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Abstract: Robotic swarms are usually designed in a bottom-up way, which can make robotic swarms vulnerable to
environmental impact. It is particularly true for the widely used control mode of robotic swarms, where it is often
the case that neither the correctness of the swarming tasks at the macro level nor the safety of the interaction among
agents at the micro level can be guaranteed. To ensure that the behaviors are safe at runtime, it is necessary to take
into account the property guard approaches for robotic swarms in uncertain environments. Runtime enforcement is
an approach which can guarantee the given properties in system execution and has no scalability issue. Although
some runtime enforcement methods have been studied and applied in different domains, they cannot effectively solve
the problem of property enforcement on robotic swarm tasks at present. In this paper, an enforcement method is
proposed on swarms which should satisfy multi-level properties in uncertain environments. We introduce a macro-
micro property enforcing framework with the notion of agent shields and a discrete-time enforcing mechanism called
D-time enforcing. To realize this method, a domain specification language and the corresponding enforcer synthesis
algorithms are developed. We then apply the approach to enforce the properties of the simulated robotic swarm
in the robotflocksim platform. We evaluate and show the effectiveness of the method with experiments on specific
unmanned aerial vehicle swarm tasks.
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1 Introduction

Nowadays, robotic systems are attracting con-
siderable attention in many important areas (Wong
et al., 2017). Inspired by the biology of flocks of
birds, herds, or other animals, many modeling ap-
proaches and control algorithms for robotic swarms
have been studied. Nevertheless, the previous swarm
modeling approaches can neither ensure the correct-
ness of the swarm task scheduling nor mimic the
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collision avoidance behavior of agents in biological
swarms under dynamic perturbation. In a macro
view, the robotic swarm task should be ensured with
a given timing sequence. Each sequence consists of
a series of swarming states that are abstracted from
the individual agent states. When the macro task
property is violated, we enforce the correctness of
the swarm state sequence by adjusting the associ-
ated error agents. The agent members in the swarm
are likely to be disturbed by our enforcement opera-
tions. Thus, our approach correspondingly considers
the micro view. We enforce the single agent state,
which often affects the established collision-free sta-
ble state in swarming dynamic change. In sum, we
expect to construct shields (to output actions that
correct a property violation) on the two-level prop-
erties at runtime.
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Sinhuber et al. (2019) stated that the swarm
would first make an initial startle response after a
sudden perturbation (property violation), and then
relax into a steady state. Therefore, we believe
that enforcing behaviors on the robotic swarm (Parr,
2013) should be a continuous driving force in a real
multi-agent swarm system. On this basis, we propose
a D-time (discrete-time) enforcement mechanism on
robotic systems.

To enforce the continuous-time robotic state se-
quences at the two levels, we need to describe peri-
odic and multi-agent specifications. In our previous
work (Shi et al., 2017), we used a periodic time inter-
val to discretize the real-time property. The swarm
states can be discretized into regular intervals, each
separated from the next by a discrete-time interval.

In this study, we propose a runtime enforcement
framework for a robotic swarm and implement the
corresponding platform. The method includes a se-
ries of retrieval interfaces for monitoring the swarm
states, macro-micro property monitor generation,
D-time enforcer generation, discrete-time temporal
logic, and a hierarchical specification language for
describing the two-level property.

Our main contributions include:
1. A macro-micro (two-level) swarm runtime

monitoring approach, which observes sequence vio-
lations in the overall swarm tasks and single agent vi-
olations under sudden perturbations, is implemented
by monitoring hierarchical interfaces that can re-
trieve the needed states of a swarm. The interfaces
are designed as an extendable way to customize the
monitoring requirements.

2. A property enforcement mechanism called D-
time enforcement is proposed for the continuous-time
state changing characteristics of swarms. We ar-
gue that since D-time enforcement works flexibly in
time steps and requires no knowledge of the upcom-
ing dynamic environmental states, it is also suit-
able for other continuous-time cyber-physical sys-
tems (CPSs) (Rajkumar et al., 2010).

3. Furthermore, a monitor specification lan-
guage is designed that can specify safety properties
and enforcement behaviors for robotic swarms with
temporal and timed requirements.

4. We implement this runtime verification ap-
proach on robotflocksim, a swarm simulation tool
(Vásárhelyi et al., 2018). The effect is demonstrated
in experiments by a significant safety improvement.

Finally, we outline the industrial application chal-
lenges and discuss their potential solutions.

2 Related works

Early on, microscopic-agent-based swarm mod-
els were proposed (Reynolds, 1987), followed by the
typical flocking models in collective robotics (Bram-
billa et al., 2013; Floreano and Wood, 2015). Then,
there were a few works that included uncertain-
ties from environmental impacts. In Turgut et al.
(2008) and Gökçe and Şahin (2009), the flocking
models including motion constraints and collision
avoidance were proposed. Overall, based on the
works of these predecessors, robot flocking models
under self-organized algorithms have been greatly
improved. For example, Vásárhelyi et al. (2018) car-
ried out a self-organized approach with a real swarm
of 30 drones. It is the largest outdoor aerial sys-
tem without central control reported to date exhibit-
ing flocking with uncertainty under environment im-
pacts (e.g., collective collision and object avoidance).

The self-organized model of robotic swarms has
attracted a significant number of research groups
currently contributing to the field. From Şahin et al.
(2008), an incomplete list of such groups includes
Caltech (Williams and Burdick, 2006; Chung et al.,
2018), Carnegie Mellon (Khosla et al., 2002; Na-
gavalli et al., 2015), Ecole Polytechnique Lausanne
(Mondada et al., 2005; Pugh and Martinoli, 2006),
Georgia Tech (Egerstedt et al., 2020), and MIT
(Schwager et al., 2006). Nevertheless, the collective
tasks of swarm robotics systems still face a series
of challenges: robustness properties under extreme
environments, safety under unexpected changes in
complex swarming tasks, and a scalability problem
under limited sensing, communication, and compu-
tation capabilities. Specifically, nowadays, as Fine
and Shell (2013) remarked, “there is no consensus
on the precise details of the motions needed to pro-
duce rich flocking motions under realistic sensing
models, actuation, and dynamics constraints.” As
Vásárhelyi et al. (2018) showed, most works lack
completeness and precision in terms of control and
validation under uncertain environments, only a few
have included motion constraints and collision avoid-
ance (Reynolds, 1987; Turgut et al., 2008; Gökçe and
Şahin, 2009), and none have handled motion con-
straints explicitly.
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In recent years, an increasing amount of re-
search has been done on runtime enforcement in
robotics. For example, Könighofer et al. (2017) pre-
sented the first shield synthesis solution for reactive
systems and reported experimental results. Raju
et al. (2019) presented the first approach for syn-
thesizing shields at runtime on multi-agent systems.
However, the previous works cannot solve the prob-
lem of swarm enforcement on swarming tasks. More-
over, the runtime construction of discrete enforcers
with the multi-layer properties of robotic swarms is
an unsolved problem. Thus, the work in this paper
is unprecedented.

