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Abstract: The problem of stabilizing switched linear systems under asynchronous switching is addressed. The
admissible edge-dependent average dwell time method is applied to design a switching signal that comprises slow
admissible edge-dependent average dwell time and fast admissible edge-dependent average dwell time. Under this
switching signal, the restriction that the maximum delay of asynchronous switching is known in advance is removed.
The constructed Lyapunov function is associated with both the system mode and controller mode. The stabilization
criteria and the corresponding algorithm are presented to obtain the controller gains and to design the switching
signal. Finally, two examples are given to demonstrate the effectiveness of the proposed results.
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1 Introduction

In recent decades, switched systems have been
widely studied due to their extensive applications in
practical systems, such as power electronics systems,
stirred tank reactor systems, and network control
systems. Subsystems described by a collection of
differential or difference equations and the switching
signal that specifies the subsystem that is activated
at a certain time instant together determine the be-
havior of a switched system (Liberzon and Morse,
1999). Surveys have shown that even if all subsys-
tems are stable, a switched system can be unsta-
ble if the switching signal is not appropriate (Zhao
et al., 2017; Li et al., 2021). However, even if all the
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subsystems are unstable, the switched system may
be stable if the switching signal is designed reason-
ably (Xiang and Xiao, 2014; Lu and Yang, 2020).
To date, a vast literature on stability analysis of
switched systems has been presented, including Hes-
panha and Morse (1999), Shorten et al. (2007), Zhao
et al. (2012, 2015), Zhang XL et al. (2014), Chang
et al. (2020), Wang YQ et al. (2021), and Yu and
Zhai (2021), to list a few.

A large number of results concerning the con-
trol synthesis of switched systems have also been
reported (Deaecto et al., 2011, 2015; Yuan CZ
and Wu, 2015; Zhao et al., 2016). In the above-
mentioned studies, switching between the subsystem
and the corresponding controller is assumed to be
synchronous. In fact, there is a lag between con-
troller switching and system switching, because it
takes some time to identify the system mode and
apply the corresponding controller. This scenario is
called “asynchronous switching” between the system
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and the controller. Asynchronous switching may de-
crease control performance and lead to instability.
Therefore, it is necessary to study the stabilization
problem of switched systems under asynchronous
switching.

In the asynchronous switching scenario, the
switching lag of the controller will cause the run-
ning interval of the subsystem to be divided into
two parts: synchronous switching interval (SSI) and
asynchronous switching interval (ASI). In SSI, the
controller mode and system mode are the same, while
they are different in ASI. The results in the literature
indicate that the closed-loop subsystem is stable in
SSI and unstable in ASI. Then, combined with the
designed time-dependent switching signal, stabiliza-
tion results were obtained (Zhang LX and Gao, 2010;
Wang YE et al., 2013; Wang B et al., 2014). How-
ever, in fact, the unmatched controller may stabilize
the corresponding subsystem in ASI, in which case,
the existing results are invalid.

Many techniques have been adopted to design
the time-dependent switching signal for the asyn-
chronous switching control problem, for example,
the dwell time (DT) method (Sang and Nie, 2018;
Yuan S et al., 2018), average dwell time (ADT)
scheme (Wang XH et al., 2016; Ren HL et al.,
2018; Hua et al., 2019; Fei et al., 2020), persistent
dwell time (PDT) method (Liu and Wang, 2019; Shi
et al., 2019), and mode-dependent average dwell time
(MDADT) method (Wang B et al., 2014; Fei et al.,
2017; Wang YE et al., 2017). In these studies, the
maximum asynchronous switching delay is assumed
to be known a priori, and is applied to design the
switching signal. However, in practice, it is difficult
to determine the lag time between system switching
and the switching of the corresponding controller.
Hence, there is still significant research need for re-
moving this restriction in switching signal design.
The admissible edge-dependent average dwell time
(AED-ADT) method has been proposed to analyze
the stability of the switched systems, and to release
the restrictions of MDADT switching (Hou et al.,
2018a; Yang JQ et al., 2018). Can this switching sig-
nal design method be used to remove the switching
signal design restriction under asynchronous switch-
ing? If so, how can it be applied? All these questions
inspired us to carry out the research presented in this
paper.

On the basis of the above analysis, in this paper,

the problem of asynchronous switching stabilization
is studied for switched linear systems. The contribu-
tions are listed as follows:

1. The switching signal is designed by combining
the slow AED-ADT (SAED-ADT) method and fast
AED-ADT (FAED-ADT) method, assuming that
the maximum asynchronous switching delay is not
known a priori.

2. The constructed Lyapunov function is asso-
ciated with both the system mode and controller
mode.

3. In the literature (Deaecto et al., 2011, 2015;
Yuan CZ and Wu, 2015; Zhao et al., 2016), it was
generally assumed that the controller cannot stabi-
lize the subsystems in asynchronous switching inter-
vals. In this paper, we take a different approach
and investigate whether the asynchronous switching
controller may be able to stabilize the subsystem in
asynchronous switching intervals.

4. The stabilization criteria are obtained, and
the corresponding algorithm is presented to deter-
mine the controller gains and to design the switching
signal. In the simulations, two examples are pro-
vided to demonstrate the effectiveness of the pro-
posed results.

