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Abstract: To improve the survivability of orbiting spacecraft against space debris impacts, we propose an impact
damage assessment method. First, a multi-area damage mining model, which can describe damages in different spatial
layers, is built based on an infrared thermal image sequence. Subsequently, to identify different impact damage
types from infrared image data effectively, the variational Bayesian inference is used to solve for the parameters in
the model. Then, an image-processing framework is proposed to eliminate variational Bayesian errors and compare
locations of different damage types. It includes an image segmentation algorithm with an energy function and an
image fusion method with sparse representation. In the experiment, the proposed method is used to evaluate the
complex damages caused by the impact of the secondary debris cloud on the rear wall of the typical Whipple shield
configuration. Experimental results show that it can effectively identify and evaluate the complex damage caused
by hypervelocity impact, including surface and internal defects.
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1 Introduction

With the rapid development of aerospace science
and technology and the strong desire of mankind
to explore space, numerous spacecrafts have been
launched into space. However, the large amount of
space debris generated by space activities (Liou and
Johnson, 2006) has a great impact on the on-orbit op-
erations of spacecrafts (Huang et al., 2020). Due to
the increasing frequency of impact events caused by
small space debris, the damage assessment of space-
crafts is becoming progressively important. Infrared
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(IR) thermal imaging technology can achieve in-situ
non-contact detection of defects by collecting and
analyzing the small changes in the surface tempera-
ture fields of the test object under external thermal
excitation. Because of its high efficiency, ease of
visualization, and non-contact advantages, IR ther-
mal imaging technology has begun to be applied in
the field of aerospace damage detection and eval-
uation (Yin et al., 2019; Zhang et al., 2020). At
the same time, various image sequence data process-
ing methods have been developed to extract effective
feature data related to defects from the original IR
data. In Gao et al. (2016a), a linear model was used
to describe the thermal images. Moreover, princi-
pal component analysis (PCA) (Geng et al., 2016)
and independent component analysis (ICA) (Gao
et al., 2016b) were used to highlight the damage-
related information. In Sasmaz et al. (2015), Fourier
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transform and other methods were used to recon-
struct the defects in the images of the topography.

Since the data on the damaged area account for
a small part of the overall test data, they can be real-
ized as sparsity in the model. The sparsity model has
been developed rapidly in many fields and is a power-
ful tool to solve the above problem. A sparsity model
for solving multi-task problems in visual tracking
scenarios has been established (Sun et al., 2019).
Wang et al. (2018) proposed a joint model, which
replaces the infinite space of pixels with a nonnega-
tive space of pixels and is used to classify the hyper-
spectral images. To solve these models, many data-
mining methods have been proposed. Peng et al.
(2012) used robust PCA to decompose linear corre-
lation images into low-rank and sparse matrices. Wu
et al. (2018) established the multi-objective memetic
method to obtain the sparse components of the con-
sidered image. The sparse nonnegative matrix fac-
torization technique was applied by Guo and Zhang
(2019). To meet the growing application require-
ments, numerous methods have been developed for
sparse decomposition, such as cross-validation (CV)
(Kokkinos and Margaritis, 2018), the Markov chain
Monte Carlo (MCMC) method (Li et al., 2016), and
the variational Bayesian (VB) method (Yang et al.,
2018). These methods can be used to extract the
damage-related information in the thermal image
sequence.

In this study we develop an assessment method
to achieve the hypervelocity impact damage assess-
ment of spacecrafts. The main approach is summa-
rized as follows: (1) A multi-area damage-mining
model is proposed to effectively extract surface and
subsurface damages by mining the thermal image se-
quence. (2) An overall damage assessment strategy
is established by developing a framework for extrac-
tion of damage information by the VB method. (3)
In the image fusion process based sparse represen-
tation (Ma et al., 2018; Kang et al., 2019), the IR
image sequence is applied to the establishment of a
dictionary since there are not enough historical data
to construct its dictionary. Finally, the experimental
results show the benefits of the developed method.