3 Preliminaries and motivations

3.1 Runtime enforcement and shields

Runtime enforcement (RE) is a technique to
monitor the execution of a system at runtime and
ensure compliance against a set of formal require-
ments (Pinisetty et al., 2017). Application of the
RE method on robotic swarms is rare at present. In
this study, we use a domain specification to define
the macro-micro properties and the corresponding
initial values of the variables. Our swarm RE aims
to ensure that the execution sequence satisfies the
given property with the runtime monitor U and an
enforcer generator.

As shown in Fig. 1, the given property ϕ is de-
fined in the specification. When the property mon-
itor takes the sequence σ of swarm events as input
and finds a violation of the given property, then the
enforcer can be generated at runtime, and the enforc-
ing action will be added to the execution sequence.

φ

Robotic swarm 
execution interfaces

Specification Property 
monitor U Enforcer 

σ

≠φl

Fig. 1 Runtime enforcement monitor context for
robotic swarms

In this paper, the robotic execution σ can be
any sequence of events over the event set E, i.e.,
σ ∈ E

∗ (Here, E∗ is the set of finite length strings
made up of the elements in E). We consider the
robot execution violation as a deviation between the

observed execution event sequence σ and the given
property ϕ that the robot system should satisfy.

An execution violation might lead to a swarm
mission failure or swarm destruction. In our swarm
RE approach, we deploy monitors that can auto-
matically observe and detect the execution violation
against the expected safety property defined in the
specification and generate the enforcers. Generally,
the monitoring process should bring a low overhead
to the execution correctness of the current robotic
execution.

Formally, let Σ denote the alphabet of the
robotic system instead of E in the real system. We
consider the execution of robotic systems to be a fi-
nite word, i.e., ω. Here, ω ∈ Σ∗. The concatenation
of two words ω and ω′ is denoted as ω · ω′. Word
ω′ is the prefix of word ω, denoted as ω′ ≤ ω, when-
ever there exists a word ω′′ such that ω = ω′ · ω′′.
Thus, the property violation/satisfaction problem
of robotic executions can be abstracted to check
whether the intercepted word ω is an element of the
set of the finite words which satisfy the safety prop-
erty ϕ (i.e., in a mathematical way, whether a given
word ω is included in the language L(ϕ) ⊆ Σ∗). Fur-
thermore, the RE problem of a robotic swarm can be
abstracted as E(σ′, t) = (σ, t), σ ∈ L(ϕ). Here, the
pair (σ′, t) denotes an actual monitored execution at
the current time t. E is an enforcement operation.

The goal of RE is to guarantee the correctness
of a small set of critical properties at runtime. These
properties might occasionally be violated by an un-
certain environment. Thus, some pioneers would
like to automatically construct a component in the
target systems, called a shield. The shield corrects
mainly the erroneous output at runtime when nec-
essary. Moreover, changes to the execution path of
the shield should be minimal. The enforcement op-
eration E is implemented by a set of shields.

In this study, our shield is applied to robotic
systems. We regard the robotic swarm to be a re-
active system as D = (Q, q0, ΣI, ΣO, δ, λ) is a Mealy
machine, where Q is a finite set of swarm states,
q0 ∈ Q the initial state, δ : Q × ΣI → Q the com-
plete transition function, and λ : Q × ΣI → ΣO

the complete output function. Correspondingly,
the decentralized agents are reactive subsystems
Di = (Qi, q0i, ΣIi, ΣOi, δi, λi). The robotic swarm
system designed in this study consists of agents,
i.e., D def

= {D1,D2, . . . ,D|U|}, where U represents
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the set of all agents. The enforcers generate the
decentralized shields on every agent. It is defined as
S

def
= {S1, S2, . . . , S|U|}. Here, the property shield

Si is a set of similar reactive systems represented by a
Mealy machine that will be described in detail in Sec-
tion 3. Thus, the runtime enforcement on the swarm
system is D ◦ S = {D1 ◦ S1,D2 ◦ S2, . . . ,D|U| ◦S|U|}.
Here, “◦” denotes the joint behavior of the original
system and the shields. The generating and syn-
thesizing approach for the shields will be discussed
in our framework. The problem that execution tra-
jectories changed by the shield are correct and can
deviate minimally is discussed in this paper.

3.2 An illustrative example

To enforce the critical properties automatically
and flexibly, we prefer a shield synthesis approach
(Könighofer et al., 2017) that automatically con-
structs two-level shields at runtime to avoid violation
of these properties, instead of matching the current
cognitive perturbation patterns or the wrong task
sequence patterns and taking corresponding behav-
ioral measurement. We give an illustrative example
of the swarm enforcement here by referring to some
main mission scenarios of unmanned aerial vehicles
(UAVs) (Rasmussen et al., 2018). In addition, we
introduce the runtime enforcement and shield syn-

thesis foundations related to our work.
We consider a robotic swarm that can move

among four regions, i.e., Σ = {A,B,B′, C}, as
shown in Fig. 2. We specify a macro-level property
that the swarm should start from A and pass through
B to region C under a self-organized modeling and
control algorithm. The task states can be regarded
as the position states of the overall swarm, which is
shown as the region graph in Fig. 2. The moving
behavior from B′ to C immediately is not allowed
in the specification. Intuitively, such a macro prop-
erty involves the location state of the entire robotic
swarm. However, different from the properties of
agents, macro properties are occasionally uncertain.
As shown in Fig. 2, Rmem.var.1 represents the state
variable of a particular member of the robotic swarm
with ID being 1. Corresponding, Swarm.var repre-
sents a particular swarming state. For example, we
set the swarm location state Swarm.var(A, t) = 1 to
represent that the swarm is in region A at time t.
Since the individual robots in the swarm may not be
in the same region, we define Swarm.var(A, t) = −1

if the swarm state is uncertain.