2 Problem formulation

Consider the following switched system:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), (1)

where x(t) ∈ R
n is the state and u(t) ∈ R

p is the
input. σ(t), which is the switching signal, is a piece-
wise constant function taking its value in the finite
set M = {1, 2, . . . , r}, where r stands for the number
of subsystems. The set Υ = {x(t0); (i0, t0), (i1, t1),
. . . , (im, tm), . . . | im ∈ M, m ∈ N} is the switch-
ing sequence, where N is the set of natural numbers.
When t ∈ [tm, tm+1), the ithm subsystem is activated.
For any i ∈ M, matrices Ai and Bi are supposed to
be known with appropriate dimensions.

The controller is designed as

u(t) = Kσ(t−d(t))x(t), (2)

where d(t) is the lag time satisfying 0 < d(t) <

tm+1 − tm, and Ki (i ∈ M) is the controller gain to
be determined. Substituting Eq. (2) into system (1),
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we have the following closed-loop system:

ẋ(t) =
(
Aσ(t) +Bσ(t)Kσ(t−d(t))

)
x(t)

� Aσ(t),σ′(t)x(t),
(3)

where Aσ(t),σ′(t) = Aσ(t) + Bσ(t)Kσ(t−d(t)) and
σ′(t) = σ(t− d(t)).

Remark 1 System (3) contains two classes of
switching signals, i.e., σ(t) (system mode) and σ′(t)
(controller mode). In fact, the effect of the lag
time d(t) is that the switching between the sys-
tem and the controller is not synchronous (Fig. 1).
The system switches at time instant tm (m ∈ N

+),
whereN+ = N/{0}, and the corresponding controller
switches at tm+d(tm). Consequently, in the intervals
[t0, t1) and [tm+ d(tm), tm+1), the values of σ(t) and
σ′(t) are the same. However, in [tm, tm + d(tm))

(the shadow areas in Fig. 1), the values of these
two switching signals are different. Here, the time
intervals [t0, t1) and [tm + d(tm), tm+1) are called
SSIs, and the time interval [tm, tm + d(tm)) is called
an ASI. Correspondingly, controller (2) is called an
asynchronous switching controller.

tm tm+1t2t1

t1+d(t1) t2+d(t2) tm+d(tm) tm+1+d(tm+1)t0

t0
σ(t)

σ(t0) σ(t1) σ(tm)
σ(tm+1)

σʹ(tm+1)σʹ(t1) σʹ(t2)
σʹ(tm)

σʹ(t)
...

Fig. 1 Switching signals σ(t) and σ′(t)

The following definitions will be used in the
sequel.
Definition 1 (Hou et al., 2018b) For any p, q ∈
M (p �= q) and σ(t) (the switching signal), let
Nσ

p,q(t1, t2) be the number of switching times from
q to p in the interval [t1, t2), and Tp,q(t1, t2) be the
total running time of subsystem p in the interval
[t1, t2) whenever the switching takes place from q to
p, where t2 ≥ t1 ≥ 0. In this case, σ(t) has an
SAED-ADT τap,q and an FAED-ADT dap,q if there
exist nonnegative numbers N

0

p,q and N0
p,q, and pos-

itive numbers τap,q and dap,q such that the following
inequalities are true:

Nσ
p,q(t1, t2) ≤ N0

p,q+
Tp,q(t1, t2)

τap,q
, ∀ t2 ≥ t1 ≥ 0, (4)

Nσ
p,q(t1, t2) ≥ N

0

p,q+
Tp,q(t1, t2)

dap,q
, ∀ t2 ≥ t1 ≥ 0, (5)

where N
0

p,q and N0
p,q are called the admissible edge-

dependent chatter bounds.
Definition 2 (Zhao et al., 2012) The equilibrium
x = 0 of system (1) with u(t) = 0 is globally uni-
formly exponentially stable (GUES) under a certain
switching signal σ(t) if there exist constants α > 0

and ε > 0 such that the solution of the system satis-
fies ‖x(t)‖ ≤ αe−ε(t−t0)‖x(t0)‖, ∀t ≥ t0.

If an asynchronous switching controller (2) and
an AED-ADT switching signal (containing SAED-
ADT and FAED-ADT) exist such that the devel-
oped closed-loop system (3) is GUES, then switched
system (1) is stabilized. In this study, the main ob-
jective is to design an asynchronous switching con-
troller (2) and an AED-ADT switching signal such
that system (1) can be stabilized.

3 Main results

In this section, we present mainly the stabiliza-
tion results of system (1) under the asynchronous
switching controller (2) and the designed AED-ADT
switching signal.

For brevity, let tm represent the switching in-
stant of the subsystem and tm+d(tm) be the switch-
ing instant of the lag controller. In the interval
[tm, tm+1), Ts[tm, tm+1) and Tu[tm, tm+1) denote the
SSI [tm + d(tm), tm+1) and ASI [tm, tm + d(tm)),
respectively. Furthermore, let Tu↑[tm, tm+1) and
Tu↓[tm, tm+1) represent the intervals in which the
closed-loop subsystem is unstable and stable, respec-
tively. For any i, j ∈ M, denote Ωs = {(i, j) ∈ M×
M|t ∈ Ts[tm, tm+1)} and Ωu = {(i, j) ∈ M×M|t ∈
Tu[tm, tm+1)}. Moreover, let Ωu = Ωu↑

⋃
Ωu↓,

where Ωu↑ = {(i, j) ∈ M|t ∈ Tu↑[tm, tm+1)} and
Ωu↓ = {(i, j) ∈ M|t ∈ Tu↓[tm, tm+1)}.

