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Abstract: Since traditional machine learning methods are sensitive to skewed distribution and do not consider the
characteristics in multiclass imbalance problems, the skewed distribution of multiclass data poses a major challenge
to machine learning algorithms. To tackle such issues, we propose a new splitting criterion of the decision tree
based on the one-against-all-based Hellinger distance (OAHD). Two crucial elements are included in OAHD. First,
the one-against-all scheme is integrated into the process of computing the Hellinger distance in OAHD, thereby
extending the Hellinger distance decision tree to cope with the multiclass imbalance problem. Second, for the
multiclass imbalance problem, the distribution and the number of distinct classes are taken into account, and a
modified Gini index is designed. Moreover, we give theoretical proofs for the properties of OAHD, including skew
insensitivity and the ability to seek a purer node in the decision tree. Finally, we collect 20 public real-world
imbalanced data sets from the Knowledge Extraction based on Evolutionary Learning (KEEL) repository and the
University of California, Irvine (UCI) repository. Experimental and statistical results show that OAHD significantly
improves the performance compared with the five other well-known decision trees in terms of Precision, F-measure,
and multiclass area under the receiver operating characteristic curve (MAUC). Moreover, through statistical analysis,
the Friedman and Nemenyi tests are used to prove the advantage of OAHD over the five other decision trees.
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One-against-all scheme
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1 Introduction

Numerous lines of evidence have shown that de-
cision tree is one of the most popular classifiers (Wu
et al., 2008; Sharmin et al., 2019), with characteris-
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tics of high efficiency, simplicity, and interpretabil-
ity (Cieslak et al., 2012). In a decision tree, there
is a tree structure model that consists of one root
node, multiple internal nodes, and some leaf nodes.
Given a training data set, the decision tree uses the
splitting criterion to partition the data set into child
nodes (internal and leaf nodes) recursively until a
stopping condition is meet.

Originally, the decision tree was developed to
solve the problem of balanced classification. There
are two representative decision trees, CART and
C4.5 (Breiman et al., 1984; Quinlan, 1986), which
have shown pronounced capability in dealing with
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balanced classification problems. Due to the impor-
tance of the splitting criterion, based on the impu-
rity, a splitting criterion is proposed for each deci-
sion tree. These decision trees have benefited from
their proposed splitting criterion while dealing with
the balanced classification problem. However, these
methods face a problem in processing data sets with
distinct classes. Chandra et al. (2010) proposed the
distinct class based splitting measure (DCSM) rely-
ing on the number of distinct classes. In this split-
ting criterion, DCSM takes into account not only
the distribution of each class but also the number of
distinct classes in a partition. By doing so, DCSM
has better performance in classification. Meanwhile,
strict proof has been provided to show the advan-
tages of DCSM in terms of its properties such as
being convex and well-behaved (Safavian and Land-
grebe, 1991; Kotsiantis, 2013; Osei-Bryson, 2014).

However, these methods have limitations in
solving the multiclass imbalance problem. Using
the prior probability of classes to compute the split-
ting criteria in these decision trees leads to a poor
performance of minority classes (Flach, 2003; Akash
et al., 2019). In the multiclass imbalanced classifi-
cation problem, the minority classes occupy a small
portion but are more important than the majority
classes; thus, there is a challenge for traditional deci-
sion trees to deal with data sets containing minority
classes. Therefore, it is crucial to improve the per-
formance of the minority classes under the multiclass
imbalanced classification problem.

To cope with the imbalanced classification prob-
lem, some decision trees have been proposed to im-
prove the performance (Cieslak and Chawla, 2008;
Liu et al., 2010; Boonchuay et al., 2017; Akash et al.,
2019; Su and Cao, 2019). Liu et al. (2010) designed a
class confidence proportion decision tree, introducing
a new measure (class confidence proportion) without
bias to the majority classes. However, this method
can be used only to solve the two-class imbalance
problem. To solve the multiclass imbalance problem,
Akash et al. (2019) presented a weighted internode
Hellinger distance (iHDw) based decision tree. Con-
sidering the multiclass imbalance problem, iHDw
adopts the weighted squared Hellinger distance to
measure the difference in class distribution between
the parent node and child nodes rather than using
the prior probability of classes. In this way, the split-
ting criterion with iHDw can avoid being sensitive

to class imbalance. Moreover, Su and Cao (2019)
integrated the Hellinger distance (Kailath, 1967; Ci-
chocki and Amari, 2010) and KL divergence (Feng
et al., 2019; Wan et al., 2020) into the lazy deci-
sion tree to solve the imbalanced classification prob-
lem. Cieslak and Chawla (2008) proposed a new
decision tree, called the Hellinger distance decision
tree (HDDT), which can solve the imbalance prob-
lem. In their work, the Hellinger distance (Kailath,
1967; Cichocki and Amari, 2010) was regarded as
a splitting criterion in HDDT, showing better per-
formance in the imbalanced classification problem;
however, there is a limitation in their work using the
Hellinger distance, because the Hellinger distance
has a problem in identifying the difference between
two different splits in the multiclass imbalance prob-
lem. Moreover, the splitting criterion does not con-
sider the class distribution or the number of distinct
classes.

