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Abstract: Extreme multistability has seized scientists’ attention due to its rich diversity of dynamical behaviors and great flexi-
bility in engineering applications. In this paper, a four-dimensional (4D) memcapacitive oscillator is built using four linear circuit 
elements and one nonlinear charge-controlled memcapacitor with a cosine inverse memcapacitance. The 4D memcapacitive 
oscillator possesses a line equilibrium set, and its stability periodically evolves with the initial condition of the memcapacitor. The 
4D memcapacitive oscillator exhibits initial-condition-switched boosting extreme multistability due to the periodically evolving 
stability. Complex dynamical behaviors of period doubling/halving bifurcations, chaos crisis, and initial-condition-switched 
coexisting attractors are revealed by bifurcation diagrams, Lyapunov exponents, and phase portraits. Thereafter, a reconstructed 
system is derived via integral transformation to reveal the forming mechanism of the initial-condition-switched boosting extreme 
multistability in the memcapacitive oscillator. Finally, an implementation circuit is designed for the reconstructed system, and 
Power SIMulation (PSIM) simulations are executed to confirm the validity of the numerical analysis. 
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1  Introduction 
 

Memory effects are widespread in nature and 
become especially important at the nanoscale where 
the dynamics of electrons and ions strongly depends 
on the history of the system within certain time scales 
(Pershin and Ventra, 2011). As one kind of memory- 
circuit elements, memcapacitor has the characteristics 
of nonlinearity, plasticity, and non-volatility. Nano/ 
Microelectromechanical system (N/MEMS) tech-
nology has been used to physically implement 

memcapacitors (Najem et al., 2019; Liu et al., 2020; 
Zhao et al., 2020). An N/MEMS parallel-plate capac-
itor has an elastically suspended upper plate and a 
fixed lower plate (Martinez-Rincon and Pershin, 2011) 
and it can exhibit typical memcapacitive characteris-
tics. When some charges are added to the plates, the 
distance between the parallel plates changes with the 
charges of the upper and lower plates, which provides 
a memory mechanism. Generally, the memory effects 
of memcapacitor originate mainly from two aspects: 
(1) the change of geometric parameters, e.g., distance 
and/or shape (Pershin et al., 2015); (2) the change of 
permittivity, e.g., delayed-response (Martinez-Rincon 
et al., 2010), permittivity-switching (Driscoll et al., 
2009; Lai et al., 2009), and spontaneously polarized 
medium (Cagin et al., 2007). 

Due to the aforementioned memcapacitive 
characteristics, more and more memcapacitive oscil-
lating circuits have been constructed to explore the 
nonlinear phenomenon (Yuan et al., 2016; Zhou Z  
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et al., 2017; Rajagopal et al., 2018a, 2018b; Wang XY 
et al., 2019; Sun et al., 2020). To facilitate numerical 
simulations and theoretical analysis, some specific 
mathematical models, such as the Hewlett–Packard 
(HP) memristor-like model of the memcapacitor 
(Wang GY et al., 2016), the absolute value function 
memcapacitor (Yuan et al., 2019b), the logarithmic 
function memcapacitor (Zhou W et al., 2020), and the 
fractional-order memcapacitor (Rajagopal et al., 2018a; 
Akgul, 2019), have been used to characterize mem-
capacitors. Due to the existence of a line or plane 
equilibrium set, some unique dynamical phenomena, 
including state transition, chaos crisis, and multiple 
coexisting attractors, have been readily discovered in 
memcapacitive oscillators (Wang GY et al., 2017b; 
Ma et al., 2020). In addition to the individual mem-
capacitive oscillators, chaotic circuits constructed 
with a combination of memristors, memcapacitors, 
and meminductors can present more diverse dynam-
ical behaviors (Wang XY et al., 2019; Yuan and Li, 
2019; Ma et al., 2020). For example, Yuan and Li 
(2019) constructed a simple chaotic circuit with a 
memristor, a memcapacitor, and a meminductor 
connected in parallel and disclosed complex behav-
iors, including a variable-boostable feature, phase 
diagram offsets, coexisting multiple attractors, cha-
otic bursting, and local sustained chaotic states. 