In the sequel, we give the following result by
virtue of AED-ADT switching for system (1). Sup-
pose that subsystem j switches to subsystem i at
instant tm, and that the corresponding jth controller
switches to the ith controller at instant tm + d(tm).
Theorem 1 Consider system (3). For the given
values λi < 0 (i ∈ M) with νi,j > 1 ((i, j) ∈ Ωs),
γi,j < 0 with μi,j > 1 ((i, j) ∈ Ωu↓), and γi,j >

0 with 0 < μi,j < 1 ((i, j) ∈ Ωu↑), if there exist
matrices Pi,i > 0 ((i, i) ∈ Ωs), Pi,j > 0 ((i, j) ∈ Ωu),
and Ki (i ∈ M) such that the following inequalities
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hold:

(Ai +BiKi)
TPi,i +Pi,i(Ai +BiKi) ≤ λiPi,i, (6)

(Ai+BiKj)
TPi,j+Pi,j(Ai+BiKj) ≤ γi,jPi,j , (7)

Pi,j ≤ μi,jPj,j , (8)

Pi,i ≤ νi,jPi,j , (9)

then system (1) is stabilized under the asynchronous
switching controller (2) and the AED-ADT switching
signal satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τai,j ≥ τa∗i,j = − ln νi,j
λi

, (i, j) ∈ Ωs,

dai,j ≥ da∗i,j = − lnμi,j

γi,j
, (i, j) ∈ Ωu↓,

dai,j ≤ da∗i,j = − lnμi,j

γi,j
, (i, j) ∈ Ωu↑.

(10)

Proof System (3) can be rewritten as

ẋ(t) =

{
(Ai +BiKi)x(t), t ∈ Ts[tm, tm+1),

(Ai +BiKj)x(t), t ∈ Tu[tm, tm+1).
(11)

For system (11), choose the following Lyapunov
function:

V�(x(t)) = xT(t)P�x(t), (12)

where P� > 0 and

� =

{
(i, i), t ∈ Ts[tm, tm+1),

(i, j), t ∈ Tu[tm, tm+1).

When t ∈ Ts[tm, tm+1), σ(tm) = σ′(tm) = i.

Then on the basis of inequality (6), one can obtain
the following inequality:

V̇i,i(t)− λiVi,i(t) = xT(t)
(
(Ai +BiKi)

TPi,i

+ Pi,i(Ai +BiKi)− λiPi,i

)
x(t) ≤ 0.

(13)

Denote σ(t0) = σ′(t0) = i when t ∈ [t0, t1).
Then from inequality (13), we obtain

Vi,i(t) ≤ eλi(t−t0)Vi,i(t0). (14)

Let σ(tm + d(tm)) = σ′(tm + d(tm)) = i when
t ∈ [tm + d(tm), tm+1). Then on the basis of inequal-
ity (13), the following inequality is true:

Vi,i(t) ≤ eλi(t−(tm+d(tm)))Vi,i(tm + d(tm)). (15)

Denote σ(tm) = i, σ′(tm) = j when t ∈ [tm, tm+

d(tm)). According to inequality (7), we have

Vi,j(t) ≤ eγi,j(t−tm)Vi,j(tm). (16)

Note that σ(tm + d(tm)) = σ(tm), σ′(tm +

d(tm)) = σ′(tm+1), and σ′(t0) = σ′(t1). When
t ∈ [tm, tm + d(tm)), inequalities (8), (9), and (14)–
(16) mean that inequality (17) (on the top of the
next page) holds.

Let ln νσ(t0),σ′(t0) ≤ ln νi,j . By calculation, we
can obtain inequality (18) and Eq. (19) (on the top of
the next page), where in the interval [t0, t), Nσ

i,j(t0, t)

and Ti,j(t0, t) stand for the number of switching
times and the total running time of the ith subsystem
whenever the switching occurs from subsystem j to
subsystem i.

Substituting inequality (18) and Eq. (19) into
inequality (17) and combining inequalities (4) and
(5) yield inequality (20) (on the top of page 815).

It can be verified from Eq. (12) that

Λ1 ≤ V�(x(t)) ≤ Λ2,

Λ1 = min
(i,j)∈M×M

(λmin(Pi,j))‖x(t)‖2,

Λ2 = max
(i,j)∈M×M

(λmax(Pi,j))‖x(t)‖2,
which together with inequality (20) further implies

‖x(t)‖2 ≤ α2eεi,j‖x(t0)‖2,
where

α =

√
max(i,j)∈M×M(λmin(Pi,j))

min(i,j)∈M×M(λmin(Pi,j))

×
√√√
√exp

( ∑

(i, j) ∈ Ωs, σ(tl) = i

∑

σ′(tl)=j

N0
i,j ln νi,j

)

×
√√
√
√exp

( ∑

(i, j) ∈ Ωu↓, σ(tl) = i

∑

σ′(tl)=j

N0
i,j lnμi,j

)

×
√√√
√exp

( ∑

(i, j) ∈ Ωu↑, σ(tl) = i

∑

σ′(tl)=j

N
0

i,j lnμi,j

)
,

εi,j =
∑

(i, j) ∈ Ωs,

σ(tl) = i

∑

σ′(tl)=j

( ln νi,j
τai,j

+ λi

)
Ti,j(t0, t)

+
∑

(i, j) ∈ Ωu↓,

σ(tl) = i

∑

σ′(tl)=j

( lnμi,j

dai,j
+ γi,j

)
Ti,j(t0, t)