We hereby consider a situation to illustrate the
defect of the Hellinger distance. For example, for a
certain node in the decision tree, we suppose that
there are a number of samples with five classes no-
tated with A, B, C, D, and E. The number of samples
in each class is 100, 40, 20, 10, and 10. We assume
that there are two splits for dividing these classes.
One split divides all the samples in classes A and B
(totaling 140) to the left child node, and the remain-
ing 40 samples in the other classes are classified to
the right child node. For the other split, 100 sam-
ples in class A and half of the number of samples in
the other classes are categorized under the left child
node with 140 samples; meanwhile, the leftover 40
samples from classes B to E are classified under the
right child node. Because HDDT can be used only to
compute the distance between two classes, it regards
the multiclass problem as a two-class problem. If we
suppose that class A is the positive class, the other
classes are divided into the negative class. Therefore,
we can obtain uniform class distribution by these
two splits, obtaining the same results through the
two splits by HDDT. Obviously, we can find that
HDDT is inappropriate for solving the multiclass
imbalanced classification problem. The main rea-
son is that the Hellinger distance can solve only the
two-class classification problem; it has limitations in
identifying some differences in the multiclass imbal-
ance problem. Furthermore, this process does not
tackle the issues of the multiclass distribution and
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the number of distinct classes, which are critical in
the multiclass imbalance problem.

To address the insufficiencies of the methods
mentioned above, in this study we propose a one-
against-all-based Hellinger distance (OAHD) deci-
sion tree to solve the multiclass imbalanced classifi-
cation problem. Due to the defect in the Hellinger
distance in calculating the distance between multi-
ple classes, we introduce the scheme of one-against-
all (Anand et al., 1995) to the process of computing
the splitting criterion of OAHD. During the com-
puting process, we adopt the decomposition scheme
so that OAHD can be extended to deal with the
multiclass problem. We also consider the issue of
purity of node in the decision tree. To tackle this
issue, we take into account the number of distinct
classes and the distribution of the multiclass imbal-
ance problem without considering the prior proba-
bility of the classes. Meanwhile, we modify the Gini
index to incorporate it into the multiclass imbalance
problem. Moreover, we strictly prove that OAHD
has the skew-insensitivity property, and that a purer
node is sought by the splitting criterion. Finally,
we collect 20 public real-world imbalanced data sets
available from the Knowledge Extraction based on
Evolutionary Learning (KEEL) repository (Alcala-
Fdez et al., 2011) and the University of California,
Irvine (UCI) repository (Asuncion, 2007). Experi-
mental and statistical results demonstrate that the
proposed OAHD outperforms the five unpruned de-
cision trees in terms of various metrics.

2 Background

Here, we discuss several splitting criteria for de-
cision trees related to our proposed criterion.

2.1 Information gain

The CART decision tree (Breiman et al., 1984)
and the C4.5 decision tree (Quinlan, 1986) are the
classical algorithms that deal with a balanced data
set. The intuition of CART is to split the attribute
that reduces impurity the most. Consider a parent
node u with V child nodes, and consider that there
are C distinct classes in node u; then, the splitting
criterion (named the Gini index) is calculated as

Gini(xj) =

V∑

v=1

[
1−

C∑

k=1

(
Nv

ωk

Nv

)2]
, (1)

Nv
ωk

denotes the number of samples of a class ωk

in partition v, and Nv denotes the total number of
samples in partition v.

Similar to CART, C4.5 is based on choosing a
partitioning that has the largest decrease in the in-
formation gain ratio. The information gain based on
an attribute xj is defined as

Gain(xj) = −
C∑

k=1

[
Nu

ωk

Nu
log2

(
Nu

ωk

Nu

)]

−
V∑

v=1

[
Nv

Nu

C∑

k=1

(
− Nv

ωk

Nv
log2

(
Nv

ωk

Nv

))]
,

(2)

where Nu denotes the number of samples in node u.
Since Eq. (2) favors the attribute with a larger

number of values, Quinlan (1986) normalized the in-
formation gain to introduce a new splitting criterion
(the information gain ratio), which is defined as

Gain (R(xj)) =
Gain(xj)

−
V∑

v=1

[
Nv

Nu
log2

(
Nv

Nu

)] . (3)

These decision trees show better performance
while dealing with the balanced classification prob-
lem. However, for a skewed class distribution, the
above-mentioned methods are inadequate for im-
proving the performance.

2.2 Distinct class based splitting measure

Chandra et al. (2010) proposed a new splitting
criterion called DCSM, which not only emphasizes
the proportion of each distinct class but also pays
attention to the number of distinct classes in a par-
tition. Considering a splitting node u (parent node)
with V partitions (child nodes), for a given attribute
xj , the splitting criterion M(j) is calculated as

M(j) =
V∑

v=1

{
Nv

Nu
D(v) exp (D(v))

·
C∑

k=1

[
avωk

exp
(
δv(1− (avωk

)2)
)]}

, (4)

where D(v) represents the number of distinct classes
in partition v, δv is equal to D(v)/D(u), and avωk

is the probability of class ωk in partition v, i.e.,
Nv

ωk
/Nv.
There are two critical parts in Eq. (4). One

is D(v)exp(D(v)), which considers the number of
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distinct classes in each child node. As the num-
ber of distinct classes increases, the first part will
increase sharply. Thus, the purer partition will
be preferred. The other is the summation of
avωk

exp(δv(1− (avωk
)2)), v = 1, 2, . . . , V . First, as δv

decreases, the impurity of the partition will decrease,
and then 1 − (avωk

)2 decreases when there are more
samples of a class compared to the total number of
samples in the partition. Therefore, this measure
is intended to favor the purer partition. Compared
with other split measures, DCSM takes into account
the number of distinct classes. The limitation of
DCSM is similar to those of the above-mentioned
decision trees. It has a preference for the majority
classes, resulting in poor performance for the minor-
ity classes.