Multistability (Pisarchik and Feudel, 2014), i.e., 
the coexistence of multiple attractors for a set of fixed 
system parameters, is universal in dynamical systems. 
On one hand, multistability presents potential threats 
to engineering systems. On the other hand, the strik-
ing phenomenon has potential advantages for some 
engineering applications, e.g., secure communica-
tions (Wang Z et al., 2017; Khorashadizadeh and 
Majidi, 2018). Hence, multistability has attracted a 
great deal of interest (Xu et al., 2016, 2020; Chang  
et al., 2020; Yang et al., 2020). Based on the shape, 
size, and frequency characteristics of the coexisting 
attractors, multistability is divided into homogeneous 
multistability (Li et al., 2018; Yuan et al., 2019b; Bao 
H et al., 2020a) and extreme multistability (Zhang YZ 
et al., 2019; Bao H et al., 2020b). In homogeneous 
multistability, attractors have similar shapes but dif-
ferent sizes and frequencies (Li et al., 2018). However, 
in extreme multistability, there are coexisting multiple 
or infinite attractors with different topological struc-
tures (Chen et al., 2019b; Zhang YZ et al., 2019). In 

addition, the variable-boostable flows commonly 
exhibit a limited number of coexisting states (Li and 
Sprott, 2016; Pham et al., 2017; Kingni et al., 2020). 
When a constant variable controller is employed, the 
equilibrium points of the variable-boostable system 
can be adjusted along some special directions, so that 
the attractors can be repeated with variable offset in 
the phase space, but the system dynamics remains 
unchanged (Li and Sprott, 2016). 

Different from the variable offset boosting be-
haviors, the initial conditions of the state variables 
may induce initial offset boosting coexisting attrac-
tors with extreme multistability in some special 
memristive systems (Wu et al., 2019b; Yuan et al., 
2019a). These systems usually have a line, plane, or 
even space equilibrium set (Bao BC et al., 2016, 2017; 
Wang GY et al., 2017a) that is related to the 
memristor inner variable. For example, Bao H et al. 
(2018) reported a memristive hypogenetic jerk system 
with a sine memductance. This system has four line 
equilibrium sets and exhibits periodically initial- 
condition-dependent boosting behaviors. Wu et al. 
(2019a) proposed a five-dimensional two-memristor- 
based dynamical system with a plane equilibrium set 
and discussed the memristor initial-condition- 
dependent coexisting plane bifurcations and extreme 
multistability. In addition, the initial-condition- 
dependent multistability was found in a hyperchaotic 
system (Zhang S et al., 2018) and a Hindmarsh–Rose 
(HR) neuron model (Bao H et al., 2020a) with no 
equilibrium points. However, there are relatively few 
studies of extreme multistability of the memcapaci-
tive system (Yuan et al., 2016; Zhou W et al., 2020). 
Yuan et al. (2016) implemented a memcapacitor- 
based chaotic oscillator with coexisting attractors 
triggered by different initial conditions of the state 
variable. Zhou W et al. (2020) proposed a non- 
volatile memcapacitor-aided hyperchaotic oscillator, 
which could show symmetrical coexisting attractors 
with the variation of the memcapacitor initial condi-
tions. Nevertheless, the forming mechanism of the 
coexisting attractors has rarely been discussed. 

Inspired by the aforementioned considerations, a 
charge-controlled memcapacitor model with a cosine 
function is built in this paper. Based on this model, a 
four-dimensional (4D) memcapacitive oscillator is 
constructed. Due to the periodic property of the co-
sine function, the proposed system is desired to show 
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the periodically varied initial-condition-switched 
boosting behaviors. To explore the mechanism of 
these boosting behaviors, the incremental integral 
reconstruction method is employed, which has been 
successfully applied in mechanism analysis of initial- 
condition-dependent dynamics in some memristive 
systems (Chen et al., 2018, 2019a, 2020). Using this 
method, the initial conditions of the original system 
are converted into the initial-condition-related pa-
rameters in the reconstructed dimensionality reduc-
tion system, which maintains the same dynamical 
behaviors of the original system. Thus, the mecha-
nism of the initial-condition-switched boosting be-
haviors will be reflected in the bifurcation analysis of 
the initial-condition-related parameters. 
 
 
2  Memcapacitor model and memcapacitive 
oscillator 

2.1  Mathematical model of the memcapacitor 

Some N/MEMS capacitors can exhibit mem-
capacitive effects (Cagin et al., 2007; Driscoll et al., 
2009; Lai et al., 2009; Martinez-Rincon et al., 2010; 
Martinez-Rincon and Pershin, 2011; Pershin et al., 
2015; Najem et al., 2019; Liu et al., 2020; Zhao et al., 
2020), and behave like memcapacitors. However, 
these N/MEMS capacitors usually have complicated 
nonlinearities, and thus are not convenient for 
mathematical modeling or theoretical analysis of their 
application circuits and systems. To effectively 
demonstrate the memcapacitive effect, a novel charge- 
controlled memcapacitor with simple nonlinearity is 
presented in this study and its mathematical model 
can be described by 
 

1
M ( ) cos ,

,

C a b

q

 


  


                   (1) 

 
where q is the charge at both ends of the memcapac-

itor,  is the time integration of q, and 1
M ( )C   stands 

for the inverse memcapacitor related to . As can be 
observed from Eq. (1), the presented inverse mem-
capacitance possesses triangular nonlinearity, which 
is completely different from that reported by Wang 
GY et al. (2016), Yuan et al. (2019b), and Zhou W  
et al. (2020). 

