / Front Inform Technol Electron Eng 2022 23(5):763-776 771

in Guha et al. (2019). The results on the IEEE 30-
bus system and IEEE 118-bus system showed that
the constraint learning method can be more effective.
However, we need to note that a more thorough com-
parison is required to lead to a general conclusion.

3.4 Iterative process learning

Smart grid dispatch problems are traditionally
formulated as mathematical optimization problems
and then solved by an iterative process such as
Newton-based methods (Sun et al., 1984) or interior-
point methods (Capitanescu and Wehenkel, 2013).
However, the iterative numerical methods might re-
sult in a failure of convergence due to a bad initializa-
tion point (Baker, 2019). Moreover, Newton-based
methods have to calculate a full Jacobian matrix
(e.g., Newton–Raphson method) or an approximate
Jacobian matrix (e.g., quasi-Newton method) during
iterations, which is time-consuming and might even
be numerically unstable (Baker, 2020). To deal with
the above issues, deep learning following the formu-
lation of the mathematical optimization problem is
also investigated.

Because a good initialization point can avoid
poor local optimum and speed up the convergence
process, Jamei et al. (2019) proposed a meta-
optimizer to initialize interior-point solvers. Inspired
by meta learning, the meta-optimizer is based on a
neural network model that could be trained to learn
the pattern between the dispatch problem formula-
tion and initialization point. The loss function was
defined as the number of iterations to reach an opti-
mal solution. Experiments verified that the conver-
gence process could be accelerated.

Based on the results from DC power flow cal-
culation, Chen LJ and Tate (2020) proposed a one-
dimensional convolutional neural network method to
obtain initial values of voltage magnitude and phase
values for Newton–Raphson-based AC power flow
problems. Experiments on the IEEE 118-bus sys-
tem and PEGASE 2869-bus system showed that the
proposed method could achieve more than 30% re-
duction in computation time and 49.54%–66.47% re-
duction in solution iterations.

Diehl (2019) proposed using a graph neural net-
work method to warm-start the AC optimal power
flow solvers. Results on the Illinois 200-bus sys-
tem showed that the proposed method would achieve
25% reduction in computation time compared to the

IPOPT solver. In fact, the proposed method would
even be slightly faster than the IPOPT method
warm-started by the DC optimal power flow.

Biagioni et al. (2020) focused on the distributed
formulation (i.e., the alternating direction method of
multipliers) of DC optimal power flow problems. The
authors proposed a recurrent neural network based
on the gated recurrent unit to predict the equilibrium
values and accelerate the iterations. Case studies on
the IEEE 14-bus system, IEEE 118-bus system, and
RTE 2848-bus system verified the effectiveness of the
proposed method.

Baker (2020) used a deep neural network with
feedback to learn the Newton step as follows:

xk+1 = xk − αJ−1(xk)d(xk), (9)

where xk is the solution at iteration k, J−1(xk) is
the Jacobian matrix at iteration k, d(xk) is a vec-
tor of the Karush–Kuhn–Tucker (KKT) conditions
at iteration k, and α is an optional step-size param-
eter. Case studies showed that the deep learning
method can avoid singular Jacobian matrices and
ill-conditioned matrices in Newton-based methods,
and the computational efficiency improvement will
be large for large power grids.

Robson et al. (2020) proposed a deep-learning-
based method to iteratively solve optimal power flow
problems. First, a neural network model was used
to generate a reduced optimal power flow model
by removing the predicted non-binding constraints.
Then, the reduced model was extended by iteratively
checking and adding violated constraints during iter-
ations. The parameters of the neural network model
were determined by minimizing the meta-loss func-
tion which is defined by the computational cost of the
warm-stated optimal power flow problems. Because
this loss function is not differentiable, particle swarm
optimization rather than back-propagation was used
to train the model.

4 Challenges

The fast development of smart grid and AI will
bring about great opportunities. Much progress has
been made in smart grid dispatch via deep learn-
ing methods; however, many issues in this field still
require further research and some problems even re-
main untouched. Herein, we discuss several signifi-
cant challenges based on our observations.
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4.1 Data availability, security, and privacy

Deep learning is a data-driven method; so,
datasets that could be used to train deep learning
models and evaluate their performance are of vital
importance (Venzke et al., 2021). In fact, to re-
alize its greater learning ability, deep learning re-
quires more data than traditional machine learning
methods. However, while various public datasets are
available for fields such as computer vision (Prabhu
and Birhane, 2020) and natural language processing
(Dror et al., 2017), very few electric power system
datasets are publicly available at the present time
(Ruan et al., 2021). Although we can easily find
the data for many power networks (e.g., in Coffrin
et al. (2019)), current research often has to run sim-
ulation tools (e.g., MATPOWER (Zimmerman RD
et al., 2011)) to generate training samples for deep
learning. This raises an obstacle for deep learning
experts who are not familiar with how power grids
work. The availability of power system datasets,
especially real-world power system datasets, is still
urgent.

Data security and privacy are other issues that
often accompany deep learning methods (Wu C
et al., 2019). A promising direction is distributed
deep learning, especially federated learning (McMa-
han and Ramage, 2017; Kairouz et al., 2019; Li et al.,
2020; Huang et al., 2021), which could enable collab-
orative machine learning while the raw data remain
distributed. Another direction is to develop small
sample learning techniques (Zhang et al., 2018), for
example, few-shot learning (Ravi and Larochelle,
2016) and zero-shot learning (Changpinyo et al.,
2016). In case we cannot gather enough data to con-
struct a training dataset that we need, data augmen-
tation (Shorten and Khoshgoftaar, 2019) can also
help.

4.2 Model robustness and explainability

Deep learning methods have already shown their
power in mastering games (Silver et al., 2017), quan-
tifying behaviors (Mathis et al., 2018), and so forth.
However, how significantly deep learning will impact
real-world power systems still requires investigation.
There is no doubt that deep learning methods, al-
though vulnerable (Papernot et al., 2016) sometimes,
can be widely used in fields that are not so security-
sensitive. However, power systems are critical in-

frastructure and are very sensitive, so robust deep
learning methods are necessary. This issue is partic-
ularly challenging because the vulnerability of deep
learning methods for power systems has been shown
(Chen YZ et al., 2018; Venzke and Chatzivasileiadis,
2021).

Although traditional numerical methods for
smart grid dispatch problems can sometimes fail to
converge, deep learning methods will always generate
a solution. This is not at all an advantage, however,
because deep learning methods are widely viewed
as black-box models, which means that we cannot
explain the solution they provide. This will hinder
the application of deep learning methods, especially
in fields like smart grids. In general, there are two
directions to alleviate the explainability issue: (1)
interpreting the deep learning models with visualiza-
tion (Chatzimparmpas et al., 2020) and (2) building
interpretable deep learning models (Duchesne et al.,
2020b).

5 Conclusions

Artificial intelligence has attracted extensive at-
tention recently, and it is beginning to revolutionize
power grids, a typical representation of critical in-
frastructure systems. As a core problem for power
system operation, smart grid dispatch has been re-
viewed in this paper from the perspective of deep
learning, which is, so far, the most advanced AI
technique. We have provided our taxonomy of all
the deep learning solutions which can be divided
into three categories (end-to-end learning, constraint
set learning, and iterative process learning). Rep-
resentative works of each type have been carefully
reviewed, and the main challenges regarding deep
learning methods for smart grid dispatch have also
been discussed. It can be concluded that much more
effort is required to promote deep learning methods
for smart grid dispatch, and we expect that this pa-
per will provide a helpful review for researchers who
are entering this interdisciplinary area of smart grids
and AI.
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