2 Proposed method

In the near-Earth space, there is a huge quantity
of small space debris flying around the Earth at a su-

per high speed. Since this tiny space debris cannot
be tracked and cautioned against, the impact event
caused by the tiny space debris is extremely harmful
to orbiting spacecrafts. Due to the extremely high
impact kinetic energy (IKE) of space debris, its hy-
pervelocity impact will cause not only visible dam-
age on the surface such as surface impact craters
and impact perforations, but also invisible subsur-
face damage such as back bulging and spalling. Tak-
ing the Whipple shield configuration commonly used
in spacecrafts as an example, which consists of two
layers of aluminum alloy thin plates with a certain
distance between them, the secondary debris cloud
generated by the impact of small space debris on
the front bumper plate usually leads to a large-area
impact crater on the rear wall and forms internal
cracks and spalling damage on the subsurface of the
rear wall (Fig. 1). The detection of damages caused
by space debris impact requires simultaneous recog-
nition of surface and subsurface damages, to provide
comprehensive and accurate data for spacecraft risk
assessment and on-orbit maintenance.
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Fig. 1 Hypervelocity impact

2.1 Framework for damage assessment

In recent years, consequent to the rapid devel-
opment of IR cameras, IR thermal imaging technol-
ogy has provided a feasible way for the visual detec-
tion of defects and assessment of the surface damage
in orbiting spacecrafts. IR imaging technology can
unearth the difference in temperature field distribu-
tion among different damaged areas and normal ar-
eas based on temperature changes of the measured
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object. Hence, it is possible to extract and iden-
tify the characteristics of different types of damage
by judging the differences in these transient ther-
mal responses. How to develop an effective process-
ing method to identify different types of damage is
studied.

Since the IR thermal image sequence data con-
tain the characteristic attributes of temperature in
space and time, feature extraction is of utmost im-
portance. Therefore, as shown in Fig. 2, we pro-
pose a detection framework to achieve the above
purpose. In this framework, a multi-area damage-
mining model is developed to obtain the images of
damage from the thermal image sequence. Next, an
image-processing method is built to reduce computa-
tional errors and data collection errors in the extrac-
tion process. In the detection framework, locations
of different types of damage are also compared.

2.2 Multi-area damage-mining model

There exist certain requirements for how to eval-
uate the complex damage caused by impact on space-
craft surfaces, which means that the impact kinetic
energy of space debris can be judged by compar-
ing the degrees of damage by the same impact type.
However, it is obvious that the damage caused by
hypervelocity impact of space debris is usually more
complex (Fig. 3). The damages at the same location
may exist in different spatial layers. In this case,
since the single IR image is only a two-dimensional
(2D) image, the heat of the same pixel may be af-
fected by multiple damages in different spatial layers.
Hence, it is difficult to accurately evaluate the hy-
pervelocity impact damage due to the differences in
damage types. To distinguish the different damage
types and accurately evaluate the degree of damage
of materials subjected to hypervelocity impact, we
propose a multi-area damage-mining model.

For convenience, a three-dimensional (3D) ma-
trix blockΞ ∈ R

i×j×Ft is defined to denote the ther-
mal image sequence, in which (i, j) and Ft denote the
location coordinates and the time coordinate of the
3D matrix block, respectively. As shown in Fig. 4,
the thermal image sequence contains different dam-
age and non-damage information. Moreover, infor-
mation on the different types of damage still shows
mutual coupling. To eliminate this coupling and
reconstruct the different types of damage from the
IR thermal image sequence, the corresponding areas
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Fig. 3 Possible damage to the material

of the different damages will be described through
their respective characteristic signals. Specifically,
XF and XB express the surface damage and sub-
surface damage characteristics, respectively. Mean-
while, XN denotes the characteristics of the undam-
aged surface. Then, the multi-area damage-mining
model is presented as follows:

Ψ =

DamF
︷ ︸︸ ︷

FtF
∑

tF=1

XF(tF)λF(tF)+

DamB
︷ ︸︸ ︷

FtB
∑

tB=1

XB(tB)λB(tB)