2.3 Hellinger distance decision tree

Cieslak and Chawla (2008) introduced a new
splitting criterion (Hellinger distance) to solve the
imbalanced classification problem. The main differ-
ence between HDDT and other splitting measures is
that HDDT is insensitive when dealing with a skewed
class distribution. In HDDT, assuming that there is
a two-class problem (class X+ and class X−) and
dividing all continuous features into V partitions, a
feature is selected as a splitting attribute when it
achieves the largest Hellinger distance between class
X+ and class X−. The Hellinger distance is defined
as

DH(X+‖X−) =

√√√√√
V∑

j=1

(√
|X+j |
|X+| −

√
|X−j |
|X−|

)2

,

(5)
where |X+j| and |X−j | represent the numbers of sam-
ples of classes X+ and X− in partition j respectively,
and |X+| and |X−| denote the numbers of samples
of classes X+ and X− in all partitions respectively.

HDDT is strongly considered to be skew-
insensitive because it does not use the prior proba-
bility of a class in the distance calculation (Abdi and
Hashemi, 2016; Akash et al., 2019). Nevertheless, the
splitting criterion essentially captures the differences
of the feature values only for the two classes without
considering the multiclass imbalanced classification
problem. Therefore, it is necessary to design a split-
ting criterion to address the multiclass imbalanced
classification problem.

2.4 Weighted internode Hellinger distance

Akash et al. (2019) used the weighted squared
Hellinger distance to measure the difference between
the parent node and each child node. Though
the proposed selection weight is combined with the
squared Hellinger distance, iHDw can obtain a purer
child node in a split partition. iHDw can be defined
as

iHDw = qLD
2
H(PL‖P )ωL + qRD

2
H(PR‖P )ωR, (6)

where

D2
H(Pt‖P ) = 1−

C∑

j=1

√
ptjpj ,

ωt = 1−
k∏

j=1

qtptj
pj

, t ∈ {L,R},

where qL and qR denote the ratios of the numbers of
samples in the left and right child nodes to the num-
ber of samples in the parent node, respectively. The
function of D2

H(Pt‖P ) is to maximize the distance
between the distributions of the two child nodes to
make a mutually exclusive and skew-insensitive par-
tition. Pt and P indicate the child nodes and par-
ent node, respectively. C is the number of distinct
classes. ptj and pj represent the proportion from
class j in the child node and the parent node, respec-
tively. ωt is not dependent on the prior probability of
the classes, resulting in nonbiased majority classes,
and ωt increases linearly with the growth of dissimi-
larity between the parent node and the child node to
divide a purer partition.

3 The proposed algorithm

3.1 Details of the algorithm

Due to the defect in current research, by ex-
tending the Hellinger distance, we propose a splitting
criterion OAHD to solve the multiclass imbalanced
classification problem. Moreover, for each partition,
the impurity of the training patterns and the distri-
bution of the multiple classes are considered to seek
a purer child node.

The Hellinger distance is a divergence measure
and a member of the α divergence family (Kailath,
1967; Cichocki and Amari, 2010). Considering two
discrete probabilities P and Q, the definition of
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the Hellinger distance can be given as in Eq. (5).
However, for the multiclass imbalance problem, the
Hellinger distance does not work. To address this
problem, we propose a new splitting criterion OAHD,
which is based on the Hellinger distance. We use
OAHD to calculate a better split threshold between
two child nodes. The purpose of OAHD is that
the samples in the two child nodes are divided into
mutually exclusive regions, and the node is suffi-
ciently pure when OAHD is maximized. Considering
a parent node u and the corresponding child node v,
v ∈ {L,R}, for each feature j, the proposed splitting
criterion is defined as follows:

HD(j) =
∑

v

ωv
θ

ωu
θ

exp

(√
Nv

θ

Nu
θ

−
√

Nv
θ

Nu
θ

)2

· β
u − βv

βu
exp

(
C∑

k=1

W 2
k

)
, (7)

where

Wk =

Nv
k

Nu
k

C∑
i=1

Nv
i

Nu
i

,
ωv
θ

ωu
θ

=

Nv
θ

Nu
θ

+
Nv

θ

Nu
θ

∑
v

(
Nv

θ

Nu
θ

+
Nv

θ

Nu
θ

) .

Here, N denotes the number of samples in a node; for
example, Nv

i denotes the number of samples of class
i in node v. βu denotes the number of distinct classes
in the parent node, and βv represents the number of
distinct classes, with Wk ≥ 1/2 for the child node.
θ and θ denote the selected minority class and the
remaining classes, respectively.

The splitting criterion is composed of two parts.

The first part is the summary of
ωv
θ

ωu
θ

exp

(√
Nv

θ

Nu
θ

−
√

Nv
θ

Nu
θ

)2

, which is skew-insensitive. Previous works

have always decomposed a C-class imbalance prob-
lem into C two-class imbalance problems. Differ-
ently, we apply the one-against-all scheme to calcu-
late the multiclass Hellinger distance directly. In this
process, the original multiclass imbalanced data set
is used to calculate OAHD directly. For each class,
OAHD regards the selected minority class as the pos-
itive class (θ), and the remaining classes as the neg-
ative class (θ); by doing this, a one-against-all-based
Hellinger distance of the selected minority class is
obtained. Then, the threshold of the maximum one-
against-all-based Hellinger distance is viewed as the

optimal split threshold. Nv
θ /N

u
θ and Nv

θ
/Nu

θ
repre-

sent the ratios of the number of samples in the child
node to the number of samples in the parent node
of classes θ and θ, respectively. In previous splitting
criteria, the term ωv/ωu always denotes the ratio of
the number of samples in the child node to the num-
ber of samples in the parent node. However, due to
the enormous difference in the number of samples
between the majority and minority classes, this in-
dex does not work. Therefore, in our method, ωv

θ/ω
u
θ

represents the proportion of the weight between the
parent node and the child node without using the
prior probability of the classes. As the difference in
the distribution probability between classes θ and θ

increases, the partition becomes purer. Therefore,
purer partition is preferred by this part.