3.2.1 Safety properties

In this example, assume that there is an unex-
pected perturbation in C when the swarm is moving

Workspace for the robotic swarm

B
C

A

B′

Enforcing 

C

B

B′

A

Region graph

State change in the robotic member and swarm

Swarm.var=0 

Swarm.var=−1 

Swarm.var=1 Rmem.var.1=0 

Rmem.var.2=0 

Rmem.var.1=1 

Rmem.var.2=1 

... ... ... 

Fig. 2 An illustrative example in the robotic swarm safety moving task
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from regions B to C. Specifically, one agent of the
swarm should steer back to a wide space to avoid
collisions with other neighbors when identifying the
unexpected threats in region C. The micro-level
flock safety enforcement operation should have the
highest priority. Finally, the output agent behav-
iors from our shields should satisfy both the global
task planning and the micro-level collision-free safety
properties.

Thus, we declare the macro-micro safety re-
quirements (REQs) in our illustrative example:

1. REQ1
The macro property for the task requirement of

the robotic swarm in our example is that the swarm
moves strictly in the order from A to B and then to
C.

2. REQ2
The property for the local safety requirement of

the robotic agents in our example is that the robotic
sensors on the swarm cannot receive three consecu-
tive collision alerts in 500 ms.

The specification for the above safety properties
and the corresponding enforcement methods will be
discussed later.

3.2.2 Robotic state enforcement

In Fig. 2, we model the region of operation
for swarm agents as a hierarchical labeling system.
For example, we assume that the sensor of a sin-
gle robot receives the locating state Rmem.loc.i ∈
{A,B,B′, C}, which represents the signal of a robot
state in the four regions. All states of the robot mem-
bers make up the swarm states. The given property
ϕ(t) specifies Swarm.loc(A, t) = 1, which means that
all the locations of agents are in A at t. The property
ϕ(t) can be defined on agents in the system as

ϕ(t) ::= Swarm.loc(A, t) = 1

::= ∧i∈{1,...,|U|}Rmem.loc.i(A, t) = 1.
(1)

If the locating state of robot i violates the given prop-
erty ϕ, we try to transfer the robot direction, which
is denoted as Rmem.dir.i ∈ {ff, ll, rr, bb}. Here, ff,
ll, rr, and bb represent the moving forward, turning
left, turning right, and steering back, respectively. If
robot i is mounting a shield, the shield may make a
correction in the output signals to change the mov-
ing direction output from ff to bb, i.e., Si(ff) = bb.
Shields play the role of transferring the violated in-
put trajectory to the right output trajectory. Note

that the moving states between regions do not hap-
pen instantaneously. The moving and enforcing be-
haviors output o is usually an action implemented
by executing the (set of) underlying continuous con-
trollers of a robot, e.g., an enforcing output of steer-
ing 90◦. It takes some time to enforce the safety
property.

3.3 Specification and temporal logic

In the RE specification for a robotic swarm, for-
mally, a property ϕ is described with some temporal
logic such as linear temporal logic (LTL) (Pnueli,
1977). To describe the periodic specification, in our
previous work (Shi et al., 2017), we used the peri-
odic nature of the embedded system to discretize the
real-time property and replace the real number in
the time constraint with the number of CPU clock
cycles. The discrete-time metric temporal logic (DT-
MTL) we used is obtained by adding temporal oper-
ators in LTL with discrete-time intervals. Compared
with MTL, its computational complexity is reduced.
DT-MTL has been applied to many important con-
trol systems. For example, it has been used to de-
scribe the real-time properties of NASA’s unmanned
robotics systems (Reinbacher et al., 2014).

We design our robot monitoring specification
language based on DT-MTL. With the time interval
I = [t, t′], where t, t′ ∈ N, the syntax of DT-MTL is
similar to LTL (Reinbacher et al., 2014).

Definition 1 (Syntax of DT-MTL) Let AP be the
set of atomic propositions, p ∈ AP. The discrete-
time MTL formula ϕ can be defined as

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 UI ϕ2, (2)

where ©ϕ represents that the property ϕ should be
satisfied at the next time point.

To be convenient, derived temporal operators
are usually defined as follows:

�Iϕ � true UI ϕ, �Iϕ � ¬ �I ¬ϕ. (3)

Definition 2 (Semantics of DT-MTL) Let π =

a0 a1 · · · ∈ Σω be an infinite word and i ∈ N be a
time point. The semantics of DT-MTL is defined as



1596 Hu et al. / Front Inform Technol Electron Eng 2020 21(11):1591-1606

follows:

π(i) |=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PAtom, if on π(i), PAtom is true,

¬ϕ, if π(i) � ϕ,

ϕ1 ∧ ϕ2, if π(i) |= ϕ1 and π(i) |= ϕ2,

© ϕ, if π(i + 1) |= ϕ,

ϕ1 UI ϕ2, if ∃j ∈ I : π(i + j) |= ϕ2,

and ∀k, 0 ≤ k < j : π(i+ k) |= ϕ1,

�I ϕ, if for all j ∈ I, π(i + j) |= ϕ.
(4)

We use the monitor generation algorithm for
MTL (Dreossi et al., 2019) and our previous work
(Hu et al., 2020) to implement the runtime monitor-
ing of DT-MTL properties.

4 Macro-micro runtime enforcement
for a robotic swarm

In this study, conceptually, we wish to enforce
the properties of a robotic swarm system organized
as our example, with a robotic control model pro-
ducing actions, and for every action produced, the
underlying robotic execution system returns a result
to the target control model for computing the next
action. Results may be exceptions or void or unit
values, so all actions can be considered to produce
results. For simplication, we assume that all the
robotic actions are synchronous; after the applica-
tion produces an action a, it cannot produce another
action until receiving a result for a. In contrast, the
robotic action shield can be viewed as one monitor re-
sult, in which all agent actions are fully asynchronous
(because shields can buffer without executing an un-
bounded number of actions).

4.1 Macro-micro properties

Fig. 3b shows how we think of a macro-micro
monitor enforcing the swarm system in Fig. 2. In
Fig. 3b, the monitor interposes on and generates
the enforcers to transform actions and results. En-
forcers ensure that the actions are actually executed,
and that the results actually returned to the control
model are valid (i.e., have the desired macro-micro
properties). The monitor may be or may not be
inlined into the target control algorithms.