+

B
︷ ︸︸ ︷

FtN
∑

tN=1

XN(tN)λN(tN)+N , (1)

whereΨ = [vec(Ξ(1)), vec(Ξ(2)), . . . , vec(Ξ(Ft))] ∈
R

K×Ft is converted from Ξ with K = i × j (“vec”
is an operator converting a block into a vector),
XF ∈ R

K×FtF , XB ∈ R
K×FtB , XN ∈ R

K×FtN .
XB(tB),XF(tF), andXN(tN) are the column vectors
of XB, XF, and XN, respectively. Their respective
mixing parameter matrices can be expressed as
λF ∈ R

FtF
×Ft , λB ∈ R

FtB
×Ft , and λN ∈ R

FtN
×Ft .

λF(tF), λB(tB), and λN(tN) are the row vectors of
λF, λB, and λN, respectively. N denotes the noise
matrix.
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Fig. 4 Possible damages in different layers

The linear combination of characteristics of the
normal area without damage can be obtained by a
low-rank matrix B =

(

UΣ1/2
) (

V Σ1/2
)T

= STT,
in whichS ∈ R

K×r, T ∈ R
Ft×r (r is the dimension of

Σ). Each column of this matrix is designed to obey
the Gaussian distribution with precision of �i and
mean of zero. Furthermore, �i obeys the Gamma dis-
tribution p(�i) = Γ(u, 1v ) ∝ �u−1

i exp(−v�i), where
u and v are hyperparameters. Moreover, surface and
subsurface damages are expressed separately as the
sparse matrices DamF and DamB. Each element
also obeys the Gaussian distribution with precision
of �ij and υij , and mean of zero. Moreover, �ij

and υij separately represent information affecting
the surface and subsurface damage temperature dis-
tributions. They are determined by the character-
istics of different types of damage and obey Jeffreys
priors, i.e., p(�ij) = (�ij)

−1, p(υij) = (υij)
−1. As-

sume that the noise is Gaussian white noise, i.e.,
p(N |ι) = N(N |0, ι−1IKFt), in which p(ι) = ι−1

and IKFt denotes a KFt-dimensional unit matrix.
Thus, the posterior probability of the thermal im-
age sequence can be derived using the following
expression:

p(Ψ |S,T ,DamF,DamB, ι)

=
∏

i

∏

j

N(Ψ |STT + DamF + DamB, ι
−1IKFt).

(2)

The joint probability of the multi-area damage-

mining model can be represented as follows:

p(Ψ ,S,T ,DamF,DamB,�,�,υ, ι)

=p(Ψ |S,T ,DamF,DamB, ι)p(S|�)p(T |�)
· p(DamF|�)p(DamB|υ)p(�)p(�)p(υ)p(ι).

(3)

To mine the damage features of different areas,
VB uses the mean field theory (MFT) to esti-
mate the parameters. Each hidden variable’s pos-
terior probability can be obtained by minimiz-
ing the Kullback–Leibler (KL) divergence (Kull-
back and Leibler, 1951). Furthermore, Z =

(S,T ,DamF,DamB,�,�,υ, ι) is used to represent
the set of hidden variables. Then, the estimation
of the posterior probability of the hidden variable
Q(Zk), where k = 1, 2, . . . , 8, can be written as

ln(Q(Zk)) = 〈ln(p(Ψ ,Z))〉Z �=Zk
+ χ, (4)

in which 〈·〉 denotes the expectation and χ is a
constant.