The memcapacitor parameters in Eq. (1) are set 
as a=0.18 F−1, b=0.8 F−1C−1s−1. When a bipolar pe-
riodic stimulus q(t)=Qmsin(2ft) is applied, where 
Qm=0.5 C, the voltage-charge curves of the mem-
capacitor with different frequencies (f) and mem-
capacitor initials ((0)) are plotted in Fig. 1. Fig. 1a 
shows frequency-dependent pinched hysteresis loops, 
in which the initial condition (0) of the memcapac-
itor is fixed at 0. These hysteresis loops gradually 
shrink with increasing frequency. When the frequency 
is 0.5 Hz, the hysteresis loop shrinks almost into a 
straight line. When the frequency is set as f=0.1 Hz, 
the pinched hysteresis loops with different nonlinear 
behaviors are plotted in Fig. 1b by changing the initial 
condition (0) of the memcapacitor. With the varia-
tion of (0), the relationship of the voltage and charge 
of the memcapacitor also changes. It can be predicted 
that the memcapacitor initials of (0) may induce the 
generation of coexisting attractors in the following 
described memcapacitive oscillator. 

2.2  Memcapacitive oscillator 

To investigate the dynamical behaviors of the 
aforementioned memcapacitor in its application  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Pinched hysteresis loops of the memcapacitor 
model: (a) pinched hysteresis loops with (0)=0 C·s;  
(b) pinched hysteresis loops with f=0.1 Hz 

uC(t)= 1
M ( )C  q(t) is the terminal voltage of the memcapacitor 
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circuit, a memcapacitive oscillator is designed and its 
circuit schematic is shown in Fig. 2. The memcapac-
itive oscillator is composed of four linear circuit  
elements and one nonlinear charge-controlled  
memcapacitor. 

The current iL through the inductor, the voltage 
vC across the capacitor, and the charge qM on mem-
capacitor are taken as state variables. By applying 
Kirchoff’s laws to this circuit, the state equations are 
obtained as 
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To make sure that the unit is one, define 
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Note that the newly introduced parameter E can be 
used for scaling the amplitudes of the normalized 
state variables. With the four state variables and six 
dimensionless parameters defined in Eq. (3), the cir-
cuit state equations described by Eq. (2) can be re-
written in a dimensionless form as 
 

,x y                              (4a) 

[ cos( )] ,y x y u z                (4b) 

 
 
 
 
 
 
 
 
 
 

[ cos( )] ,z y u z                   (4c) 

,u z                                (4d) 

 
where ẋ=dx/d, ẏ=dy/d, ż=dz/d, and u =du/d. The 
above ordinary differential equations can be used to 
describe a 4D dynamical system. 

The circuit parameters in Fig. 2 are determined 
as L=0.13 H, C=3.6 F, R=0.2 , G=2.0 S, the model 
parameters of the memcapacitor are fixed as a= 
0.18 F−1, b=0.8 F−1C−1s−1, and the scaling parameter 
is set to E=2 V. Thus, the dimensionless parameters 
can be calculated from Eq. (3) as 
 

1.108, 5.184, 

0.648,  2.880,  0.6.

 
  
 
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           (5) 

 
In the following research, the dimensionless param-
eters in Eq. (5) remain unchanged. 

System (4) has a line equilibrium set S=(0, 0, 0, 
u0), which is related to the initial condition of the 
memcapacitor u0, i.e., u0=u(0). This indicates that the 
positions of the equilibrium points will change with 
different specified initial conditions of the  
memcapacitor. 

The Jacobian matrix J for system (4) at the line 
equilibrium set S is derived as 
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The corresponding eigenpolynomial is deduced as 
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Apparently, the Jacobian matrix J has one zero 

root and three non-zero roots. For the three non-zero 
roots, Routh–Hurwitz conditions are given by 
 

1 2 3 1 2 30, 0, 0,  and 0.a a a a a a            (8) 
Fig. 2  Circuit schematic of the proposed memcapacitive 
oscillator 
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The stability of this line equilibrium set is relevant to 
the initial condition u0. Solving the Routh–Hurwitz 
condition, we have 
 

0cos( ) ,A u B A                       (9) 
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So, the stable ranges of the line equilibrium set S are 
derived as 
 

0

1 1
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If either condition in inequality (10) is satisfied, S is 
stable; if both conditions of inequality (10) are not 
satisfied, S is unstable. When the initial condition u0 
increases from –/ to /, the stability distribution 
diagram of the line equilibrium set is plotted based on 
the non-zero eigenvalues of Eq. (7), as shown in Fig. 3. 
The cyclic width of the stability distribution is 2/, 
which can be adjusted by the cyclic width controller . 
USF, SNF, HB, and FB represent the unstable saddle- 
focus, stable node-focus, Hopf bifurcation point, and 
fold bifurcation point, respectively. The specific val-
ues of the Hopf bifurcation points and fold bifurcation 
points can be derived from inequality (10). Note that 
USF-1 represents an unstable saddle-focus with two 
positive real parts and one negative real part, and 
USF-2 stands for an unstable saddle-focus with one 
positive real part and two negative real parts. 
 