The two-level enforcement mechanism capabil-
ity for transforming the results of actions is novel
among general runtime enforcement models, as far

Robotic executing systemUntrusted behaviors

Results 

Trajectoy

(a)

Trajectoy

Untrusted behaviors
Robotic executing 

system

Macro 
property 
enforcer

Micro 
property 
enforcer

Results 
(b)

Fig. 3 An untrusted robotic control model that exe-
cutes actions on a robotic swarm system and receives
results for those actions (a) and a macro-micro moni-
tor that interposes on and enforces the validity of the
robotic actions executed and the results returned by
synthesizing enforcers (b)

as we are aware of. However, this ability is crucial for
enforcing many swarming task policies, which may
require (trusted) mechanisms to sanitize the results
of actions before a (an untrusted) control algorithm
accesses those results. For example, policies may
require the swarm to move in an ordered sequence
to the regions when macro-level swarm organizing
applications retrieve the to-do lists, but the robotic
system might be impacted by malicious data or sud-
den environmental changes. Because existing swarm
control frameworks do not monitor actions to allow
changing of results, one cannot use existing models
to specify or guarantee the correctness of a swarm
task and the collision-free policies of agents without
such an enforcement mechanism.

To enforce the safety properties (REQ) in our
illustrative example, in the RE framework, we trace
the robotic swarm execution sequence σ and con-
struct two kinds of monitors to observe the truth
values of the macro-micro properties. The macro
property monitor U is to observe the truth values
of swarming task properties given in the specifica-
tion, i.e., REQ1. The micro property monitor C is
to calculate the deviation of specified agent safety
properties, i.e., REQ2. Here, our decentralized
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monitor design is inspired by a similar work (Bauer
and Falcone, 2016). If violations are monitored, the
enforcer can be generated automatically (Fig. 4).

4.2 Property specification

In our RE specification, specification of all the
swarm properties is not supported. Briefly, we focus
on the swarming task requirements and individual
robot requirements. At these two levels, we define a
custom kind of property that considers the task se-
quence and individual robot properties as the macro-
micro property of robotic swarms. For example, in
a specification ϕ, we specify the moving sequence of
a robotic swarm between regions and the immediate
return of a single robot when its battery is low.

To define the two-level property ϕ and enforcing
actions in Fig. 4, we have proposed a novel hierar-
chical specification language in a previous work (Hu
et al., 2020). First, our specification declares swarm
sensor inputs, initial states, and enforcement infor-
mation. We can describe the macro-micro property
in DT-MTL logic. The syntax is shown as follows:

< Specification > SwarmID ::= {
< Config parameters > ::= {

Version: [string] | initBotNum: [int] | maxV: [float]
ParaConf: [int] · · ·
Data: [float] · · ·
}

< Atomic proposition > AP ::= {
Rmem.var1.i ∗ Rmem.var2.i | Rmem.var.i ∗ a_val |

Rmem.loc.i = a_loc | Rmem.port.i= a_port
SwarmID.var ::= x ∈ ∪i∈{1,...,|U|} Rmem.var.i
a.val ::= v ∈ Data a.loc ::= v ∈ Data[ ]

}
< Macro property > ϕs ::= {

AP | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1 UI ϕ2

} @ {<text Flocking enforcing action >}
< Micro property > ϕa ::= {

AP | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1 UI ϕ2

} @ {<text Agent enforcing action >}
}

Our algorithms can parse the specification and
generate the monitors. The enforcers are automati-
cally generated in this process. In parallel threads,
the monitoring interfaces obtain the multi-robot
data from the execution and convert them to the
truth value of {0, 1}.

Generally, the atomic propositions in the prop-
erty are made up of robotic sensor events. For in-
stance, an atomic proposition of the property can
express a state of the last executed port, a speed

value of a robot member, or the current location of a
robot member. Formally, an event of the swarm can
be defined as a state formula over the atomic propo-
sitions of the robot members expressed in the syntax
of the specification (where ∗ ∈ {<,≤,=, �=,≥, >}).

The enforcing action declared in the specifica-
tion contains actions that we can take on swarms
and individual agents. For example, the partial en-
forcing actions in our illustrative example are:

(1) flocking enforcing actions (turning 90◦, scat-
tering, and stop);

(2) agent enforcing action (turning 90◦).
Take “turning 90◦” as an example. By calculat-

ing how many turning operations are inserted, the
enforcement in four directions is realized. The direc-
tions are expressed as ff, ll, rr, and bb. The enforcing
action generation is implemented through the enforc-
ing automaton that will be covered next.

4.3 Enforcing automaton

We form two edit automatons (Ligatti et al.,
2005) (macro and micro) for enforcing the swarm-
ing properties. Our machine is described by a five-
tuple form (Q, q0, δ, γ, ω) defined with respect to the
robotic swarm system (A, Σ). Here, A represents
all actions in the robotic swarm, and Σ represents
all states of the swarm. In the five-tuple form, Q

specifies the possible automaton states, and q0 is the
initial state. The partial function δ : A × Q → Q

specifies the transition function for the automaton.
γ specifies the insertion of a finite sequence of ac-
tions into the swarm’s action sequence. The partial
function ω indicates whether the action in question
is to be inserted or not. The partial functions δ and
ω have the same domain, while δ and γ have disjoint
domains.

To specify the execution of our macro-micro en-
forcing edit automaton, we use labeled operational
semantics. The basic single-step judgment will have
the form of (σ, q) τ→ E (a′, q′), where σ denotes the
sequence of the original actions of the target pro-
gram, q denotes the current state of the automaton,
a′ and q′ denote the action sequence and state after
the automaton takes a single step respectively, and τ

denotes the sequence of actions produced by the au-
tomaton. The input sequence σ is not observable to
the outside world, whereas the output τ is observable
(i.e., τ may be any element of A∗).

