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Abstract: This study investigates the consensus problem of a nonlinear discrete-time multi-agent system (MAS) under bounded 
additive disturbances. We propose a self-triggered robust distributed model predictive control consensus algorithm. A new cost 
function is constructed and MAS is coupled through this function. Based on the proposed cost function, a self-triggered mecha-
nism is adopted to reduce the communication load. Furthermore, to overcome additive disturbances, a local minimum– 
maximum optimization problem under the worst-case scenario is solved iteratively by the model predictive controller of each 
agent. Sufficient conditions are provided to guarantee the iterative feasibility of the algorithm and the consensus of the closed-loop 
MAS. For each agent, we provide a concrete form of compatibility constraint and a consensus error terminal region. Numerical 
examples are provided to illustrate the effectiveness and correctness of the proposed algorithm. 
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1  Introduction 
 

As an advanced control method, model predic-
tive control (MPC) has advantages of handling sys-
tem constraints in an explicit form (Mayne et al., 2000) 
and implementing optimal control. Therefore, MPC 
has attracted extensive attention from researchers in 
the control field (Magni et al., 2003; Li and Shi, 2014; 
Rosolia et al., 2017). In addition, some large- 
scale discrete-time multi-agent systems (MASs) have 
emerged, such as multi-region power systems (Mo-
hamed et al., 2011) and wireless sensor networks (Xi 

et al., 2010). Inspired by the distributed control sys-
tem (DCS) with MPC, there are several studies of 
distributed MPC (DMPC) in the literature, e.g., 
Summers and Lygeros (2012), Al-Gherwi et al. 
(2013), and Zheng et al. (2013). Compared with the 
traditional centralized MPC through a single con-
troller, DMPC is more appealing due to its flexible 
control structure and high performance. 

Recently, DMPC for MAS has become a hot 
research area. One common research direction is the 
consensus of MAS using DMPC schemes. A wide 
variety of solution strategies have been proposed to 
ensure consensus (Müller et al., 2012; Zhan and Li, 
2013; Cheng et al., 2015; Li and Yan, 2015). The 
consensus of MAS is required to design a distributed 
control protocol, which uses neighboring information 
to reach a state agreement with respect to each agent. 
For linear MAS, Li and Yan (2015) developed a dis-
tributed receding horizon control (RHC) protocol, 
which first explicitly expresses neighbor information 
versus implicit description (Zhan and Li, 2013). In  
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addition, more detailed results to ensure consensus 
were included in Li and Yan (2015) for MAS with 
linear-time invariant and one-dimensional dynamics. 
Li et al. (2016) focused on how to design an infor-
mation exchange mechanism for consensus. In par-
ticular, the authors analyzed detailed consensus con-
ditions for finite and infinite horizon cases. They also 
indicated that consensus performance is related to the 
network topology. For nonlinear MAS, a relatively 
general cooperative control DMPC framework was 
reported by Müller et al. (2012), where a non-iterative 
solution method was adopted for each agent; i.e., 
optimization problems are solved only once at each 
sampling instant, and this results in fewer communi-
cation requirements. In Gao et al. (2017), consensus 
for second-order nonlinear systems with a dynamic 
reference was considered. Three critical components, 
the terminal cost, terminal region, and auxiliary con-
troller, were denoted in a more understandable way. 
Moreover, Gao et al. (2017) proposed a time-varying 
compatibility constraint to ensure the convergence of 
the closed-loop system. Note that external disturb-
ances were not considered in the aforementioned 
papers (Müller et al., 2012; Zhan and Li, 2013; Cheng 
et al., 2015; Li and Yan, 2015; Li et al., 2016;  
Gao et al., 2017). In a practical environment, 
 systems are inevitably affected by ubiquitous uncer-
tainties. Therefore, considering bounded additive 
disturbances, in this study, we propose a robust 
DMPC consensus strategy for a class of nonlinear 
MAS.  

Note that the vast majority of existing DMPC 
algorithms require control execution at each sampling 
instant (Su et al., 2019a). Inevitably, a great deal of 
computing and communication consumption is gen-
erated in this process. Simultaneously, due to the 
limitations of the actual network, a large amount of 
communication may induce a certain degree of dete-
rioration on the controlled system. Event-triggered 
control is an effective energy-saving strategy that can 
achieve aperiodic control for a small average sam-
pling rate (Zou YY et al., 2017). Currently, event- 
triggered control is applied widely in various fields. 
Theoretical and practical results can be seen in pre-
vious publications (Ferrara et al., 2012; Lehmann  
et al., 2013; Zou WC and Xiang, 2019). Recently, Zou 
WC et al. (2020a, 2020b) applied the event-triggered 
scheme to consensus-tracking control and contain-
ment control of MAS, and Zeno behavior was 