1. Estimation of S and T
Each row of S obeys the Gaussian distri-

bution. Their respective probabilities are ex-
pressed as Q (si�) = N(si�| 〈si�〉 ,ΣS), Q (tj�) =

N(tj�| 〈tj�〉 ,ΣT ), and their respective means are
written as

〈si�〉T = 〈ι〉ΣS〈T 〉T(ψi� − DamFi� − DamBi�)
T,

(5)

〈tj�〉T = 〈ι〉ΣT 〈S〉T(ψ�j − DamF�j − DamB�j )
T,

(6)

where si� and tj� denote the rows of S and T , respec-
tively. Moreover,ψi� (ψ�j), DamFi� (DamF�j ), and
DamBi� (DamB�j ) represent the rows (columns)
of Ψ , DamF, and DamB, respectively. ΣS =

(〈ι〉 〈TTT
〉

+ γ)−1 and ΣT = (〈ι〉 〈STS
〉

+ γ)−1

represent the variances of S and T respectively, in
which the diagonal matrix γ = diag(�1, �2, . . . , �r)
and B = 〈S〉 〈T 〉T.

2. Estimation of �
The �j distribution and its mean can be written

as
〈�j〉 = K + Ft + 2u

〈

sT�js�j
〉

+
〈

tT�jt�j
〉

+ 2v
, (7)

where s�j and t�j denote the columns of S and T ,
respectively.

〈

sT�js�j
〉

= 〈s�j〉T 〈s�j〉+K(ΣS)jj and
〈

tT�jt�j
〉

= 〈t�j〉T 〈t�j〉 + Ft(Σ
T )jj , in which (ΣS)jj
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and (ΣT )jj denote the (j, j)th entry of ΣS and ΣT ,
respectively.

3. Estimation of DamF and DamB

DamFij and DamBij obey the Gaussian distri-
bution. Their probabilities are respectively written
as follows:

Q(DamFij ) = N
(

DamFij |
〈

DamFij

〉

, ΣDamF

ij

)

,

Q(DamBij ) = N
(

DamBij |
〈

DamBij

〉

, ΣDamB

ij

)

.

Their means are respectively written as follows:

〈

DamFij

〉

=
〈ι〉

(

ψij − 〈si�〉〈tj�〉T−
〈

DamBij

〉
)

〈ι〉+ 〈�ij〉 ,

(8)

〈

DamBij

〉

=
〈ι〉

(

ψij − 〈si�〉〈tj�〉T−
〈

DamFij

〉
)

〈ι〉+ 〈υij〉 ,

(9)

where ΣDamF

ij = (〈ι〉 + 〈�ij〉)−1 and ΣDamB

ij =

(〈ι〉+ 〈υij〉)−1 represent the variances of DamF and
DamB, respectively.

4. Estimation of �, υ, and ι
The posterior probabilities of �ij , υij , and ι

obey the Gamma distribution. Their means are re-
spectively represented as follows:

〈�ij〉 = 1
〈

Dam2
Fij

〉 =
1

〈

DamFij

〉2
+ΣDamF

ij

, (10)

〈υij〉 = 1
〈

Dam2
Bij

〉 =
1

〈

DamBij

〉2
+ΣDamB

ij

, (11)

〈ι〉 = KFt
〈

‖Ψ − STT − DamF − DamB‖2F
〉 , (12)

in which
〈
∥

∥Ψ − STT − DamF − DamB

∥

∥
2

F

〉

=
∥

∥

∥Ψ − 〈S〉 〈T 〉T − 〈DamF〉 − 〈DamB〉
∥

∥

∥

2

F
+

tr(Ft 〈S〉T 〈S〉ΣT ) + tr(K 〈T 〉T 〈T 〉ΣS) +

tr(KFtΣ
SΣT ) +

K
∑

i=1

Ft∑

j=1

ΣDamF

ij +
K
∑

i=1

Ft∑

j=1

ΣDamB

ij .

Here, tr(·) denotes the trace of the corresponding
matrix. Finally, the matrix of the model can be
derived by optimizing the parameters under the
above iteration (Eqs. (5)–(12)). Each column
of DamF and DamB can be represented as the
corresponding images SF and SB respectively, which
can highlight the damaged and undamaged regions
and describe the features of real damage.