In our approach, we use the single-step
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Fig. 4 Our runtime enforcement approach framework in a robotic swarm

enforcement semantics of edit automata as follows:
⎧
⎪⎪⎨

⎪⎪⎩

(σ, q)
τ−→ E (a′, q′) , if σ = a, a′ and

γ(a, q) = τ, q′ for E-INS,

(σ, q)
·−→ E(·, q), otherwise for E-STOP,

(5)

where the symbol “ ·” denotes the empty sequence.
Because of the continuous-time characteristic of
robotic swarms, the suppression operation of actions
in a control model is difficult to achieve. Thus, we be-
lieve that it is a more feasible approach to construct
remedial enforcement operations. We define the rule
E-INS as an insert operation (rather than accepting
an action a, the automaton then suppresses the orig-
inal a), and its presence allows acceptance of action
in only one step. This simplifies the specification of
the automaton and decreases its running time. Simi-
larly, the effect of rule E-STOP can be accomplished
by stopping any further robotic sequence input. It
is obvious that different violations of properties will
construct different enforcers that will construct cor-
responding decentralized shields on agents. The con-
struction approach is discussed in detail in the next
section.

In the illustrative example in Section 3, we dis-
cuss the macro-micro property. The property is that
a swarm moves strictly in the order from A to B and
then to C, and cannot receive the collision threats
in three consecutive cycles. The single robot of a
swarm system takes the collision warning (cw) of the
robot sensor as an input. The swarm location vari-
able is the value of the swarm location interface from
all agents (loc). For simplication, we assume that
the collision warning signals are Boolean numbers.
The loc variable varies from A_loc to C_loc. The
macro-micro requirements (REQ) and enforcing ac-
tions (ENF) are as follows:

1. REQ

The macro-micro properties are declared in the
illustrative example in Section 3.

2. ENF
The enforcing action may be E-INS, scattering,

or turning 90◦.
As shown in Fig. 4, the construction of shields

by the property enforcer needs the observed violation
result and the deviation degree assessment. Thus,
the deviation of this safety property can be regarded
as a pathfinder which determines the right shield
operation with the minimized deviation. For exam-
ple, the swarming robots are threatened by numerous
collision warning signals. Then the agent under the
shield should rotate by a specific degree (abstracted
as ff, ll, rr, and bb) by calculating how many enforc-
ing actions need to be taken. The example should
take into account the following specification with the
formal property:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕs ::=(Swarm.loc=A_loc U Swarm.loc=?_loc)U
((Swarm.loc = B_loc U Swarm.loc =?_loc)

∧©(Swarm.loc=?_locU Swarm.loc=C_loc)),

ϕa ::=¬(∨n
i=1Rmem.cw.i∧�[0,5] ∨n

i=1 Rmem.cw.i

∧�[5,10] ∨n
i=1 Rmem.cw.i).

(6)
Here, “?_loc” denotes the uncertain swarming

state. “[0, 5]” denotes a time interval from 0 to
500 ms since our discrete-time period is 100 ms.
Rmem.cw.i=1 denotes that the robot i receives the
collision warning. We use the two properties as
our macro-micro properties and construct the cor-
responding monitor (a DT-MTL logic parsing algo-
rithm, non-automaton). Then, we can generate the
D-time enforcement shield by the enforcers of the
two monitors. It is discussed below:

The safety property enforcement needs a cor-
responding deviation pathfinder. Thus, in this
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example, if there is a violation of the macro property
where the swarm attempts to enter C through B′, we
should rotate the direction of the swarm movement.
The deviation variable is defined as the number of
steps that can be returned to the normal task goal,
i.e., the step number that the swarm takes to get
back to region B. We denote the enforcing action
as enforceAct. The deviationVal.min(·) function cal-
culates the minimum deviation for different shield
operations:

enforceAct ::= deviationVal.min ( ff, ll, rr, bb ). (7)

4.4 D-time enforcement

As shown in Fig. 5, we propose a domain
discrete-time enforcement mechanism for robotic
swarm systems. To ensure the global task of swarms
under dangerous environments, we construct decen-
tralized shields for execution only once each time
a violation of a property is first monitored in the
discrete-time interval. We denote this enforcement
execution as δ′(1). The D-time enforcement is to syn-
thesize the enforcement shields onto the decentral-
ized agents. We use the enforcement shield output
as the input of the agent control model, because the
agents’ micro-level control output ultimately deter-
mines the actual execution of the robotic system.
From an external point of view, we think that the fi-
nal action after D-time enforcement is synchronized.

Intuitively, enforcers start interfering only when
they must, and the enforcing actions depend on
the output of the deviation calculation algorithm.
This shield is constructed on a discrete-time interval
where the violation occurs and continues until the
end of the time interval. This process is shown in
Fig. 5.

The D-time enforcement design is based on the

Macro-level task process

Micro-level controlling process

t1     t2      t3     t4                                                               tn
Enforcing monitor process

Shield 
construction

Monitor output true                                                  Monitor output false  
Enforcing shield                                                       Enforcing time

...

Fig. 5 D-time enforcement approach based on the
shield output and the original control output within
a discrete-time interval

property shields, a reactive system represented by
a Mealy machine S = (Q, q0, ΣI, ΣO, δ, λ). Assume
that our micro-level agents’ designed control is also a
reactive system, D =

(
Q, q0, Σ,ΣO, δ

′
(1), λ

′
)
, where

Σ = ΣI ∪ ΣO is the set of new input symbols. The
composition D ◦ S is

(
Q̂, q̂0, ΣI, ΣO, δ̂, λ̂

)
, where

Q̂ = Q, q̂0 = q0, and δ̂ (q, σI) = δ′(1) (λ (q, σI) , σI)

is the transition function.
Thus, we observe the violation and execute the

final enforcing action δ̂ by the shields once to ensure
the swarming macro-micro property.

The D-time enforcement method is proposed
to extend the RE theory to robotic systems in a
discrete-time way. Using D-time enforcement, we
can enforce robotic execution by referring to previ-
ous works in non-continuous systems.

5 Shield construction for enforcement

In this section, we formally define the enforce-
ment shield construction problem. Enforcement of
the swarm behaviors under threats must involve a
reactive capability, i.e., a capability to correct the
violation in the same control step. Furthermore, it
must be constructed solely from the swarming safety
properties denoted as ϕ, regardless of the implemen-
tation details of the design (the robotic system may
be a black box). This ensures the simplicity of the
enforcer as well as the scalability of the enforcement
synthesizer.

From the macro-micro enforcing automaton in
our approach framework, we can generate the single
enforcing action Eϕ. For example, we modify the
swarming direction from B′ to B (Fig. 6), steer the
direction of robot 1 to avoid colliding with robot 2,
and turn a robot to avoid colliding with the wall.