 
 
 
 
 
 
 
 

3  Initial-condition-switched extreme multi-
stability 
 

It has been revealed that the stability distribution 
of the equilibrium set really depends on the initial 
conditions of the memcapacitor, which means that the 
presented memcapacitive oscillator can generate in-
finitely many coexisting attractors in one cycle. These 
infinitely many coexisting attractors are switched 
periodically along the coordinate of the memcapacitor 
inner variable. 

3.1  Periodically repeated bifurcation behaviors 

The bifurcation diagrams of state variables x, y, 
and z are used to describe the dynamical behaviors of 
system (4). The initial conditions are set to x(0)=10−9 
and y(0)=z(0)=0. These bifurcation diagrams are 
numerically simulated and plotted in Fig. 4. Herein, 
the fourth-order Runge–Kutta algorithm with the time 
step 0.01 and the time-interval [900, 1000] is em-
ployed in the numerical simulations. 

The bifurcation diagrams in Fig. 4 contain two 
whole cycles with the variation of u(0). The cyclic 
width is 1.21 (=2/), which is consistent with the 
stability analysis of the line equilibrium set in Section 2. 
With the variation of u(0), the bifurcation diagrams of 
state variables x, y, and z show similar dynamical 
behaviors, including chaos, chaos crisis, period  
doubling/halving bifurcations, and stable point. 

To explain the periodically repeated dynamical 
behaviors in Fig. 4, Eq. (4d) is integrated from − to : 
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where u0 is the initial condition of the state variable u, 
i.e., u0=u(0). Denote 
 

0

0 ( )d .u z  


                        (12) 

Then, system (4) can be rewritten as 
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Thus, the initial condition u0 is explicitly expressed in 
Eq. (13). 

0

USF-2 SNF

HB

USF-1

u(0)

SNFUSF-1

FB FB HB

−0.61(−π/η) −0.35 −0.25 0.25 0.35 0.61(π/η)

Fig. 3  Stability distribution diagram of the line equilib-
rium set 
USF: unstable saddle-focus; SNF: stable node-focus; HB: Hopf 
bifurcation point; FB: fold bifurcation point 
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Suppose 

 

0 00 2 π ,u u n                      (14) 

 
where n is a natural number and u00 is an initial con-
dition compensation that satisfies the following con-
dition (Bao H et al., 2020a): 
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by substituting Eq. (14) into Eq. (13), Eq. (13) still 
holds. It is easy to deduce that different initial u0 can 
induce infinite coexisting attractors along the u coor-
dinate, and these coexisting attractors are periodically 
repeated with the fixed cycle length of 2/, implying 
the occurrence of the initial-condition-switched 
boosting extreme multistability in Fig. 4. 

The bifurcation diagram of state variable y and 
the first three Lyapunov exponents in a whole period 
of Fig. 4 are drawn in Figs. 5a and 5b, respectively. At 
u(0)=−0.76 and −0.71, two period doubling bifurca-
tions occur, which makes the system trajectories  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
transmit from the period-1 to period-2 limit cycle, and 
then to the period-4 limit cycle successively, whereas 
for u(0)=0.18 and 0.20, two period halving bifurca-
tions occur and the system trajectory transmits from 
the period-4 limit cycle to the period-2 limit cycle, 
and then to the period-1 limit cycle. Obviously, the 
dynamical behaviors revealed by the bifurcation dia-
gram are the same as those disclosed by the Lyapunov 
exponents. The bifurcation plots reveal relatively 
complete period doubling/halving bifurcation routes 
with the variation of memcapacitor initial u(0), which 
illustrates the generation of extreme multistability in 
system (4). 