+
∑

(i, j) ∈ Ωu↑,

σ(tl) = i

∑

σ′(tl)=j

( lnμi,j

dai,j
+ γi,j

)
Ti,j(t0, t).
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Vσ(tm),σ′(tm)(t) ≤ eγσ(tm),σ′(tm)(t−tm)Vσ(tm),σ′(tm)(tm) ≤ eγσ(tm),σ′(tm)(t−tm)μσ(tm),σ′(tm)

· Vσ(tm−1),σ′(tm)(tm) ≤ eγσ(tm),σ′(tm)(t−tm)μσ(tm),σ′(tm)e
λσ(tm−1)(tm−(tm−1+d(tm−1)))

· Vσ(tm−1),σ′(tm)(tm−1 + d(tm−1)) ≤ eγσ(tm),σ′(tm)(t−tm)μσ(tm),σ′(tm)

· eλσ(tm−1)(tm−(tm−1+d(tm−1)))νσ(tm−1),σ′(tm−1)Vσ(tm−1),σ′(tm−1)(tm−1 + d(tm−1))

≤ · · · ≤
m∏

l=1

μσ(tl),σ′(tl)

m−1∏

l=1

eγσ(tl),σ
′(tl)d(tl)eγσ(tm),σ′(tm)(t−tm)

m−1∏

l=0

νσ(tl),σ′(tl)

·
m−1∏

l=1

eλσ(tl)
(tl+1−(tl+d(tl)))eλσ(t0)(t1−t0)Vσ(t0),σ′(t0)(t0).

(17)

m∏

l=1

μσ(tl),σ′(tl)

m−1∏

l=0

νσ(tl),σ′(tl) = exp

(
m∑

l=1

lnμσ(tl),σ′(tl)

)

exp

(
m−1∑

l=0

ln νσ(tl),σ′(tl)

)

=exp

⎛

⎜
⎜
⎝

∑

(i,j)∈Ωu

m∑

l=1

∑

σ(tl) = i,

σ′(tl) = j

lnμi,j

⎞

⎟
⎟
⎠ exp

⎛

⎜
⎜
⎝

∑

(i,j)∈Ωs

m−1∑

l=1

∑

σ(tl) = i,

σ′(tl) = j

ln νi,j

⎞

⎟
⎟
⎠ exp

(
ln νσ(t0),σ′(t0)

)

≤ exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωu,

σ(tl) = i

∑

σ′(tl)=j

Nσ
i,j(t0, t) lnμi,j +

∑

(i, j) ∈ Ωs,

σ(tl) = i

∑

σ′(tl)=j

Nσ
i,j(t0, t) ln νi,j

⎞

⎟
⎟
⎠ .

(18)

m−1∏

l=1

exp
(
γσ(tl),σ′(tl)(ts+1−(tl+d(tl)))

)
exp

(
γσ(tm),σ′(tm)(t−tm)

)m−1∏

l=1

exp
(
λσ(tl)d(tl)

)
exp

(
λσ(t0)(t1−t0)

)

= exp

(
m−1∑

l=1

γσ(tl),σ′(tl)(ts+1 − (tl + d(tl))) + γσ(tm),σ′(tm)(t− tm)

)

exp

(
m−1∑

l=1

λσ(tl)d(tl) + λσ(t0)(t1 − t0)

)

= exp

⎛

⎜
⎜
⎜
⎜
⎝

∑

(i, j) ∈ Ωs,

σ(tl) = i

λiTi,j(t0, t) +
∑

(i, j) ∈ Ωu↓,

σ(tl) = i,

σ′(tl) = j

γi,jTi,j(t0, t) +
∑

(i, j) ∈ Ωu↑,

σ(tl) = i,

σ′(tl) = j

γi,jTi,j(t0, t)

⎞

⎟
⎟
⎟
⎟
⎠

= exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωs,

σ(tl) = i

∑

σ′(tl)=j

λiTi,j(t0, t)+
∑

(i, j) ∈ Ωu↓,

σ(tl) = i

∑

σ′(tl)=j

γi,jTi,j(t0, t)+
∑

(i, j) ∈ Ωu↑,

σ(tl) = i

∑

σ′(tl)=j

γi,jTi,j(t0, t)

⎞

⎟
⎟
⎠ .

(19)

Let

β = max

(
max

(i,j)∈Ωu

( lnμi,j

dai,j
+ γi,j

)
,

max
(i,j)∈Ωs

( ln νi,j
τai,j

+ λi

))
.

By condition (10), we can determine that β < 0.

Then we have

‖x(t)‖ ≤ αe
1
2 εi,j‖x(t0)‖

≤ αe
1
2β(t−t0)‖x(t0)‖.