To monitor the property violation, we devise
a monitoring algorithm from our previous work (Hu
et al., 2020) and the Python library for MTL (Dreossi
et al., 2019). It processes the runtime robotic states.
In other words, the algorithm is an infinite loop that
waits for input robotic states (letters of the alphabet
Σ). If the monitored sequence of states following the
current robotic state does not satisfy ϕ, then we hold
this state and trigger the enforcer by implementing
function Eϕ. Otherwise, we output all events held by
earlier iterations. The two-level property enforcing
monitor algorithm is designed in Algorithm 1.
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In the ϕ property monitor, we call a hierarchi-
cal two-level StateGo function. It is a runtime state
transmission method which has been illustrated in
our previous work (Hu et al., 2020). This method
consists mainly of a series of retrieval interface func-
tions and the logic operator algorithms of DT-MTL.
When the enforcing monitor receives a violation, we
build the enforcer by the trigger output Eϕ_mac or
Eϕ_mic.

1. Decentralized shields
The agents in a swarm should satisfy a common

macro task property. Thus, a macro enforcing action
Eϕ_mac can be defined as the finite agent actions as

Eϕ_mac(id, t)
def
= ∧i∈{1,...,|U|}Eϕ_mic(i, t), (8)

where i is the ID of the agent of the macro swarm. By
recalling these agents in the swarm, we implement
the macro enforcer as the specific subclass of the

Algorithm 1 Property enforcing monitor for ϕ
Input: a set of states STAT[id][σ] of the swarm
Output: an enforcing trigger Eϕ

1: Function: enforcingMonitor(STAT, ϕ, σ)
2: loop
3: update(σ)
4: while macroStateGo(STAT, ϕ, σ) do
5: while microStateGo(STAT, ϕ, σ) do
6: if (microStateGo == false) then
7: return Eϕ_mic

8: end if
9: end while

10: if (macroStateGo == false) then
11: return Eϕ_mac

12: end if
13: end while
14: end loop

safety shield functions of agents. Here, Eϕ_mic(i, t)

might be decomposed by the macro enforcing trig-
ger or the micro enforcing trigger. To show the dif-
ference, we define the shield Si(ϕ, t) generated by
Eϕ_mac as Si(ϕ, 1, t) and the shield directly gen-
erated by the micro enforcing trigger Eϕ_mic as
Si(ϕ, 2, t).

Thus, the decentralized shields generated by the
enforcing trigger Eϕ can be denoted as

{
Eϕ

def
= ∧i∈{1,...,|U|}Si(ϕ, t),

Si(ϕ, t) = 〈Si(ϕ, 1, t), Si(ϕ, 2, t)〉 .
(9)

2. Shield synthesis
The set {Si(ϕ, t)|i ∈ U} of synthesized shields

(1) is correct, (2) deviates minimally, and (3) is
bounded.

To satisfy ϕ and ensure a minimal deviation,
the enforcer must not generate the output enforcing
action arbitrarily. It must comply with the swarm-
ing goal and the degree of deviation of the enforce-
ment trajectories. While correcting the erroneous
behavior sequences, the deviation monitor returns
the modified path with a minimized deviation.

This may be achieved by solving a two-player
safety game as discussed in Standley and Korf (2011)
and Zhang Y et al. (2014). Similarly, we propose a
generic approach to obtain the deviation value of a
specific agent by constructing the DeviationFinder
(Fig. 6), where one player represents the design goal
and the other player represents the alternative safety
enforcement trajectories which are denoted as ff, ll,
rr, and bb. Depending on the trajectories, our algo-
rithm calculates an array of predicated deviations,
i.e., DEVN. To be specific, the two tuples such as

7

6

5

4

3

2

1

1       2        3        4       5        6        7       8

Region A

Region B

Region C

Robot 1

Region B′rr

bb ff

 Goal         <Region B>    Shield = <S1>

 Goal        (<n, 4>      <n, 4>       <n, 4>       <n, 4>      <n, 4>       <n, 4>)

    t                0,              1,               2,              3,             4,              5,  

    ff          (<4, 3>       <5, 3>       <6, 3>       <7, 3>       <8, 3>      <n, 3>)

    ll           (<4, 3>     <4, 4>        <4, 5>       <4, 6>       <4, 7>       <4, n>)

    rr          (<4, 3>     <4, 2>        <4, 3>       <4, 4>      <4, 5>       < 4, n>)

   bb          (<4, 3>    <3, 3>        <3, 4>        <3, 5>      <3, 6>       <3, n>)

DEVN       (<ff, n>    <ll, 1>        <bb, 2>       <rr, 3>                         )

=

=

=

=

=

=

=

=

ll

Fig. 6 Deviation degree constructed by our DeviationFinder for robot 1 in the example of Fig. 2 (the original
moving direction, i.e., the input of shield S1, is ff)
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<ff, n> represent the enforcing action and the pred-
icated deviation value. Using this general method
to calculate the enforcing output, (1) the goal of en-
forcement construction makes sure that ϕ (I, O′) is
always satisfied, (2) the enforcement trajectory out-
put from shields is a minimal deviation modification,
and (3) the path and enforcement shield actions are
abstracted and defined on a discrete-time interval.
Thus, the shields are bounded.

The enforcement shields will be executed only
during a single interval, and the enforcing output
depends on the DeviationFinder algorithm, as shown
in Algorithm 2.

Algorithm 2 Property DeviationFinder for ϕ
Input: a set of signals VAR of the aimed sensors on

each bot, the critical value CVAL for the swarming
goal, and the enforcing action set actionSet

Output: the minimized deviation degree value DEVNϕ

and the corresponding action ACT
1: Function: computeDevn(VAR, CVAL, actionSet)
2: n ← the number of elements in actionSet
3: for iter ← 1 to n do
4: DEVNiter ← CVAL−VARiter

5: if DEVNiter < min(DEVNiter) then
6: Update DEVNϕ = DEVNiter

7: Update ACT = actionSet[iter]
8: end if
9: end for

10: Return DEVNϕ, ACT

The enforcement execution is a D-time enforce-
ment progress. The enforcing action outputs should
be computed by the deviation degree DEVNϕ. Func-
tion computeDevn accumulates the violated proper-
ties ϕ and the corresponding enforcing trigger Eϕ.
If an enforcement requirement is received, then only
the enforcement control signal is updated by calcu-
lating the minimal enforcing actions. If the enforce-
ment requirement is not received, then it immedi-
ately loops the result logging event, which is sent
out by the property monitor.