The characteristic images of the different dam-
aged regions can be obtained by solving the multi-
region damage-mining model. Furthermore, to more
accurately evaluate the degree of damage by the hy-
pervelocity impact, further processing of the above-
mentioned images with the damage characteristics is
required.
Remark 1 VB is a class of techniques used in
Bayesian estimation and machine learning to ap-
proximate intractable integrals. It is used mainly in
complex statistical models, generally including three
types of variables, i.e., observed variables (data),
unknown parameters (parameters), and latent vari-
ables. It has two main purposes: one is to approxi-
mate the posterior probability of unobservable vari-
ables so that statistical inferences can be made from
these variables; the other is to give a lower bound
of the marginal likelihood function of the observed
variables for a particular model. It is believed that
the higher the edge likelihood value of the model, the
better the model fits these variables and the higher
the probability that the model generates data. In
this study, a multi-area damage-mining model, which
can describe damages in different spatial layers, is
built based on the IR thermal image sequence. To
identify different types of impact damage from IR
image data effectively, VB is used to solve for the
parameters in the model.

2.3 Image-processing framework

2.3.1 Noise elimination

By taking the pixels in the same damaged area
as a whole and fully considering all the damages
to evaluate the damage to the material, an image-
processing framework is proposed in this subsection
to process the damage-related images. The temper-
ature difference among adjacent pixels in the same
damage area is small, and the degree of this temper-
ature difference can be measured by variance. To
simultaneously analyze the temperature distribution
of the pixel points in the same damaged area, the dif-
ferent areas of the same image are divided by curve
C. Meanwhile, the energy distribution is established
by the temperature variance

∣

∣T − T̄
∣

∣
2 (T represents

the temperature and T̄ represents the average tem-
perature). It should be mentioned that the higher
the energy, the greater the temperature difference.
The following expression of the energy function is
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built based on the total energy of the damaged and
undamaged regions:

Ξ(T1, T2, ϑ)

=α1

∫

Θ

|SB(x, y)− T1|2Hε(ϑ(x, y, t))dxdy

+ α2

∫

Θ

|SB(x, y)− T2|2 (1−Hε(ϑ(x, y, t)))dxdy,

(13)

where SB denotes the damage image and ϑ(x, y, t)

represents the dividing curve C at time t, i.e.,
ϑ(x, y, t) = 0. Clearly, ϑ(x, y, t) > 0 when pixel
(x, y) is inside C; otherwise, define ϑ(x, y, t) < 0

when (x, y) is outsideC. Hε(ϑ) =
1
2 (1+

2
π
arctan(ϑε ))

is the Heaviside function. Furthermore, α1 and α2

denote weights, and T1 and T2 represent the average
temperatures inside and outside C respectively:

T1 =

∫

Θ
SB(x, y)Hε(ϑ(x, y, t))dxdy
∫

ΘHε(ϑ(x, y, t))dxdy
,

T2 =

∫

Θ
SB(x, y)(1 −Hε(ϑ(x, y, t)))dxdy
∫

Θ (1−Hε(ϑ(x, y, t)))dxdy
.

The first term of Ξ(T1, T2, ϑ) represents the
variance of the temperature in the inner area of C.
Its second term denotes the variance of the temper-
ature value in the area outside C. When the en-
ergy function reaches a minimum, the temperatures
of the pixels in the inner area of the dividing curve
are similar; accordingly, these pixels should belong
to the same area. Similarly, the external pixels be-
long to the same area. By minimizing Ξ(T1, T2, ϑ)

and searching the optimal curve, the image is di-
vided into the damaged region and the undamaged
region. Then, the pixel points in the same area are
regarded as a whole, so that more accurate damage
images can be obtained according to the temperature
distribution.

To obtain the minimum value of Ξ(T1, T2, ϑ),
the Euler–Lagrange equation (Yang et al., 2018;
Zong et al., 2019) is used to solve the energy
function. The variation of the dividing curve is
∂ϑ
∂t = δε(ϑ)[−α1(SB(x, y)−T1)2+α2(SB(x, y)−T2)2],
where δε(ϑ) = 1

π
ε

ε2+ϑ2 . We solve the final dividing
curve ϑ∗(x, y, t) by iterating T1, T2, and ∂ϑ

∂t . Subse-
quently, the temperature distribution of the image is
set to S∗

B = SBmax ∗Hε(ϑ
∗), where SBmax represents

the maximum temperature of the original image.