(21)

Moreover, the value of α is larger than 0. Then
from inequality (21) and Definition 2, we conclude
that system (3) is GUES, which implies that sys-
tem (1) is stabilized by controller (2) and switching
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Vσ(t),σ′(t)(t) ≤ exp

⎛

⎜⎜
⎝

∑

(i, j) ∈ Ωs,

σ(tl) = i

∑

σ′(tl)=j

(
Nσ

i,j(t0, t) ln νi,j + λiTi,j(t0, t)
)

⎞

⎟⎟
⎠

· exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωu↓,

σ(tl) = i

∑

σ′(tl)=j

(
Nσ

i,j(t0, t) lnμi,j + γi,jTi,j(t0, t)
)

⎞

⎟
⎟
⎠

· exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωu↑,

σ(tl) = i

∑

σ′(tl)=j

(
Nσ

i,j(t0, t) lnμi,j + γi,jTi,j(t0, t)
)
⎞

⎟
⎟
⎠Vσ(t0),σ′(t0)(t0)

≤ exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωs,

σ(tl) = i

∑

σ′(tl)=j

((

N0
i,j +

Ti,j(t0, t)

τai,j

)

ln νi,j + λiTi,j(t0, t)

)
⎞

⎟
⎟
⎠

· exp

⎛

⎜⎜
⎝

∑

(i, j) ∈ Ωu↓,

σ(tl) = i

∑

σ′(tl)=j

((

N0
i,j +

Ti,j(t0, t)

dai,j

)

lnμi,j + γi,jTi,j(t0, t)

)
⎞

⎟⎟
⎠

· exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωu↑,

σ(tl) = i

∑

σ′(tl)=j

((

N
0

i,j +
Ti,j(t0, t)

dai,j

)

lnμi,j + γi,jTi,j(t0, t)

)
⎞

⎟
⎟
⎠Vσ(t0),σ′(t0)(t0)

= exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωs,

σ(tl) = i

∑

σ′(tl)=j

N0
i,j ln νi,j+

∑

(i, j) ∈ Ωu↓,

σ(tl) = i

∑

σ′(tl)=j

N0
i,j lnμi,j+

∑

(i, j) ∈ Ωu↑,

σ(tl) = i

∑

σ′(tl)=j

N
0

i,j lnμi,j

⎞

⎟
⎟
⎠

· exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωs,

σ(tl) = i

∑

σ′(tl)=j

(
ln νi,j
τai,j

+ λi

)

Ti,j(t0, t)

⎞

⎟
⎟
⎠ exp

⎛

⎜
⎜
⎝

∑

(i, j) ∈ Ωu↓,

σ(tl) = i

∑

σ′(tl)=j

(
lnμi,j

dai,j
+ γi,j

)

Ti,j(t0, t)

⎞

⎟
⎟
⎠

· exp

⎛

⎜⎜
⎝

∑

(i, j) ∈ Ωu↑,

σ(tl) = i

∑

σ′(tl)=j

(
lnμi,j

dai,j
+ γi,j

)

Ti,j(t0, t)

⎞

⎟⎟
⎠Vσ(t0),σ′(t0)(t0).

(20)

signal (10). This completes the proof.

Remark 2 In Theorem 1, the stabilization con-
dition is presented for system (1) under the asyn-
chronous switching controller (2). Three different
cases are considered to design the corresponding
switching signal:

Case 1: the ith subsystem is stabilized by the
ith controller;

Case 2: the ith subsystem is stabilized by the
jth controller;

Case 3: the ith subsystem is not stabilized by
the jth controller.

Case 1 means that the switching between the
system and the controller is synchronous. In this
case, we use SAED-ADT switching to guarantee that
the dwell time is as long as possible. Cases 2 and 3
occur when the switching between the system and
the controller is asynchronous. In case 2, although
the activated subsystem and the controller are mis-
matched, Ai +BiKj is stable. Hence, SAED-ADT
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switching is employed. In case 3, the mismatch be-
tween the activated subsystem and the controller
may cause poor control performance, so FAED-ADT
switching is used to ensure that the dwell time is as
short as possible.

Remark 3 Many studies tackling the problem of
asynchronous switching control for various switched
systems have a premise that the maximum asyn-
chronous switching delay is assumed to be known
a priori (Wang B et al., 2014; Ren W and Xiong,
2016; Wang XH et al., 2016; Fei et al., 2017; Wang
YE et al., 2017; Wu et al., 2017; Ren HL et al., 2018;
Sang and Nie, 2018; Yuan S et al., 2018; Hua et al.,
2019). In this study, this restriction is eliminated.
By virtue of AED-ADT switching (10), the asyn-
chronous switching delay dai,j in every interval can
be obtained, which is more in line with the demand
in practice.

Remark 4 In ASIs, both the constructed multi-
Lyapunov function and its decay rate are associated
with the system mode and controller mode, which is
more general than the one in Wang YE et al. (2013).

Remark 5 Suppose that at switching instant tm,
the jth subsystem switches to the ith subsystem, and
that at switching instant tm + d(tm), the jth con-
troller switches to the ith controller. Then at switch-
ing instant tm + d(tm), the energy of the Lyapunov
function is allowed to increase (see the square-line
area in Fig. 2). Furthermore, at switching instant
tm, the energy of the Lyapunov function is permit-
ted to increase as long as Ai + BiKj is stable (see
the slash-line area in Fig. 2a). When Ai +BiKj is

not stable, the energy of the Lyapunov function must
decrease at switching instant tm (see the slash-line
area in Fig. 2b). However, the increment is allowable
in the ASI (see the dot-dash line in Fig. 2b).