The second part is
βu − βv

βu
exp

(
C∑

k=1

W 2
k

)
,

which is independent of the prior probability of the
classes. Thus, it is not biased toward the majority
class. If most samples of each class are split into the
same child node, we assume βv = βu, v ∈ {L,R}.
Wk is the proportion of class k in a child node. Dif-
ferent from the CART decision tree, in the compu-
tation of Wk, the proportion of the weight between
a parent node and a child node of class k is used
instead of the number of samples of class k, since
in the absence of the prior probability of the classes,
the decision tree is insensitive to the skewed distribu-
tion. As βv decreases, the number of distinct classes
with Wk ≥ 1/2 decreases, and (βu − βv)/βu gains
a greater value. Thereby, the node becomes purer.
Furthermore, for a certain class k, if Wk is asymp-
totic to one, the sum of W 2

k (k = 1, 2, . . . , C) will in-
creasingly grow with the child node becoming purer.
Therefore, the combination is skew-insensitive and
favors purer partition.

The main process of calculating the one-
against-all-based Hellinger distance is described in
Algorithm 1.

3.2 Proof of the properties of the proposed
algorithm

Several properties are used to characterize the
node splitting criterion, which is expected for a good
splitting criterion. OAHD has the following basic
properties:

1. OAHD is insensitive to the skewness of the
class distribution; therefore, this splitting criterion
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Algorithm 1 OAHD
Input: f (a feature in the imbalanced data set T ) and

j (indicating that f is the jth feature of T )
Output: HD (the maximum value of OAHD calcu-

lated using Eq. (7)) and TH (the corresponding split
threshold of HD)

1: HD ← −1
2: Sort the value of feature f , and then divide it into

N equal parts
3: for k ← 1 to C do
4: for i← 1 to N do
5: TH ← Threshold(i)

6: As mentioned above, calculate the correspond-
ing parameter

7: Cur_HD =
∑

v

ωv
θ

ωu
θ

exp

(√
Nv

θ

Nu
θ

−
√

Nv
θ

Nu
θ

)2

· β
u − βv

βu
exp

(
C∑

k=1

W 2
k

)

8: if Cur_HD > HD then
9: HD = Cur_HD

10: TH = Cur_TH

11: end if
12: end for
13: end for

will not be biased toward the majority classes.

2. HD is nonnegative, and it will obtain the
lowest value, i.e., HD = 0, which indicates that most
samples of each class are split into the same child
node; this will result in the node becoming more
impure. Thus, a purer node can be sought by OAHD.

For the first property, we adopt the formula-
tion of Flach (2003) in this study. This method
can transform the splitting criterion into a formula
containing the true positive rate (the ratio of the
number of positive samples in the child node to the
number of positive samples in the parent node) and
the false positive rate (the ratio of the number of
negative samples in the child node to the number of
negative samples in the parent node), which can be
used to measure the degree of sensitivity to skew-
ness. Thus, this method can be used to measure the
skew-sensitive of the splitting criterion. Vilalta and
Oblinger (2000) had similar analysis. As mentioned
above, without the prior probability of the classes,
the Hellinger distance can also be related to the true
positive rate and the false positive rate, which have
been proved to be insensitive to the skewed class dis-
tribution (Vilalta and Oblinger, 2000; Flach, 2003).

Thus, Eq. (5) can be written as follows:

DH =

√
(
√
tpr−

√
fpr)2 + (

√
1− tpr −

√
1− fpr)2,

(8)
where tpr denotes the true positive rate and fpr de-
notes the false positive rate.
Proposition 1 OAHD has the skew-insensitive
property.
Proof To explain Proposition 1, consider a data
set with C classes (k = 1, 2, · · · , C); the number of
samples of class k in the left child node is denoted
by tpLk , and tpR

k is the number of samples of class k

in the right child node; thus, the true positive rate

tprk is equal to tpv
k

/ V∑
v
tpv

k, v ∈ {L,R}. Suppose

that class θ denotes the selected minority class, and
that the remaining classes are recorded as class θ.
From Eq. (7), for feature j, the splitting criterion of
OAHD can be formulated as follows:

HD(j) =
tprLθ + tprL

θ
V∑
v
(tprvθ + tprv

θ
)

exp

(√
tprLθ −

√
tprL

θ

)2

· β
u − βL

βu
exp

[
C∑

k=1

(
tprLk

/ C∑

i=1

tprLi

)2
]

+
tprRθ + tprR

θ
V∑
v
(tprvθ + tprv

θ
)

exp

(√
tprRθ −

√
tprR

θ

)2

· β
u − βR

βu
exp

[
C∑

k=1

(
tprRk

/ C∑

i=1

tprRi

)2
]
.

(9)

Since (βu − βv)/βu (v ∈ {L,R}) denotes the
impact of the number of distinct classes on the pro-
cess of splitting a node, where βu denotes the num-
ber of distinct classes in the parent node, it is not
necessary to use the prior probability of the classes.
Therefore, to clarify Eq. (9), we set (βu − βv)/βu

notated with Dv.
C∑

k=1

(
tprvk

/ C∑
i=1

tprvi

)2

(v ∈ {L,R})
is organized with two parts, a constant value and
a true positive rate without the prior probabil-

ity of the classes, where
C∑
i=1

tprvi is a constant

value that equals Sv. Thus, it can be written as
C∑

k=1

(
tprvk
Sv

)2

=

(
tprvθ
Sv

)2

+
C∑

k=1,k �=θ

(
tprvk
Sv

)2

, assum-

ing that
C∑

k=1,k �=θ

(
tprvk
Sv

)2

is equal to DRv (a constant
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value). It is obvious that SL + SR is equal to C,
so we can set SR = C − SL. Similarly, DR can
be calculated from 1 − DL, where βv �= βu and
V∑
v
(tprvθ + tprv

θ
) = 2. Thus, Eq. (9) is eventually

formulated as follows:

HD(j) =
tprLθ + tprL

θ

2
exp

(√
tprLθ −

√
tprL

θ

)2

·DLexp

[(
tprLθ
SL

)2

+DRL

]

+
tprRθ + tprR

θ

2
exp

(√
tprRθ −

√
tprR

θ

)2

· (1−DL)exp

[(
tprRθ

C − SL

)2

+DRR

]
.