3. Shield composition
As shown above, the shield on agent i is a pair

of partial functions 〈Si(ϕ, 1, t), Si(ϕ, 2, t)〉. Each
agent’s shield applies only to itself. This means
that when multiple agents act in the same system,
their trajectories are modified only by their respec-
tive shields. However, the individual shields of each
agent act together to make the system safe. The joint

behavior of the shields is captured by the functional
composition.

Our synthesis algorithm builds upon the exist-
ing works (Bloem et al., 2014; Raju et al., 2019). We
define the composition of shields for agents 1 and 2
at time t as

S1 (ϕ, t) ◦ S2 (ϕ, t) = S2 (ϕ, t) ◦ S1 (ϕ, t)

= 〈S1 (ϕ, 1, t) ◦ S2 (ϕ, 1, t) , S1 (ϕ, 2, t) ◦ S2 (ϕ, 2, t)〉 .
(10)

Similarly, “◦” denotes the joint behavior of the
shields. This composition can be extended to an
arbitrary number of shields by composing their con-
stituent functions. We implement the algorithms in
the C programming language. Our tool takes a speci-
fication file as input and reads the robotic states from
the robotflocksim tool (Vásárhelyi et al., 2018). The
specification describes the property and enforcement
information. Our algorithms output the enforcement
signal to the robotflocksim and drive the simulated
robotic swarm movement as we wish. The tool can-
not impact the global task-controlling behaviors in
the robotflocksim, but we enforce the safety property
in swarm tasks by the runtime enforcement mecha-
nism. The enforcement progress can also be dis-
played in the robotflocksim tool. In this way, we
perform experiments for robot control and enforce-
ment on this platform.

6 Platform implementation and exper-
iments

We implement the monitor specification and en-
forcement platform on robotflocksim, a simulation
tool for robotic swarms. We apply shields in a sce-
nario, in which a UAV swarm is controlled by a given
control program. These shields maintain certain
properties while performing a surveillance mission in
a dynamic environment and ensuring collision-free
movement among the UAV agents.

Note that a common UAV control model in the
robotflocksim tool simulates a ground control sta-
tion that communicates with an actuator onboard
the UAV. The property monitor receives and displays
updates from the UAV, including position, heading,
wind speed, and battery state. Errors occur all the
time if we use this type of purely adaptive control to
ensure safety properties in dynamic swarming tasks.
This is because a simple swarm control model might
neglect some of the required safety properties due
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to the previously unknown information, burst dis-
turbance, illegal task instruction, high workload, fa-
tigue, or an incomplete understanding of exactly how
commands onboard UAV agents are executed.

Thus, we implement an enforcing monitor in the
manner described earlier. It can also modify the
actual execution trajectories to the UAV’s actuator,
such as waypoints to fly to. We assume that the
UAV swarm routes have certain properties. For the
UAV swarm simulated in the robotflocksim tool, its
states are possibly modified by our enforcing monitor
during mission execution to respond to the swarming
task environment.

Consider the mission simulation platform in
Fig. 7, which contains four huge open areas (already
illustrated in Section 3), in which a UAV swarm con-
tains 100 UAVs. In addition, we increase the number
of UAVs to 150 or even 200 to experimentally com-
pare the effect of our enforcement approach with that
of the original system.

The experiments involve three fault injection
approaches that set a risk identification on the re-
gions, set the battery level, and construct unstable
winds to cause collisions among the UAVs. The UAV
enforcing monitor can collect all the related states
on the UAV itself and observe the neighbors’ loc.x,
loc.y, dir.x, and dir.y from a specified nearby range.

In this map, we identify region C as a target area
that we have to enter in the correct sequence, and
the boundary between two openly connected regions.

To reduce monitor overhead on the UAVs, we
collect just the corresponding event and state traces
of interest. The runtime monitors are generated and
deployed on the robot agents automatically by pars-
ing the specification. Furthermore, we release the
idle monitors when a property specification does not
require them.

6.1 Experimental settings

In our experiments, we specify the macro-micro
property constructed by different robotic levels, e.g.,
the swarm task level and the collision-free agent level.
These properties protect the robotic self-organized
control algorithm from violation; the swarm task is
illustrated as in the given specification. The proper-
ties are shown as follows:

(P1) The UAV swarm can fly only from area B

to area C, but not from B′ to C.
(P2) The UAV has to leave primary area A

within 200 time steps.
(P3) The distance between any two UAVs is not

less than 0.5 m to avoid collision.
(P4) Once the battery of a UAV is low, it should

return to the designated landing site in zone A within

Region B

Region A

Region B′

Region C

Region B

Region A

Region B′

Region C

Region B

Region A

Region B′

Region C

                              (a)                                                            (b)                                                           (c)

                              (d)                                                            (e)                                                           (f)

Region B

Region A

Region B′

Region C

Region B

Region A

Region B′

Region C

Region B

Region A

Region B′

Region C

732.0 m

100 m

732.0 m

100 m
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732.0 m

100 m
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100 m

Fig. 7 Simulation platform containing four areas and a swarm of 100 UAVs: (a) from A to B′; (b) marching
in B′; (c) from B′ to C; (d) enforcing UAVs to B; (e) marching in B; (f) from B to C

The circles indicate the swarming locations and the boxes indicate the current target locations of the UAVs



Hu et al. / Front Inform Technol Electron Eng 2020 21(11):1591-1606 1603

5 time steps.
To evaluate the effectiveness when deploying

P1–P4 enforcing monitor, we run the robotic swarm
flocking simulation on the robotflocksim tool and test
whether it correctly avoids the uncertain threats we
have injected. The settings of this experiment are
shown as follows:

(1) EXP_1. Command robotic swarm to for-
ward from region A to region C without passing
through region B.

(2) ErrorLevel. The property to be enforced is
at the macro level.

(3) Violation_1. Swarm motion routes violate
task assignment.

(4) Enforcing_1. The action of the swarm en-
tering region C is suppressed.

In this experiment, we model a task where the
swarm moves from A to C bypassing B′. After
the swarming location value changes to C_loc from
B′_loc, the macro monitor captures the violation of
the swarm task policy. Relying on the Deviation-
Finder calculation, the monitor executes the shields
on agents to redirect the UAV swarm to B correctly
(The experimental process is shown in Fig. 7).

(1) EXP_2. Command robotic swarm to keep
moving in region A.

(2) ErrorLevel. The property to be enforced is
at the macro level.