In addition to the initial condition of the mem-
capacitor inner variable, the initial conditions of the 
other state variables can promote periodic repetition 
of bifurcation behaviors. Fig. 6 shows the bifurcation 

u(0)

x/
y/

z

Period N Period N+1

x (red)

y (blue)

z (green)

−0.5−1.0 0 0.5 1.0 1.5 2.0
−0.5

0

0.5

1.0

Fig. 4  Initial u(0) relied bifurcation diagrams of state variables x, y, and z with other fixed initial conditions x(0)=10−9, 
y(0)=z(0)=0 (References to color refer to the online version of this figure) 

Fig. 5  Bifurcation diagram of the state variable y (a) and 
the first three Lyapunov exponents (b) in period N of Fig. 4 

LE
y
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diagrams of the state variable y with the variation of 
initial conditions x(0) and z(0). In Fig. 6a, five com-
plete cycles are plotted in the range of x(0)=[–1, 2], 
whose cyclic width is approximately measured as 
0.52. In Fig. 6b, six complete cycles are observed 
within z(0)=[–1, 2] and the cyclic width is approxi-
mately 0.47. Each cycle has the same bifurcation 
behavior, confirming the generation of the initial- 
condition-switched boosting extreme multistability. 
However, as the initial condition y(0) changes, the 
dynamical behavior of system (4) is constant, which is 
not plotted. 

3.2 Initial-condition-switched offset boosting  
attractors 

In addition to periodicity, the period doubling/ 
halving bifurcations in Figs. 4 and 5 indicate the ex-
istence of coexisting attractors in system (4). The 
representative coexisting attractors in an individual 
varying cycle are depicted in Figs. 7a and 7b. In  
Fig. 7a, the chaotic attractors with different topolog-
ical structures triggered from different memcapacitor 
initial conditions are displayed. The red and magenta 
curves show a pair of symmetrical chaotic attractors, 
and the yellow curve presents a double-scroll chaotic 
attractor, whereas in Fig. 7b, a stable point and three 
limit cycles with period-1, period-2, and period-4 for 
different memcapacitor initial conditions are plotted. 
The phase portraits of the coexisting attractors in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

three adjacent periods are depicted in Fig. 7c. The 
chaotic attractors at u(0)=0.558 and u(0)=1.210 and 
their periodically boosted attractors along the u co-
ordinate are illustrated. Therefore, the initial- 
condition-switched boosting behaviors of the attractor 
positions along the u coordinate are revealed. It is also 
obvious that the attractors appear periodically with 
the cyclic width 2/ in system (4). 

The mean values of state variables are plotted 
with respect to u(0) in Fig. 8. Note that the boosting 
route is nonlinear and one-dimensional. The attractors 
are moving nonlinearly along the positive direction of 
the u coordinate with different topological structures, 
which is consistent with the initial-condition- 
switched boosting behaviors presented in Fig. 7. 

To investigate the initial-condition-switched 
boosting behaviors related to other initial conditions, 
the mean values of the four state variables and the 
corresponding phase portraits under (x(0), 10−9, 0, 0) 
and (10−9, 0, z(0), 0) are plotted in Fig. 9. In Fig. 9a, 
the generated attractors are periodically boosted by 
x(0) along the negative direction of the u coordinate. 
In Fig. 9b, the generated attractors are periodically 
boosted by z(0) along the positive direction of the u 
coordinate. In addition to the attractor positions, the 
attractor types are varied with the change of x(0) and 
z(0). The evolution patterns of dynamical behaviors 
and the measured cyclic widths are consistent with 
those revealed by the bifurcation plots in Fig. 6. 
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Fig. 6  Bifurcation diagrams of the state variable y with respect to x(0) and z(0): (a) x(0) related bifurcation diagram 
with fixed y(0)=10−9, z(0)=u(0)=0; (b) z(0) related bifurcation diagram with fixed x(0)=10−9, y(0)=u(0)=0 
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From Figs. 8 and 9, it is shown that the initial 

conditions x(0), z(0), and u(0) can all behave as the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
boosting adjusters. According to the line equilibrium 
set S=(0, 0, 0, u0), the positions of equilibrium points 
change with u(0), resulting in the change of attractor 
positions. The coupling effect among the state varia-
bles in system (4) indicates the periodic evolution of 
coexisting attractors related to the initial conditions 
x(0) and z(0). The mechanism of the initial- 
condition-switched boosting extreme multistability is 
presented in the following section. 
 
 
4  Mechanism of the initial-condition-switched 
boosting behaviors 

4.1 Reconstructed system via time integral  
transformation 

To explain the forming mechanism of the initial- 
condition-switched boosting behaviors related to 

Fig. 7  Initial u(0) dependent coexisting behaviors and initial-condition-switched boosting behaviors with fixed 
x(0)=10−9, y(0)=z(0)=0: (a) coexisting chaotic attractors in an individual period, where the left spiral attractor (red), 
right spiral attractor (magenta), and double-scroll attractor (yellow) correspond to u(0)=0.558, 0.652, and 0.612, re-
spectively; (b) coexisting point and periodic attractors in an individual period, where the stable point (black), period-1 
limit cycle (red), period-2 limit cycle (blue), and period-4 limit cycle (dark green) correspond to u(0)=0.410, 0.480, 0.507, 
and 0.532, respectively; (c) initial offset-boosted coexisting attractors in three adjacent periods, where the red, green, 
and blue spiral attractors correspond to u(0)=0.558, 0.558+2π/η, and 0.558+4π/η, respectively, and the lavender, dark 
orange, and light green chaotic attractors correspond to u(0)=1.210, 1.210+2π/η, and 1.210+4π/η, respectively. Refer-
ences to color refer to the online version of this figure 
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extreme multistability, a three-dimensional (3D) di-
mensionality reduction model is derived. For the 
convenience of description, three new state variables 
and four initial-condition-related parameters are in-
troduced as follows (Chen et al., 2018, 2019a, 2020): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0
d , d , d ,

t t t
X x Y y Z z             (17) 