To obtain the controller gains Ki (i ∈ M), we
present the following result:
Theorem 2 Consider system (3). For the given
values λi < 0 (i ∈ M) with νi,j > 1 ((i, j) ∈ Ωs),
γi,j < 0 with μi,j > 1 ((i, j) ∈ Ωu↓), and γi,j > 0

with 0 < μi,j < 1 ((i, j) ∈ Ωu↑), if there exist ma-
trices Xi,i > 0 ((i, i) ∈ Ωs), Xi,j > 0 ((i, j) ∈ Ωu),
and K̄i (i ∈ M) such that the following inequalities
hold:

Xi,iA
T
i +K̄T

i B
T
i +AiXi,i+BiK̄i≤λiXi,i, (22)

Xi,jA
T
i +AiXi,j +Xi,jX

−1
j,j K̄

T
j B

T
i

+BiK̄jX
−1
j,j Xi,j ≤ γi,jXi,j , (23)

Xj,j ≤ μi,jXi,j , (24)

Xi,j ≤ νi,jXi,i, (25)

then system (1) is stabilized under the asynchronous
switching controller (2) and the switching signal that
satisfies condition (10). Moreover, the controller
gains are given by Ki = K̄iX

−1
i,i .

Proof On one hand, pre- and post-multiplying
inequality (22) by X−1

i,i , and letting Pi,i = X−1
i,i , we

can obtain inequality (6). Multiplying both sides of
inequality (23) by X−1

i,j , and setting Pi,j = X−1
i,j , one

obtains

− γi,jPi,j +AT
i Pi,j + Pi,jAi +X−1

j,j (BiK̄j)
TPi,j

+ Pi,jBiK̄jX
−1
j,j < 0,

(26)

V(t)

Tu↓[tl, tl+1) Ts[tl, tl+1)

t0 tm tm+d(tm) tm+1 t

V(t)

Tu↑[tm, tm+1) Ts[tm, tm+1)

t0 tm tm+d(tm) tm+1 t

(a) (b)

Fig. 2 Response curves of the Lyapunov function: (a) Ai +BiKj is stable in [tm, tm + d(tm)); (b) Ai +BiKj

is unstable in [tm, tm + d(tm))
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which together with K̄i = KiXi,i and Pi,i = X−1
i,i

leads to inequality (7).
On the other hand, from inequality (24) and the

Schur complement formula, we have
[ −μi,jXi,j I

∗ −X−1
j,j

]
≤ 0,

which is equivalent to −X−1
j,j + (μi,jXi,j)

−1 ≤ 0.
Notice that Pi,i = X−1

i,i and Pi,j = X−1
i,j , and we

obtain inequality (8). In the same way, we can obtain
inequality (9) from inequality (25). This completes
the proof.

Note that in Theorem 2, condition (23) is non-
linear. In the following, we give an algorithm to ob-
tain the controller gains and to design the switching
signal.
Remark 6 In Algorithm 1, first of all, con-
troller (2) is designed to guarantee that Ai +BiKi

(t ∈ Ts[tm, tm+1)) is stable. Then, based on the
stability of Ai+BiKj (t ∈ Tu[tm, tm+1)), the AED-
ADT switching signal is designed. In ASIs, if all
Ai+BiKj are stable, then only SAED-ADT is used;
if all Ai+BiKj are unstable, then only FAED-ADT
is adopted.

Algorithm 1 Design of controller gains and the
switching signal
1: Set the values of λi, and solve inequality (22) to obtain

K̄i and Xi,i. Then we can obtain the controller gains
Ki based on Ki = K̄iX

−1
i,i .

2: Apply the values of Ki to determine whether Ai+BiKj

is stable or unstable, and then confirm the ranges of the
parameters γi,j and μi,j .

3: Set the values of νi,j , γi,j , and μi,j , and solve inequal-
ities (23)–(25) to obtain Xi,j to verify the feasibility of
solution Ki. Then the corresponding AED-ADTs can be
obtained.

In ASIs, when all Ai+BiKj are stable, we give
the following corollary:
Corollary 1 Consider system (3). For the given
values λi < 0 (i ∈ M) with νi,j > 1 ((i, j) ∈ Ωs) and
γi,j < 0 with μi,j > 1 ((i, j) ∈ Ωu↓), if there exist
matrices Xi,i > 0 ((i, i) ∈ Ωs), Xi,j > 0 ((i, j) ∈
Ωu↓), and K̄i (i ∈ M) such that inequalities (22)–
(25) are true, then system (1) is stabilized under
the asynchronous switching controller (2) and the
switching signal that satisfies

⎧
⎪⎨

⎪⎩

τai,j ≥ τa∗i,j = − ln νi,j
λi

, (i, j) ∈ Ωs,

dai,j ≥ da∗i,j = − lnμi,j

γi,j
, (i, j) ∈ Ωu↓.

Moreover, the controller gains are given byKi =

K̄iX
−1
i,i .
In ASIs, when all Ai+BiKj are not stable, the

following corollary can be obtained:
Corollary 2 Consider system (3). For the given
values λi < 0 (i ∈ M) with νi,j > 1 ((i, j) ∈ Ωs) and
γi,j > 0 with 0 < μi,j < 1 ((i, j) ∈ Ωu↑), if there exist
matrices Xi,i > 0 ((i, i) ∈ Ωs), Xi,j > 0 ((i, j) ∈
Ωu↑), and K̄i (i ∈ M) such that inequalities (22)–
(25) are true, then system (1) is stabilized under
the asynchronous switching controller (2) and the
switching signal that satisfies

⎧
⎪⎨

⎪⎩

τai,j ≥ τa∗i,j = − ln νi,j
λi

, (i, j) ∈ Ωs,

dai,j ≤ da∗i,j = − lnμi,j

γi,j
, (i, j) ∈ Ωu↑.