(3) Violation_2. Swarm motion routes violate
task assignment.

(4) Enforcing_2. The action of the swarm en-
tering other regions is inserted.

After 200 time steps, we test whether the swarm
is still in region A as scheduled. The observed result
is that, as expected, the shields force the UAVs to
move toward the target region C through Deviation-
Finder’s calculation result.

We do another micro enforcing experiment on
the robotflocksim to test the local agents’ collision-
free enforcing ability with the micro monitor. The
settings of this experiment are shown as follows:

(1) EXP_3. Configure the UAV swarm to move
at different speeds.

(2) ErrorLevel. The property to be enforced is
at the micro level.

(3) Violation_3. Location oscillation of agents
violates the collision-free property.

(4) Enforcing_3. The action of agents is in-
serted. Agents tend to reduce the movement speed

of the swarm.
In this experiment, we increase the wind speed

to 4 m/s and constantly adjust the swarming speed
of the UAVs. It tests whether our micro enforcing
monitors can reduce the collisions between the UAVs
that occur in the original control system. We ex-
periment with different numbers of UAVs, and the
results are shown in Fig. 8.

In the enforcement experiment where the bat-
tery is low, we add the virtual battery power flag for
each UAV in the robotflocksim tool and set differ-
ent simulated power conditions. Then, we observe
that the UAVs would return to the base under a low
battery level as expected. The settings of this exper-
iment are shown as follows:

(1) EXP_4. Set a specific UAV to low battery
power status.

(2) ErrorLevel. The property to be enforced is
at the micro level.

(3) Violation_4. The battery level of a UAV is
too low to navigate.
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Fig. 8 Enforcement results of the collision-free prop-
erty of P3 simulated on a swarm in size ranging from
100 to 200 UAVs with different swarming speeds:
(a) collisions at swarm speed of 6.0 m/s; (b) collisions
at swarm speed of 8.0 m/s
The orange cylinder in robotflocksim+RE indicates the num-
ber of collisions on the robotflocksim platform with the RE
approach. References to color refer to the online version of
this figure
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(4) Enforcing_4. The action of the agent is
inserted. It is enforced to move back into region A.

6.2 Evaluation

Table 1 shows the overhead time of the enforcing
monitors under the simulation task with 100 UAVs,
i.e., Time.Overhead. The cardinality of the state
space |Q| is on a specific property that the robotic
simulation platform monitors. Shield size |S| is the
number of shields that are generated only by the en-
forcing monitors. Time.Task is the task execution
time of the monitored robotic system in our experi-
ments. For example, the whole time cost of the UAV
task process specified in P1 is 80 time steps. A time
step contains 30 clock cycles and each clock cycle set
in the experiment is 100 ms. Similarly, we observe
the task processes for property P2 in 200 time steps,
i.e., 600 s.

All experiments were performed on a computer
running Ubuntu 16.04 with 3.1 GHz CPU and 4 GB
RAM. Results showed that our macro-micro enforce-
ment approach scales well for the robotic systems on
the robotflocksim simulation platform. A summary
of our experimental results is shown as follows:

1. Many previous methods can construct a self-
organized control model for robots in a stable envi-
ronment. However, they cannot cope with a sudden
change of the environment or guarantee the correct-
ness of a swarming mission. There are few studies
on a runtime enforcement method for the hierarchi-
cal macro-micro levels of a robotic swarm. There-
fore, it is not easy to compare our work with others
directly. However, in a comparison with the clas-
sic swarm control algorithms without enforcement
(Turgut et al., 2008; Gökçe and Şahin, 2009; Bram-
billa et al., 2013; Floreano and Wood, 2015), our
approach has the effect of correcting mission plan-
ning in uncertain external environments as shown in
Fig. 7. In addition, by taking the collision-free prop-

Table 1 Runtime enforcement overhead evaluation of
the UAV mission properties P1–P4 developed on the
robotflocksim simulation tool

Property |Q| |S| Time.Task (s) Time.Overhead (s)

P1 202 100 240 0.32
P2 202 100 600 0.01

P1+P3 302 112 240 1.05
P1+P4 302 101 240 0.12

P1+P3+P4 402 121 240 1.21

erty as an example, we conduct a micro property
enforcement experiment, through which we can see
that our enforcement method mitigates the collision
effect under different swarming speed conditions and
different numbers of UAVs (Fig. 9).
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Fig. 9 Number of collisions under different swarming
speed conditions and different numbers of UAVs

2. Enforcement from the experiments includes
multiple properties, P1–P4. The monitoring and en-
forcing overhead on the Linux operating system is
negligible because we send only part of the robotic
data by calling the bus. An important part of our
approach’s impact on the original system is the com-
munication overhead and the shield generation over-
head on the swarm simulation platform. The over-
head in our approach in experiments is shown as
the results of Time.Overhead in Table 1. Obviously,
property P3 has high overhead because of the contin-
uous generation and the release of the enforcement
shields in the process of enforcing the collision-free
property. Even so, the correct task sequence of P1
can be guaranteed.

7 Conclusions and future work

In this study, we have proposed a runtime en-
forcement (RE) approach for robotic swarm systems,
and discussed a formal specification to describe the
macro-micro property and the enforcement informa-
tion. To monitor the property using traditional se-
mantics on infinite traces for temporal logic and to
consider the robotic swarm characteristics, we have
used the discrete-time metric temporal logic and pro-
posed the D-time enforcement mechanism for robotic
swarm systems. To build the enforcers automati-
cally, we have generated shields from macro monitors
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for task sequence properties and the micro monitors
for safety properties of a single agent. The corre-
sponding enforcement shield construction algorithm
has been illustrated.

We have implemented the above enforcement
mechanism on the robotflocksim robotic simulation
tool and demonstrated it with a moving swarm task
from region A to region C. Furthermore, we have
considered the safety property of being collision-free
and having adequate battery. Experiments demon-
strated that our approach can automatically gener-
ate shields at runtime. The experiments also showed
that our approach is feasible and that the overhead
is low.

In the future, we will consider the approach of
anticipatory active monitoring (Dong et al., 2012) on
robotic systems and generating shields without defi-
nite enforcement information. Moreover, the current
RE method on robotics has not adopted a prediction
ability to avoid property violations. We will intro-
duce predictive semantics (Zhang X et al., 2012) for
enforcement in robotic swarm systems.
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