(10)

From Eq. (10), we can see that OAHD can
be transformed as a pattern that contains only tpr

and the constant values (DL, SL, and DRv), with-
out the prior probability of classes (Akash et al.,
2019). Thus, OAHD is insensitive to the skewness
of the class distribution of the data set (Vilalta and
Oblinger, 2000; Flach, 2003).
Proposition 2 OAHD is nonnegative. It will
obtain the lowest value, i.e., HD = 0, when most of
the samples of all classes are divided into the same
child node, and it will seek a purer node.
Proof Through the calculation using Eq. (7), both
critical parts are larger than 0, so HD is nonnegative
and the lowest value ofHD is equal to zero. Assuming
a data set with three classes (k = 1, 2, 3), for a feature
j, we suppose that the split threshold divides 60%
samples of each class to the left node and 40% to the
right node. Eq. (11) shows the specific calculation:

HD(j) =
∑

v

ωv
θ

ωu
θ

exp

(√
Nv

θ

Nu
θ

−
√

Nv
θ

Nu
θ

)2

· β
u − βv

βu
exp

(
C∑

k=1

W 2
k

)

=
3

5
exp

(√
3

5
−
√

3

5

)2
3−3

3
exp

[
C∑

k=1

(
1

3

)2
]

+
2

5
exp

(√
2

5
−
√

2

5

)2
3−3

3
exp

[
C∑

k=1

(
1

3

)2
]

=0. (11)

As we can see from Eq. (11), when most sam-

ples of all classes are divided into the same child
node, (βu − βv)/βu equals zero, so HD achieves the
lowest value of zero. In this situation, this node is
disordered as impure.

Then, if (βu − βv)/βu �= 0, when the difference
between

√
Nv

θ /N
u
θ and

√
Nv

θ
/Nu

θ
becomes greater,

HD will grow, so does the part of exp
(

C∑
k=1

W 2
k

)
. For

example, considering a data set with three classes,
there are two split thresholds A and B. For the
split threshold A, 90% samples of each class are di-
vided into the right child node, and the remaining
samples are classified to the left child node. For
the split threshold B, only 90% samples are selected
from one class for the right child node, and 90% sam-
ples from the other classes are categorized to the left
child node. Under these two split threshold rules, we
can find that the node purity obtained by the split
threshold B is better than that obtained by the split
thresholdA, and that a greater value can be obtained
with the split threshold B. Thereby, the lowest value
of OAHD is zero, and it will seek a purer node.

4 Evaluation

4.1 Imbalanced data sets

In this subsection, the performance of OAHD
was evaluated using 20 public real-word multiclass
imbalanced data sets, which were collected from two
well-known public sources, namely, the KEEL and
UCI repositories. Details of the multiclass imbal-
anced data sets are shown in Table 1. The imbalance
ratio (IR) denotes the ratio of the number of samples
of the largest majority class to the number of sam-
ples of the smallest minority class. The OAHD deci-
sion tree was compared with five unpruned decision
tree classifiers, which included CART, C4.5, DCSM,
internode Hellinger distance (iHD), and iHDw. Fur-
thermore, to guarantee a fair comparison, all experi-
ments were conducted using five-fold cross-validation
and with 20 independent runs.

4.2 Performance measures

Precision and F-measure are widely discussed
single-class metrics in imbalance problems (He and
Garcia, 2009; Nekooeimehr and Lai-Yuen, 2016), and
it is a suitable way to use them to evaluate the per-
formance of the algorithm. In the next experiment,
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Table 1 Description of the imbalanced data sets, including the name, size, number of attributes, number of
classes, class distribution, and imbalance ratio (IR)

Number Name Size
Number of Number of

Class distribution IR
attributes classes

1 ESL12vs3vs456vs7vs89 488 4 5 62/14/351/38/23 25.1
2 Heart 270 13 2 150/120 1.3
3 Liver 345 6 2 145/200 1.4
4 Wine 178 13 3 71/59/48 1.5
5 Glass 214 10 6 76/70/29/17/13/9 8.5
6 Automobile12vs345vs6 205 71 3 25/153/27 6.1
7 ERA 1000 4 9 142/181/172/88/158/18/92/31/118 10.0
8 ERA1vs2345vs7vs8vs9 1000 4 5 771/88/92/31/18 42.8
9 Yeast52 982 8 5 463/25/35/429/30 18.5
10 Plates-faults1 1941 27 7 158/190/391/72/55/402/673 12.2
11 Plates-faults3 1941 27 5 158/863/793/72/55 15.7
12 abalone8discre 2148 10 8 126/203/267/487/634/259/115/57 11.1
13 abalone10discre 2297 10 10 57/115/259/391/634/487/126/103/67/58 11.1
14 page-blocks 559 10 4 329/115/87/28 11.8
15 pendigits 1100 16 10 115/114/114/106/114/106/105/115/105/106 1.1
16 housing5 506 13 5 36/123/239/77/31 7.7
17 vertebral-column 310 6 3 60/150/100 2.5
18 vehicle-mc 846 18 3 199/429/218 2.2
19 vowel5 990 10 5 180/90/360/270/90 4.0
20 vowel7 990 10 8 90/90/90/90/180/90/180/180 2.0

Precision and F-measure were used only to evalu-
ate the smallest minority class, and they are shown
in Eqs. (12) and (14), respectively. There is an-
other popular evaluation metric, namely, the multi-
class area under the receiver operating characteris-
tic (ROC) curve (MAUC), which has been extended
by the area under the ROC curve (AUC) (Hanley
and McNeil, 1982; Bradley, 1997; Ali et al., 2019)
to evaluate the multiclass imbalanced classification
problem. MAUC is calculated in Eq. (15).