η0=u(0), η1=x(0), η2=y(0), η3=z(0).        (18) 

 
Transforming by incremental integration from 0 to t, 
the equations of system (4) are rewritten as 
 

1

0 0 2

0 0 3

,

sin( ) sin( ) ,

sin( ) sin( ) .

X Y

Y X Y Z Z

Z Y Z Z

 
     
 

     
 

  

        


      








(19) 
 

The new 3D system (19) possesses the four pa-
rameters (0, 1, 2, and 3) related to the initial 
conditions of system (4). These explicitly expressed 
initial-condition-related parameters help us interpret 
the dynamical mechanism of the revealed initial- 
condition-switched boosting behaviors. 

According to Eq. (17), the initial conditions of 
system (19) all equal to 0, i.e., X(0)=0, Y(0)=0, and 
Z(0)=0. In this case, the reconstructed system can 
retain the same dynamical behaviors of system (4). 

The equilibrium point of system (19) is deter-
mined by solving the following equations: 
 

1

0 0 2

0 0 3

0 ,

0 sin( ) sin( ) ,

0 sin( ) sin( ) .

Y

X Y Z Z

Y Z Z

 
     
 

     
 

 

        


      


(20) 

The equilibrium point of system (19) is expressed as 

1
1 2 3

1 1 ˆ, , ,Z
   

  
 

     
 

P         (21) 

where Ẑ is the root of the following equation: 

0 0 1 3

1 1
sin( ) sin( ) .Z Z

      
   

      

(22) 
 

Obviously, Ẑ is determined by 0, 1, and 3. 
The Jacobian matrix JD for the dimensionality 

Fig. 9  Initial-condition-switched boosting behaviors 
illustrated by the mean values of the four state variables 
and the corresponding phase portraits: (a) the mean 
values of the four state variables (top) and x(0)-switched 
boosting behaviors (bottom) with fixed y(0)=10−9 and 
z(0)=u(0)=0. In the top figure, mean(x), mean(y), and 
mean(z) are all equal to 0, while mean(u) decreases non-
linearly. In the bottom figure, the single-scroll chaotic 
attractors for x(0)=1.02, 0.50, and −0.02 as well as the 
double-scroll chaotic attractors for x(0)=0.77, 0.25, and 
−0.27 are all boosted with initial-offset −0.52 along the u 
coordinate; (b) the mean values of the four state varia-
bles (top) and z(0)-switched boosting behaviors (bottom) 
with fixed x(0)=10−9 and y(0)=u(0)=0. In the top figure, 
mean(x), mean(y), and mean(z) are all equal to 0, while 
mean(u) increases nonlinearly. In the bottom figure, the 
single-scroll chaotic attractors for z(0)=−0.47, 0, and 0.47 
as well as the double-scroll chaotic attractors for z(0)= 
−0.22, 0.25, and 0.72 are boosted with initial-offset 0.47 
along the u coordinate 
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reduction system (19) at the equilibrium point P is 
deduced as 
 

D 0

0

0 0

ˆ1 1 cos( ) .

ˆ0 1 cos( )

Z

Z



   

   

 
 

     
    

J    (23) 

So, the characteristic polynomial equation is derived as 

3 2
D 1 2 3det( ) 0,b b b        I J       (24) 

where 
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2 0
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b Z

b Z
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    
     


  

 

 

Obviously, the stability of P is related to 0 and Ẑ. In 
other words, the initial-condition-related parameters 
0, 1, 2, and 3 have a significant impact on the 
stability of the equilibrium point P and thereby affect 
the dynamical behaviors. 