By establishing Ξ(T1, T2, ϑ), more accurate im-
ages of the different types of damage can be derived.
The different damage types are integrated by image
fusion to investigate the interaction between them.
Image fusion technology merges the information of
two or more images into one image, so that the fused
image contains more information, which is more con-
venient for human analysis or computer processing.
Therefore, the sparse representation method is used
in the following fusion process.

2.3.2 Image fusion

1. Establishment of the dictionary
In the usual sparse representation method, a

large number of data samples can be used to con-
struct a complete dictionary. However, due to the
high cost of hypervelocity impact testing, it is dif-
ficult to obtain a large number of test data sam-
ples. To solve the above problem, we build an over-
complete dictionary based on the IR thermal im-
age sequence. It should be noted that the tem-
perature of the material changes gradually during
the heating process, so the temperature distribution
between adjacent frames is similar. To reduce the
calculation time and improve processing efficiency,
frames with similar temperature distributions can
be merged through preprocessing before the estab-
lishment of the dictionary. The developed algorithm
is presented as follows:

Step 1: Set � = 1. The thermal image se-
quence is merged to valid frames by K-means clus-
tering. Each frame is split to blocks with size n× n.
Meanwhile, each block is converted into a vector
by the “vec” operator. Moreover, it is normalized
to composite the sample set Z ∈ R

MZ×FZ , where
MZ = n × n and FZ = Fx

n × Fy

n × K. The dictio-
nary D ∈ R

MD×FD is initialized randomly, where
MD = n × n and FD represents the amount of data
in the dictionary. We define a zero matrix as the
initial sparse matrix H ∈ R

FD×FZ and initialize the
maximum number of iterations G.

Step 2: Initialize residual eω = Z�i (i =

1, 2, . . . , FZ), the sparse degree τ , and the allowable
error ε. Let ω = 1.

Step 3: Find the best matching atom Dam�j∗ω

by matching separately index set Iω = Iω−1 ∪ j∗ω
and atom set φω = φω−1 ∪ Dam�j based on j∗ω =

argmax
j∈[1,FD]

|〈eω,Dam�j〉|. Let ω = ω + 1. Solve
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Hω
i = argmin

Hi

‖Z�i − φωHi‖22 and update the sparse

coefficient according to Hω
i .

Step 4: Calculate eω = Z�i−φω−1Hi. If ‖eω‖ <
ε or ω > τ , then H�i is used to express the sparse
coefficient of Z�i; otherwise, go to step 3. Calculate
the sparse coefficients of all FZ blocks. A sparse
matrix H is applied to denote them.

Step 5: Let tempD = D and tempH = H . Find
the sparse coefficient tempHi′� (the (i′)th row of H)
of the (i′)th atom in the dictionary tempDam�i′ , i

′ =
1, 2, . . . , FD. Find the non-zero term in tempHi′�

to form tempH
non-zero
i′I , where I = {ı|Hi′ı 	= 0, ı =

1, 2, . . . , FZ}.
Step 6: Find blocks Z�I corresponding to I in

Z, to form the matrix tempZ, and perform singular
value decomposition on tempZ (tempZ = UΣV T).
Then, update the atom Dam�i′ = U�1 and sparse
coefficient tempHi′� based on Hi′I = Σ11V

T
�1. Up-

date all atoms in the dictionary.
Step 7: Let � = � + 1, and go back to step 2

until � > G. Finally, one can obtain the dictionary
D and sparse coefficient H .