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP+ FN
, (13)

F-measure =
(1 + β)2Recall · Precision
β2Recall + Precision

, (14)

MAUC =
2

|C|(|C|+ 1)

∑

i<j

A(Ci|Cj) +A(Cj |Ci)

2
,

(15)
where TP is the number of true positive samples (ac-
tually positive class, and classified as positive class),
FP represents the number of false positive samples
(actually negative class, but classified as positive
class), FN denotes the number of false negative sam-
ples (actually positive class, but classified as negative
class), and parameter β is usually set to one. Here,

|C| indicates the number of classes, and A(Ci|Cj)

and A(Cj |Ci) are the AUC values between classes
Ci and Cj in the two-class imbalance problem; how-
ever, for the multiclass imbalance problem, A(Ci|Cj)

may not equal A(Cj |Ci).
To further evaluate the statistical differences

between OAHD and the comparative methods on
multiple imbalanced data sets, we conducted the
Friedman test (Friedman, 1937, 1940) with the corre-
sponding post-hoc test, i.e., Nemenyi test (Nemenyi,
1963). The Friedman statistic χ2

F is calculated as
follows:

χ2
F =

12N

k(k + 1)

[ k∑

i=1

R2
i −

k(k + 1)2

4

]
, (16)

where k is the number of compared classifiers and Ri

is the mean rank of the ith classifier on N data sets.
To compare the different classifiers upon multi-

ple data sets, the Iman F-statistic (Iman and Dav-
enport, 1980) is calculated from χ2

F as

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

. (17)

If the null hypothesis is rejected (the perfor-
mances of all the classifiers are similar), the post-
hoc Nemenyi test is adopted to find the classifier
with performance significantly better than those of



286 Dong et al. / Front Inform Technol Electron Eng 2022 23(2):278-290

the others. In the Nemenyi test, since the critical
difference (CD) is an important value as defined in
Eq. (18), when the difference between the mean rank-
ings of the two classifiers is larger than CD, the per-
formance of one classifier is significantly better than
those of the others. The calculation of CD is given
below:

CD = qδ

√
k(k + 1)

6N
, (18)

where qδ is the crucial value for the two-tailed Ne-
menyi test for k classifiers at the δ significance level.
In this study, by referring to the table, we know that
at the 0.05 significance level, qδ is equal to 2.850.

4.3 Experimental results

To show the effectiveness of OAHD, we provided
the experimental results of the metrics Precision, F-
measure, and MAUC. Tables 2–4 show the mean val-
ues of the three metrics of OAHD and the five other
unpruned decision trees (CART, C4.5, DCSM, iHD,
and iHDw); the best mean values on each data set
are in bold. From Tables 2–4, it can be observed that
the proposed OAHD outperformed the five other un-
pruned decision trees for these imbalanced data sets.
For the metrics Precision, F-measure, and MAUC,
OAHD obtained the best results in 11 out of the 20
multiclass imbalanced data sets.

The results are further summarized in Table 5,
which shows the mean rankings of the six decision
trees in terms Precision, F-measure, and MAUC on
the 20 multiclass imbalanced data sets. For each
data set, the algorithm with the best performance
obtains the ranking of “1,” and the ranking of “6”
indicates the algorithm with the worst performance.
When the rankings obtained by some algorithms are
at the same level, the ranking will be equally as-
signed. For instance, when two algorithms are tied
for the ranking of “1,” the ranking result with “1.5” is
allocated for each of them. As listed in Table 5, we
can find that OAHD obtained the mean rankings of
1.775, 1.85, and 1.6 in terms Precision, F-measure,
and MAUC, respectively, which were all the best
mean rankings among the six decision trees.

4.4 Analysis of results

To further evaluate the statistical significance of
OAHD compared to the five other unpruned decision
trees, the Friedman test and the post-hoc Nemenyi
test were applied in our experiments; the results are
shown in Table 6. The Friedman test was used to
compare the performances of OAHD and the five un-
pruned decision trees for all the data sets. The null
hypothesis of the Friedman test is to observe the dif-
ferences that occasionally occur in the performance

Table 2 Precision of the proposed OAHD and the five decision trees for the 20 imbalanced data sets