4.2  Parameter-switched boosting behaviors 

The initial-condition-related parameters are de-
termined as 1=10−9 and 2=3=0, and the initial 
conditions of system (19) are fixed as X(0)=Y(0)= 
Z(0)=0. When increasing 0, the bifurcation diagram 
of the state variable Y and the first two Lyapunov 
exponents are together given in Fig. 10. Comparing 
Fig. 10 with Fig. 5, the dimensionality reduction 
system (19) reveals the same dynamic behaviors as 
system (4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When 1=10−9 and 2=3=0 are assigned, the 
reconstructed chaotic and periodic attractors of the 
dimensionality reduction system (19) are shown in 
Fig. 11. According to the initial conditions used in 
Figs. 7a and 7c, Fig. 11a shows four reconstructed 
chaotic attractors under η0=0.558, 0.612, 0.652, and 
1.210. Meanwhile, corresponding to the periodic 
coexisting attractors depicted in Fig. 7b, one recon-
structed point attractor and three reconstucted period- 
1, period-2, and period-4 limit cycles are obtained 
under η0=0.410, 0.480, 0.507, and 0.532, as shown in 
Fig. 11b. 

When each of the four initial-condition-related 
parameters is chosen as the boosting controller se-
quentially, the dynamical behaviors of the dimension-
ality reduction system (19) are discussed as follows: 

Case 1: 0 is the boosting controller with fixed 
1=10−9 and 2=3=0 

Because 1=10−90 and 2=3=0, the equilib-
rium point is expressed as P=(0, 0, Ẑ). Fig. 12a shows 
that with the variation of 0, Ẑ expresses the periodic 
changing rule. Thus, the equilibrium point P period-
ically moves around the origin of the Z coordinate 
with the same cyclic width 2/ as the original sys-
tem (4). The mean values of the state variables are 
plotted with respect to 0 in the top of Fig. 13a. 
Through reconstruction, the mean value of Z changes 
periodically around zero, and the mean values of X 
and Y remain at zero. Thus, the initial-condition- 
switched boosting behaviors disappear in the recon-
structed system (19). The bifurcation diagrams in the 
bottom of Fig. 13a confirm these behaviors. There-
fore, the different attractors triggered by the initial- 
condition-related parameter 0 with the 2/ interval 
drop into the same region in the phase plane, which is 
different from the boosting phenomenon in Fig. 7c. 

Case 2: 1 is the boosting controller with fixed 
2=10−9 and 3=0=0 

The equilibrium point of system (19) is ex-
pressed as P=[−(1−)1/(), −1/, Ẑ]. The trajec-
tory of Ẑ is plotted with respect to the initial- 
condition-related parameter 1 in Fig. 12b, which 
manifests that the equilibrium point P periodically 
moves along the negative direction of the Z coordi-
nate as 1 increases. Also, the X and Y coordinates of 
P decrease linearly. These features are also reflected 
by the mean values of the three state variables given  

Fig. 10  The initial-condition-related parameter η0 relied 
bifurcation diagram of the state variable Y (a) and the 
first two Lyapunov exponents (b) of system (19) with 
fixed X(0)=Y(0)=Z(0)=0, 1=10−9, and 2=3=0 
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in the top of Fig. 13b. The mean value of Z decreases 
periodically, but the mean values of X and Y decrease 
linearly, leading to the periodic evolution and offset 
boosting features of the bifurcation behaviors. These 
characteristics are further confirmed by the bifurca-
tion diagram depicted in the bottom of Fig. 13b. Be-
sides, the periodic evolution of dynamical behaviors 
has the same cyclic width 0.52 as that in Fig. 6a. 

Case 3: 2 is the boosting controller with fixed 
1=10−9 and 3=0=0  

The equilibrium point of system (19) is ex-
pressed as P=(2, 0, Ẑ). The trajectory of Ẑ is plotted 
with respect to the initial-condition-related parameter 
2 in Fig. 12c. As 2 increases, the Y and Z coordi-
nates of P remain at zero and the X coordinate in-
creases linearly. In the top of Fig. 13c, the evolution 
of the state mean values is plotted with respect to 2, 
which agrees with the evolution of the equilibrium 
point P. The bifurcation diagram given in the bottom  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of Fig. 13c shows that system (19) always operates in 
the chaotic mode with the variation of 2. However, 
these chaotic attractors are linearly boosted along the 
positive direction of the X coordinate, because the X 
coordinate of P is linearly changed with 2. 

Case 4: 3 is the boosting controller with fixed 
1=10−9 and 2=0=0  

The equilibrium point of system (19) is ex-
pressed as P=(3/, 0, Ẑ). Combined with Fig. 12d, we 
can conclude that as 3 increases, P increases linearly 
along the X coordinate, remains at zero along the Y 
coordinate, and periodically increases in the positive 
direction of the Z coordinate. The evolution of P in-
duces the movement of the attractors’ positions. 
These are also presented by the state mean values and 
bifurcation diagram in Fig. 13d. The revealed be-
haviors are similar to those depicted in Fig. 13b, but 
the boosting direction and the evolution period are  

Fig. 12  Trajectories of Ẑ with the variation of the initial 
parameters 0, 1, 2, and 3: (a) 1=10−9 and 2=3=0; 
(b) 2=10−9 and 3=0=0; (c) 1=10−9 and 3=0=0;  
(d) 1=10−9 and 2=0=0 

Ẑ
Ẑ

Ẑ
Ẑ

Fig. 11  The initial-condition-switched coexisting attrac-
tors of the dimensionality reduction system with fixed 
X(0)=Y(0)=Z(0)=0, 1=10−9, and 2=3=0: (a) chaotic 
behaviors with 0=0.558/0.612/0.652/1.210; (b) periodic 
behaviors with 0=0.410/0.480/0.507/0.532 
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different. The period of the bifurcation behaviors is 
0.47, which is the same as that in Fig. 6b. 