2. Image fusion
After the dictionary is built, the images of the

different damage types are sparsely represented by
the orthogonal matching pursuit (OMP) algorithm
(Chen et al., 2019) based on the dictionary, and
the sparse coefficients are then fused as follows:
Hfusion = max{HF,HB}, where HF and HB rep-
resent the sparse coefficients of the images of the
different layers. Then, the fused sparse coefficient
and dictionary (S = DHfusion) can be applied to

derive the fused image. Fig. 5 shows the process of
image fusion with sparse representation.

Since the thermal image sequence contains
abundant information on the characteristics of the
material’s damages, it can be used to construct a dic-
tionary. In addition, the sparse representation rep-
resents a large number of images by sparse signals,
so the required storage space is greatly reduced. The
application of image fusion technology can effectively
synthesize the characteristic information and loca-
tion information of different damage defects, thereby
improving the utilization of image information and
accuracy of computer interpretation.

3 Experimental results

To obtain the samples of hypervelocity impact
damage for IR thermal imaging detection, we used
two typical Whipple shield configurations as test
pieces. The hypervelocity impact tests of space de-
bris were carried out on the hypervelocity ballistic
equipment in the China Aerodynamics Research and
Development Center (CARDC), as shown in Fig. 6.
The aluminum projectile with a diameter of about
5 mm was accelerated to about 8 km/s by the two-
stage light gas gun, which collided vertically with the
Whipple shield configurations. The bumper plate
was penetrated by the hypervelocity aluminum pro-
jectile, producing the secondary debris cloud. The
damage status of the rear walls caused by the im-
pact of the debris cloud is shown in Figs. 7 and 8.
There are a lot of tiny impact craters on the front

Thermal image sequence

Cluster center 1

Cluster center 2

Cluster center K

Thermal image 
     samples Fused image

Pixel blocks Sparse coefficient

Sparse coefficient Images of 
  damage

Optimized 
 dictionary

   Optimal 
 dictionary

t

≤G

Hfusion=max{HF, HB}

ᵨ

Fig. 5 Image fusion based on sparse representation
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surface of the rear wall. Although no perforations
were found, spalling damage was formed on the sub-
surface or back of the rear wall. In the next step,
the hypervelocity impact damage samples were ther-
mally excited by two halogen lamps, and the sur-
face temperature distribution of the test piece was
recorded by the IR camera (Fig. 9). The resolution
of the IR image was 512 × 640, and the number of
acquisition frames was 362.

To carry out data processing, the 3D thermal
image sequences were transformed into a 2D ma-
trix. The matrix was further processed through
PCA, such that frames with 95% important infor-

The ballistic range of the China Aerodynamics 
Research and Development Center (CARDC)

Fig. 6 Setup for the hypervelocity impact experiment

(a) (b)

Fig. 7 Test piece I: (a) surface; (b) subsurface

(a) (b)

Fig. 8 Test piece II: (a) surface; (b) subsurface

mation were derived to replace all the images in the
sequence. Then, VB was used to solve the model, in
which the iteration number was set as 100. Param-
eters u and v were set to 10−6. Finally, the images
of surface damage and subsurface damage caused by
two impacts at different speeds can be denoted by
the columns of matrices DamF and DamB, respec-
tively. Images with the strongest contrast in the dif-
ferent damaged regions were chosen. For material I,
the experimental results are displayed in Fig. 10.

Figs. 10a and 10b show the surface and subsur-
face damage images of material I, respectively. From
the subsurface damage image, it is seen that some
noise may be caused by the data acquisition and
independence assumption of pixels. Hence, an en-
ergy function was used to judge the damage region
by considering the heat distribution of the pixels in
the area comprehensively. In the process of optimiz-
ing the energy function, the iteration number was
set as 20 and the initial segmentation curve was se-
lected artificially. The value of the pixel was set to
S∗
B = SBmax ∗Hε(ϑ

∗). Finally, the result of the sub-
surface damage images is shown in Fig. 11, in which
the red area represents the region of damage.