Number
Precision

CART C4.5 DCSM iHD iHDw OAHD

1 0.532 14 0.721 43 0.542 86 0.521 43 0.507 14 0.607 14
2 0.704 17 0.669 58 0.719 17 0.703 17 0.701 25 0.705 67
3 0.585 86 0.563 10 0.572 07 0.575 17 0.586 55 0.612 41
4 0.910 42 0.915 63 0.908 33 0.926 04 0.927 08 0.916 42
5 0.411 11 0.688 89 0.411 11 0.655 56 0.655 56 0.716 67
6 0.802 00 0.220 00 0.820 00 0.812 00 0.806 00 0.840 00
7 0.777 78 0.777 78 0.777 78 0.777 78 0.777 78 0.777 78
8 0.777 78 0.766 67 0.777 78 0.777 78 0.777 78 0.777 78
9 0.372 00 0.406 00 0.354 00 0.308 00 0.298 00 0.452 00
10 0.720 91 0.431 82 0.717 27 0.780 91 0.780 91 0.814 55
11 0.650 91 0.305 45 0.619 11 0.610 09 0.611 82 0.706 36
12 0.448 25 0.516 67 0.451 60 0.450 26 0.447 37 0.452 63
13 0.438 60 0.556 14 0.438 60 0.478 07 0.477 19 0.536 84
14 0.921 43 0.791 07 0.916 07 0.967 86 0.967 86 0.978 57
15 0.888 10 0.933 33 0.912 86 0.910 95 0.910 95 0.935 71
16 0.698 39 0.690 32 0.695 16 0.737 10 0.725 81 0.803 23
17 0.562 50 0.590 83 0.559 17 0.602 50 0.603 33 0.632 50
18 0.868 03 0.848 24 0.867 67 0.863 33 0.864 32 0.887 19
19 0.725 56 0.592 22 0.708 33 0.796 11 0.794 44 0.768 33
20 0.933 33 0.898 89 0.915 00 0.886 67 0.882 78 0.898 33

Best results are in bold
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Table 3 F-measure of the proposed OAHD and the five decision trees for the 20 imbalanced data sets

Number
F-measure

CART C4.5 DCSM iHD iHDw OAHD

1 0.505 30 0.655 61 0.519 13 0.527 51 0.516 01 0.567 48
2 0.723 26 0.695 15 0.731 30 0.714 88 0.715 83 0.724 09
3 0.577 47 0.574 57 0.583 52 0.571 72 0.576 85 0.592 08
4 0.893 04 0.919 18 0.892 39 0.931 18 0.931 23 0.919 97
5 0.461 15 0.593 11 0.450 84 0.640 51 0.643 54 0.712 75
6 0.779 02 0.342 09 0.770 05 0.841 82 0.818 60 0.881 63
7 0.700 00 0.662 82 0.700 00 0.700 00 0.700 00 0.700 00
8 0.700 00 0.696 67 0.700 00 0.700 00 0.700 00 0.700 00
9 0.418 81 0.528 59 0.400 76 0.354 33 0.337 16 0.509 03
10 0.702 79 0.452 78 0.695 39 0.755 38 0.753 38 0.745 75
11 0.674 37 0.401 17 0.639 41 0.639 21 0.629 27 0.718 38
12 0.480 87 0.515 25 0.470 95 0.495 10 0.486 87 0.495 27
13 0.456 63 0.491 67 0.470 74 0.467 98 0.463 92 0.496 88
14 0.942 79 0.857 19 0.939 66 0.956 55 0.955 70 0.974 97
15 0.901 60 0.936 70 0.909 53 0.927 09 0.927 31 0.938 30
16 0.757 11 0.729 26 0.755 84 0.750 49 0.741 55 0.792 73
17 0.562 06 0.579 52 0.550 98 0.602 69 0.607 41 0.603 68
18 0.858 73 0.847 00 0.857 66 0.857 42 0.856 96 0.865 68
19 0.737 90 0.592 81 0.719 93 0.799 36 0.796 36 0.781 71
20 0.933 34 0.898 23 0.920 20 0.897 27 0.894 59 0.906 68

Best results are in bold

Table 4 MAUC of the proposed OAHD and the five decision trees for the 20 imbalanced data sets

Number
MAUC

CART C4.5 DCSM iHD iHDw OAHD

1 0.833 75 0.841 53 0.840 42 0.840 81 0.840 84 0.843 43
2 0.802 71 0.779 60 0.787 18 0.786 63 0.784 89 0.790 75
3 0.648 13 0.630 91 0.637 91 0.639 93 0.642 05 0.648 26
4 0.934 49 0.940 99 0.938 66 0.941 99 0.943 96 0.944 73
5 0.809 81 0.811 31 0.810 23 0.814 96 0.817 71 0.818 41
6 0.905 52 0.828 06 0.871 88 0.882 58 0.886 39 0.892 06
7 0.710 23 0.709 76 0.709 92 0.710 00 0.710 05 0.710 08
8 0.760 96 0.761 34 0.761 21 0.761 15 0.761 11 0.761 09
9 0.698 26 0.702 75 0.701 74 0.705 37 0.707 09 0.709 42
10 0.880 13 0.874 97 0.876 52 0.881 04 0.883 76 0.884 13
11 0.852 54 0.844 26 0.844 72 0.844 56 0.844 08 0.846 79
12 0.680 53 0.676 45 0.677 71 0.678 28 0.678 47 0.681 56
13 0.668 15 0.668 86 0.668 66 0.668 96 0.669 16 0.671 26
14 0.962 73 0.956 87 0.958 39 0.960 54 0.961 59 0.963 35
15 0.940 62 0.940 39 0.939 64 0.939 62 0.939 56 0.945 98
16 0.856 90 0.846 60 0.849 80 0.857 64 0.849 20 0.856 93
17 0.854 26 0.843 78 0.847 47 0.848 17 0.848 98 0.860 09
18 0.940 75 0.940 58 0.946 08 0.942 82 0.940 25 0.944 57
19 0.900 69 0.900 22 0.902 93 0.907 67 0.915 32 0.911 44
20 0.920 14 0.907 17 0.910 00 0.911 42 0.911 87 0.919 36

Best results are in bold

for these decision trees. If FF calculated using
Eq. (17) is not less than the critical value, the dif-
ference between these two algorithms is statistically
significant, and the null hypothesis will be rejected.