Moreover, the controller gains are given byKi =

K̄iX
−1
i,i .
When d(t) = 0, that is, the switching between

the system and the controller is synchronous, we have
the following result:
Corollary 3 For any (i, j) ∈ M × M, i �= j,
consider system (3). For the given scalars λi < 0

and νi,j > 1, if there exist matrices Xi,i > 0 and K̄i

such that inequality (22) and the following inequality
hold:

Xj ≤ νi,jXi,

then system (1) is stabilized under controller u(t) =
Kσ(t)x(t) and the switching signal that satisfies

τai,j ≥ τa∗i,j = − ln νi,j
λi

.

Moreover, the controller gains are given byKi =

K̄iX
−1
i,i .

Proof The proof process is similar to that of
Theorem 2, and thus it is omitted.

4 Examples

Now we provide two examples to show the effec-
tiveness of the main results in this study.
Example 1 Consider the switched system (1)

consisting of three subsystems. The parameters are
as follows:

A1 =

[
2 −0.2

0 2

]
, A2 =

[ −1 0

0 0.2

]
,
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A3 =

[ −5 0

0 2

]
, B1 =

[
0.5 0

−0.1 0.2

]
,

B2 =

[
0.4 0.1

0 0.2

]
, B3 =

[ −0.4 0.1

0 −0.2

]
.

The eigenvalues of matrix A1 are 2 and 2, those
of matrix A2 are −1 and 0.2, and those of matrix A3

are −5 and 2, showing that these three subsystems
are unstable. On the basis of Algorithm 1, we have
the following steps:

Step 1: Let λ1 = −1.2, λ2 = −3, and λ3 = −1.
Solving condition (22) in Theorem 2, we can obtain
the values of Xi,i and K̄i. By Ki = K̄iX

−1
i,i , the

controller gains can be obtained:

K1 =

[ −6.2000 0.3333

−2.9333 −15.3333

]
,

K2 =

[ −2.6429 2.4643

0.5714 −11.0000

]
,

K3 =

[ −9.1667 2.0833

3.3333 15.0000

]
.

Step 2: The eigenvalues of matrices Ai,j = Ai+

BiKj are illustrated in Table 1. The value ranges of
the corresponding parameters μi,j and γi,j are also
presented in Table 1. From Table 1, we can see
that only A2,1 = A2 +B2K1 is stable, and that the
other Ai,j are unstable, which confirms that μ2,1 >

1, γ2,1 < 0, and that the other μi,j and γi,j (i �= j)
satisfy 0 < μi,j < 1 and γi,j > 0, respectively.

Table 1 Eigenvalues of matrices Ai,j = Ai +BiKj

Matrix Ai,j eig(Ai,j) μi,j γi,j

A1,2 0.0651, −2.2079 0 < μ1,2 < 1 γ1,2 > 0

A1,3 −1.6024, 5.9357 0 < μ1,3 < 1 γ1,3 > 0

A2,1 −5.4340, −2.9160 μ2,1 > 1 γ2,1 < 0

A2,3 −3.6176, 4.4843 0 < μ2,3 < 1 γ2,3 > 0

A3,1 −1.9791, 5.7624 0 < μ3,1 < 1 γ3,1 > 0

A3,2 −2.9291, 5.2434 0 < μ3,2 < 1 γ3,2 > 0

Step 3: The parameters μi,j , γi,j , and νi,j , and
the corresponding AED-ADTs are presented in Ta-
ble 2.

From Table 2, we have the following conclusions:
1. In SSIs [t0, t1) and [tm + d(tm), tm+1), m ∈

N
+, the ADTs τi,j are different based on different

j, even for the same subsystem i. For example,

Table 2 Parameters νi,j , μi,j, γi,j and AED-ADTs
τa∗
i,j , d

a∗
i,j

(i, j) νi,j μi,j γi,j τa∗i,j da∗i,j

(1, 2) 1.7 0.6 8 0.4422 0.0639

(1, 3) 2.1 0.5 10 0.6183 0.0693

(2, 1) 1.2 2 −2 0.0608 0.3466

(2, 3) 1.3 0.8 9.5 0.0875 0.0235

(3, 1) 2.1 0.6 10 0.7409 0.0511

(3, 2) 2.1 0.5 9 0.7409 0.0770

τa1,2 ≥ τa∗1,2 and τa1,3 ≥ τa∗1,3 are both the dwell time on
subsystem 1. We can see that they are not equal.

2. In ASIs [tm, tm+d(tm)), m ∈ N
+, not only the

ADTs on the same subsystem are different, but also
the adopted switching signals may be different. For
example, Table 1 shows that A2+B2K1 is stable but
that A2+B2K3 is unstable for subsystem 2. That is,
the controller u(t) = K1x(t) can stabilize the second
subsystem, but the controller u(t) = K3x(t) cannot.
In this case, in the intervals in which A2 + B2K1

occurs, SAED-ADT switching is employed (μ2,1 =

2 > 1 and γ2,1 = −2 < 0 in Table 2). In cases
in which A2 + B2K3 is activated, the FAED-ADT
switching works (μ2,3 = 0.8 < 1 and γ2,3 = 9.5 > 0

in Table 2).
3. The ADTs in asynchronous switching are not

necessarily smaller than the ones in SSIs, especially
when Ai + BiKj is stable. For instance, Table 1
shows that A2 +B2K1 is stable, and in Table 2, the
corresponding ADT is da2,1 ≥ da∗2,1 = 0.3466, which is
larger than the ADT τa∗2,1 = 0.0608 in SSIs.