By comparison with the subsurface damage

Support
Sample

Halogen light
PC

IR camera

Fig. 9 Experimental setup

(a) (b)

Fig. 10 Results of the variational Bayesian method
(material I): (a) surface; (b) subsurface
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image (Fig. 10b), it can be seen that noise at the
edge of the image caused by data acquisition has
been eliminated, and the prominent noise caused by
the independence assumption (Yang et al., 2018) of
the pixels has been integrated into the connected
damaged regions.

To integrate all types of damage, sparse repre-
sentation was used to fuse them. A dictionary of
two materials was built by the thermal image se-
quence; we set K = 5 to extract frames with differ-
ent temperature distributions (Fig. 12). Specifically,
Fig. 12a represents the background of material I. Dif-
ferent types of damage can be displayed as seen in
Figs. 12b–12e. These images were then normalized
and used to learn the dictionary. In the process of
learning the dictionary, we set G = 100, τ = 8, and

Fig. 11 Result of noise elimination (material I)

ε = 0.1. The number of atoms in the dictionary was
set to 1280 (FD = 1280). Finally, the dictionary of
the two materials is shown in Fig. 13.

Based on the dictionary, the sparse coefficients
of the surface image shown in Fig. 10a and the
subsurface image shown in Fig. 11 can be derived.

(a) (b)

(c) (d)

(e)

Fig. 12 Results of K-means clustering: (a) 1st frame;
(b) 2nd frame; (c) 3rd frame; (d) 4th frame; (e) 5th

frame

Fig. 13 Dictionary
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Moreover, the two images were fused based on
Hfusion = max{HF,HB}. Finally, the fused images
of material I were obtained by multiplying the fused
sparse coefficients with the dictionary. The results
are shown in Fig. 14.

For material II, the parameters of VB remained
unchanged, and the results of damage mining are dis-
played in Fig. 15. There were also some noise around
the subsurface damage (Fig. 15b). Then, an energy
function was used to eliminate noise. The number of
iterations was set to 50. The value of pixel was set
to S∗

B = SBmax ∗Hε(ϑ
∗). The resulting image after

noise elimination is shown in Fig. 16. Then, the dic-
tionary (Fig. 13) was applied to compute the sparse
coefficients of the surface damage image displayed in
Fig. 15a and the subsurface damage image displayed
in Fig. 16, and Hfusion = max{HF,HB} was used
to fuse these sparse coefficients. The resulting fused
image is shown in Fig. 17.

Finally, Figs. 14–17 show the fused images of
materials I and II, in which the positions of subsur-
face damage are highlighted in the red circle. These
fused images were more blurred in comparison with

Subsurface damage

Fig. 14 Fused image (material I)

(a) (b)

Fig. 15 Results of the variational Bayesian method
(material II): (a) surface; (b) subsurface

their original images, since the sparse representation
represents the original image with fewer features. To
save computing resources in the actual calculation,
one can first derive the downsampling images and
then obtain the sparse coefficients. Moreover, the
distribution of the impact kinetic energy of the sec-
ondary debris cloud can be identified by analyzing
the fused image. The presence of subsurface damage
also means higher impact kinetic energy. By check-
ing the locations and sizes of the different types of
damage in the fused image, an effective assessment
of the hypervelocity impact damage can be achieved.

Fig. 16 Result of noise elimination (material II)

Subsurface damage

Fig. 17 Fused image (material II)

4 Conclusions

To achieve the assessment of the complex dam-
age caused by hypervelocity impact of space debris, a
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multi-area damage-mining model has been proposed
to extract the different types of damage in IR im-
age sequences. To further visualize the damages
using images, the VB method has been applied to
estimate these parameters of the model. Since the
independence assumption of the pixels is contrary
to the actual situation, an energy function has been
proposed to comprehensively consider the tempera-
ture distribution of the pixels in the damaged areas.
In the experiment, two test samples of a rear wall
with hypervelocity impact damages caused by de-
bris cloud were evaluated by the above-mentioned
method. The damage-related images were solved by
VB. The locations of the different types of damage
can be compared using an image-processing frame-
work. Finally, the damage assessment of hyperveloc-
ity impact can be completed.
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