The veil of the initial-condition-switched 
boosting behaviors induced by the initial conditions 
x(0), y(0), z(0), and u(0) in system (4) can be uncov-
ered in system (19). The initial conditions of state 
variables x, y, z, and u in system (4) are transformed 
into the initial-condition-related parameters 1, 2, 3, 
and 0 in system (19). Thus, the mechanism of the 
initial-condition-switched boosting behaviors is ex-
plained by the analysis of the dynamical behaviors 
associated with the initial-condition-related parameters. 
 
 
5  Circuit simulation for the reconstructed 
system 
 

The implementation circuit of the dimensional- 
ity reduction system (19) is shown in Fig. 14. This 
circuit is composed of operational amplifiers, trigo-
nometric function converters, resistors, and capacitors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time constant of this circuit is defined as RC= 
10 k33 nF=0.33 ms. Then the other resistors are 
calculated as R1=R/=9.03 k, R2=R/=15.43 k, 
R3=R/=18 k, R4=R=51.84 k, R5=R/()= 
25.72 k, and R6=R/()=30 k. 

Following the implementation circuit in Fig. 14, 
the circuit equations of the dimensionality reduction 
system (19) are expressed as 
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Fig. 13  Initial parameter-switched boosting behaviors of the dimensionality reduction system illustrated by the state 
mean values and bifurcation diagrams: (a) 0-switched boosting behavior with 1=10−9 and 2=3=0; (b) 1-switched 
boosting behavior with 2=10−9 and 3=0=0; (c) 2-switched boosting behavior with 1=10−9 and 3=0=0; (d) 
3-switched boosting behavior with 1=10−9 and 2=0=0 
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where vx, vy, and vz are three circuit variables corre-
sponding to the state variables of system (19), and 
four DC voltage biases V0–V3 are corresponding to the 
initial-condition-related parameters 0–3. 

Let V1=10−9 V and V2=V3=0 V. When V0 is set 
to 0.558, 0.612, 0.652, or 1.210 V, the Power SIM-
ulation (PSIM) circuit simulations are depicted in 
Fig. 15a. The chaotic attractors with four different 
topological structures emerge around the original 
point. Then, the limit cycles with period-1, period-2, 
and period-4 for V0=0.480, 0.507, and 0.532 V are 
plotted in Fig. 15b. The PSIM circuit simulation 
results match well with the MATLAB numerical 
simulation results in Fig. 11. These results for dif-
ferent values of V0–V3 can further confirm the infi-
nite coexisting attractors’ behaviors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 

The initial-condition-switched boosting behav-
iors can exhibit the periodical coexisting attractors 
with different topological structures and positions 
along the coordinate of the memcapacitor inner var-
iable. In this paper, we have introduced a cosine 
memcapacitor into an oscillator, and thus presented a 
4D memcapacitive oscillator. The 4D memcapacitive 
oscillator possessed a line equilibrium set, and its 
stability periodically evolved with the initial condi-
tion of the memcapacitor. These characteristics could 
induce complex dynamical behaviors in the 4D 
memcapacitive oscillator. By employing multiple 
numerical simulation methods, the initial-condition- 
related complex dynamical behaviors have been  
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Fig. 15  Power SIMulation (PSIM) circuit simulations of the dimensionality reduction system for different initial con-
ditions: (a) chaotic behaviors with V0=0.558/0.612/0.652/1.210 V, V1=10−9 V, and V2=V3=0 V; (b) periodic behaviors with 
V0=0.480/0.507/0.532 V, V1=10−9 V, and V2=V3=0 V 

Fig. 14  Analog implementation circuit for the dimensionality reduction system 
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disclosed. In particular, the initial-condition-switched 
boosting extreme multistability has been revealed. 
Furthermore, the mechanism of the initial-condition- 
switched boosting behaviors was uncovered based on 
a reduced-order system constructed by the integral 
transformation. The obtained results have been fur-
ther confirmed by the PSIM circuit simulations. The 
revealed initial-condition-switched boosting extreme 
multistability has more potential applications in  
secure communications (Wang Z et al., 2017; 
Khorashadizadeh and Majidi, 2018) and deserves our 
future study. 
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