As listed in Table 6, we can see that the null
hypothesis of the Friedman test was rejected. In

the following, we detail the calculation of the null
hypothesis of the Friedman test. In Eq. (16), for
the metric Precision, we can calculate the Fried-
man statistic χ2

F according to these mean rank-

ings, i.e., χ2
F(P) =

12× 20

6× 7

(
6∑

i=1

RP
i − 6× 72

4

)
=
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Table 5 Mean ranking of the proposed OAHD and
the five decision trees for the three metrics on the 20
imbalanced data sets

Algorithm
Mean ranking

Precision F-measure MAUC

CART 3.875 3.80 3.35
C4.5 4.175 4.40 4.90

DCSM 3.925 4.00 4.30
iHD 3.525 3.35 3.50

iHDw 3.725 3.60 3.35
OAHD 1.775 1.85 1.60

Best results are in bold

Table 6 Friedman test and Nemenyi test for the six
methods on the 20 data sets, with OAHD as the base
classifier

Algorithm Precision F-measure MAUC

Friedman test Reject Reject Reject
CART � � �
C4.5 � � �

DCSM � � �
iHD � �

iHDw � � �
OAHD Base Base Base

The symbol “�” indicates that OAHD outperforms the com-
pared algorithm

21.7357. Here, RP
i denotes the mean ranking of the

algorithms on the evaluation criterion Precision. The
Iman F-statistic was calculated using Eq. (17), i.e.,

FF(P) =
19× 21.7357

20× 5− 21.7357
= 5.2767, and the crit-

ical value for the 0.05 significance level was 2.3102
with regard to the table, where FF(P) > 2.3102;
thus, the null hypothesis was rejected. Similar
to Precision, using Eq. (16), we can calculate the
Friedman statistic χ2

F of the metrics F-measure and
MAUC as χ2

F(F) = 22.3143 and χ2
F(M) = 35.7429.

Later, the Iman F-statistic of the metrics F-measure
and MAUC can be obtained using Eq. (17), i.e.,
FF(F) = 5.4575 and FF(M) = 10.5687. Explic-
itly, we can see that the χ2

F values of both the F-
measure and MAUC were greater than the critical
value (2.3102); therefore, the null hypotheses were
rejected.

After the null hypotheses of the Friedman test
for the metrics Precision, F-measure, and MAUC
were rejected, we conducted the post-hoc Nemenyi
test to find which decision tree performed better.
The results are listed in Table 6. The symbol “�”
indicates that OAHD outperforms the compared al-
gorithm. Under the six classifiers and 20 imbalanced
data sets, at the 0.05 significance level, qδ was equal

to 2.850. Thus, using Eq. (18), CD can be calculated

as 2.850 ×
√

6× 7

6× 20
= 1.6861. For the metric Pre-

cision, the difference in the mean rankings between
OAHD and CART was 2.1. Since the difference was
greater than CD, the performance of OAHD was sig-
nificantly better than that of the CART decision tree.
Accordingly, we can calculate that the differences in
the mean rankings between OAHD and C4.5, DCSM,
iHD, and iHDw were 2.4, 2.15, 1.75, and 1.95, re-
spectively. Because all of the differences were greater
than CD, the performance of the OAHD decision tree
was significantly better than those of the compared
algorithms. For the metrics F-measure and MAUC,
the differences in the mean rankings between OAHD
and the five compared decision trees can be obtained
using Eq. (18). The differences in the mean rank-
ings between OAHD and the five unpruned decision
trees were 1.95, 2.55, 2.15, 1.5, and 1.75, respec-
tively, for the metric F-measure. Likewise, for the
metric MAUC, the differences in the mean rankings
between OAHD and the five unpruned decision trees
were 1.75, 3.3, 2.7, 1.9, and 1.75, respectively. Ev-
idently, the differences in the mean rankings were
greater than CD, which means that OAHD was bet-
ter than the other algorithms at the 0.05 significance
level. The only exception was the metric Precision
for iHD, where the difference in the mean rankings
was less than CD.

From the above analysis of results, we can find
that OAHD is significantly better than the compared
algorithms, because the one-against-all decomposi-
tion scheme has been introduced to the process of
computing the splitting criterion in OAHD, which
is skew-insensitive. Furthermore, to guarantee the
purity of nodes in the decision tree, OAHD accounts
for the number of distinct classes and considers the
class distribution of the multiclass imbalance prob-
lem; meanwhile, OAHD has a modified Gini index
that fits the multiclass imbalance problem. There-
fore, the performance of OAHD is greatly improved
while processing the multiclass imbalance problem.

5 Conclusions

The major goal of this work is to construct a
decision tree built upon the one-against-all-based
Hellinger distance (OAHD) for addressing the multi-
class imbalanced classification problem. Initially,
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to enhance the performance of the decision tree in
dealing with a multiclass imbalance problem, we de-
sign a new splitting criterion (i.e., OAHD) which
is associated with the idea of the one-against-all
scheme by extending the Hellinger distance to deal
with the issue of multiclass imbalance. In OAHD,
while considering the multiclass imbalance problem,
the number of distinct classes and the class distribu-
tion are considered without a prior probability of the
classes. Meanwhile, we modify the Gini index to fit
the multiclass imbalance problem, which ensures the
purity of the node in the decision tree. Furthermore,
we theoretically prove that the proposed splitting
criterion enables the decision tree with the property
of skew-insensitivity and the ability to seek a purer
node. Finally, OAHD is compared with five different
unpruned decision trees upon 20 data sets. The ex-
perimental results show that the proposed splitting
criterion is better than the five other splitting crite-
ria. Moreover, the Friedman and Nemenyi tests are
used to evaluate the performances of the six decision
trees; the results demonstrate that this improvement
is statistically significant.

In our future work, to improve the performance
of OAHD, we intend to explore the effect of the prun-
ing method on OAHD. Furthermore, we intend to
make an extension of OAHD that is helpful for tree-
based ensemble classifiers.
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