Choose the initial value x(0) = [2 − 4]T and
the periodic switching path 1 → 3 → 2 → 1 → 3 →
2 → · · · . Then, under the parameters in Table 2,
Fig. 3a shows the response curves of state x(t) for
the switching signal that satisfies condition (10) with
da3,1 = 0.01, τa3,1 = 0.37, da2,3 = 0.06, τa2,3 = 0.19,

da1,2 = 0.06, and τa1,2 = 0.24. Fig. 3b presents the
curves of these two signals. From Fig. 3, we can see
that system (1) can be stabilized by the designed
asynchronous switching controller (2) and switching
signal (10). The response curve of the Lyapunov
function V (t) is shown in Fig. 4. From Fig. 4, we can
see that on one hand the energy of V (t) decreases
in SSIs [0, 0.62), [0.67, 1.42), and [1.44, 1.53), but in-
creases at the switching instants t1 + da3,1 = 0.67,

t2 + da2,3 = 1.44, and t3 + da1,2 = 1.59. On the other
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Fig. 3 Response curves of x(t) (a) and switching signals σ(t) and σ′(t) (b) for Example 1
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Fig. 4 Response curve of V (t) for Example 1

hand, at the switching instants t1 = 0.62, t2 = 1.42,
and t3 = 1.53, the energy of V (t) is decreasing. Note
that in ASIs [0.62, 0.67) and [1.42, 1.44), the energy
increment of V (t) is allowed.

Example 2 (Zhao et al., 2014) Consider the tunnel
diode circuit presented in Fig. 5, which is described
by

{
CV̇C(t) = −VC(t)

RL
− 1

RD
+ iL(t),

Li̇L(t) = −VC(t)−REiL(t) + 1.5VC(t) + u(t).
(27)

In practice, RD is uncertain. Suppose RD =

1/(0.002 + 0.01β), where β ∈ [0, 100]. Let x1(t) =

VC(t) and x2(t) = iL(t). Then the above tun-
nel diode circuit can be described by the following

Vin

Resistor

Inductor Voltage source

Capacitor Resistor Tunnel
diode

Vout
LiL

RE

u(t)

iC iR iD

RDRLC

Fig. 5 Tunnel diode circuit

equation:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), σ ∈ {1, 2},

with x(t) = [VC, iL]
T and

A1 =

⎡

⎢
⎣

− 1

RLC
− 1.002

C

1

C
1

2L
−RE

L

⎤

⎥
⎦ ,

A2 =

⎡

⎢
⎣

− 1

RLC
− 0.002

C

1

C
1

2L
−RE

L

⎤

⎥
⎦ ,

B1 = B2 =

⎡

⎣
0

1

L

⎤

⎦ .

Here, the parameters are given by C = 0.5 F, L =

0.01 H, RE = 0.1 Ω, and RL = 200 Ω. Thus, we have
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the following system matrices:

A1 =

⎡

⎢
⎣

−1007

500
2

50 −10

⎤

⎥
⎦ , A2 =

⎡

⎢
⎣

− 7

500
2

50 −10

⎤

⎥
⎦ ,

B1 = B2 =

[
0

100

]
.

Let λ1 = −8 and λ2 = −5. From inequality (22),
we can obtain the values of controller gains Ki as

K1 = [−0.5908 0.0245],

K2 = [−0.6291 0.0311].

Then the eigenvalues of matrices Ai,j = Ai +

BiKj are illustrated in Table 3, showing that both
matrices A1,2 and A2,1 are stable. Letting ν1,2 =

2.5, ν2,1 = 3, μ1,2 = 2.5, μ2,1 = 3.5, γ1,2 = −5, and
γ2,1 = −5, we can obtain the corresponding AED-
ADT as τa∗1,2 = 0.1145, τa∗2,1 = 0.2197, da∗1,2 = 0.1833,

and da∗2,1 = 0.2506.

Table 3 Eigenvalues of matrices Ai,j = Ai +BiKj

Matrix Ai,j eig(Ai,j )

A1,2 −4.4535 + 4.4564i, −4.4535 − 4.4564i

A2,1 −3.7814 + 1.9932i, −3.7814 − 1.9932i

Choose the initial value x(0) = [2 − 4]T and
the periodic switching path 1 → 2 → 1 → 2 → · · · .
Fig. 6a shows the response curves of state x(t) for
the switching signal that satisfies condition (10) with
τa1,2 = 0.12, τa2,1 = 0.22, da1,2 = 0.18, and da2,1 = 0.24.
Fig. 6b presents the curves of these two signals. From

Fig. 6, we can determine that system (1) can be stabi-
lized using the designed asynchronous switching con-
troller (2) and switching signal (10). Fig. 7 presents
the response curve of the Lyapunov function V (t).

5 Conclusions

This study presents the research on the prob-
lem of stabilizing switched linear systems under
asynchronous switching. SAED-ADT switching and
FAED-ADT switching have been applied in design-
ing the switching signal. Using the multi-Lyapunov
function method, stabilization conditions have been
given for switched linear systems. An algorithm has
also been provided to determine the controller gains
and to design the switching signals. Finally, two

V
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examples have been given to show the effectiveness
of the proposed results.

Note that in the practical automation indus-
try, the occurrence of faults or failures in actuators
and/or sensors will lead to degradation of system
performance (Yang HY et al., 2018, 2021). In the fu-
ture, we will study fault-tolerant control of switched
linear systems under asynchronous switching and ac-
tuator failure.
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