avoided by designing appropriate triggered rules. 
However, an event-triggered mechanism needs an 
additional detection part to continuously obtain the 
current state of the actual system, which is undesira-
ble for some systems with high sampling costs. Thus, 
self-triggered control was proposed using previously 
predicted states to pre-determine the next triggering 
instant (Heemels et al., 2012). This avoids the dis-
advantage of the high-frequency sampling problem of 
event-triggered control. A self-triggered MPC algo-
rithm for a single nonlinear system was explored in 
several studies (Hashimoto et al., 2017; Liu et al., 
2018; Su et al., 2019b), which implemented a 
self-triggered control to MPC and stabilized the 
closed-loop system. In Hashimoto et al. (2017), Liu  
et al. (2018), and Su et al. (2019b), the control input 
and self-triggered strategy were designed via an op-
timization problem, whereas the results obtained were 
asynchronously determined. In Li et al. (2018), an 
independent variable reflecting the cost of commu-
nication was incorporated into the system’s cost 
function to synchronously trade off the desired trig-
gering and control behavior. It may require fewer 
conservative design parameters compared with sev-
eral other studies (Hashimoto et al., 2017; Liu et al., 
2018; Su et al., 2019b). For a linear MAS, Zhan et al. 
(2019a) and Mi et al. (2020) co-designed a self- 
triggered mechanism and DMPC to achieve a coor-
dinated value, which efficiently reduced the commu-
nication load. However, a few studies combined the 
self-triggered mechanism and DMPC algorithm to 
solve the consensus problem of nonlinear uncertain 
MAS. Thus, we propose a self-triggered robust 
DMPC consensus algorithm, which considers both 
control costs and communication load. Our study 
partially extends the results of Liu et al. (2018) to the 
case of distributed control of MAS.  

The main contributions of this paper are twofold: 
1. We introduce a self-triggered strategy via op-

timization, which relieves the heavy communication 
burden. The maximum triggering interval is user- 
defined and is no more than the predicted horizon. 
Considering bounded additive disturbances, for each 
discrete-time nonlinear agent, we use a min–max 
robust DMPC which explicitly includes uncertainty 
realizations as optimized decision variables in the 
entire optimization control problem, which is more 
intuitive compared with robust DMPC using a nom-
inal model (Zhan et al., 2019b). 
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2. Sufficient conditions are presented to guar-
antee the feasibility of the optimization algorithm and 
the consensus over the considered MAS, where we 
employ the invariant set theory to implement the 
input-to-state practical stability (ISpS) framework 
with respect to the consensus error. Moreover, based 
on the latest neighboring information, we provide a 
specific form of compatibility constraints and con-
sensus error terminal regions. 

Notations:   and   stand for the sets of real 
numbers and non-negative integers, respectively. n

  
denotes a set of n-dimensional real column vectors. 
Given an arbitrary column vector, ⋅  represents  

its Euclidean norm. Let 
1 1 2 1( , ], , ,c c c c≥ ≥    and 

1 2( , ]c c  denote 1 1 2{ | }, { | },t t c t c t c∈ ≥ ∈ < ≤   

{ |t∈ 1},t c≥  and 1 2{ | },∈ < ≤t c t c  respectively. 
A scalar continuous function 0 0:α ≥ ≥→   is a class 
of K if it is strictly increasing and α(0)=0. If a function 
belongs to a class K and meets α(s)→+∞ as s→+∞, it 
is called a class of K∞. If for every fixed 0 ,≥∈t   β(∙, t) 
is a class of K, and for every fixed 0 ,≥∈s   β(s, ∙) is 
decreasing and limt→∞β(s, t)=0, then β(∙,∙) is a class of 
KL. 
 
 
2  Preliminaries and problem formulation 
 

We study a group of perturbed nonlinear MASs 
consisting of M agents. The communication topology 
can be represented by a directed graph G={V, E, A}, 
where the vertex set is V={1, 2, …, M}, the edge set is 
E⊆{(i, j): i, j∈V, i≠j}, and the adjacency matrix is 

M MA ×∈  with A=[aij]. In particular, if agent i can 
receive the information from agent j, then edge  
(j, i)∈E and aij=1; otherwise, aij=0. The neighboring 
index set of agent i is denoted by Ni={j: j∈V, (j, i)∈E}. 
|Ni| represents the number of neighbors of agent i. 
Suppose that each vertex has no self-loop (i.e., aii=0), 
and that the communication network over MAS  
is directed (i.e., aij≠aji). Furthermore, we require  
that each system should have at least one  
neighbor of information and each time instant can be 
measured. 

To achieve consensus over MAS, each agent is 
modeled as  

( 1) ( ( ), ( ), ( )),i i i ix t f x t u t w t+ =  i∈{1, 2, …, M},    (1) 
 
where ( ) ,i

nx t ∈  ( ) ,i
mu t ∈  and ( ) w

i iw t W∈ ⊂   
represents the state, control inputs, additive disturb-
ances of agent i, respectively. Here, : nf ×  

m w n× →    is an arbitrary nonlinear function 
with f(0, 0, 0)=0. For each agent i, define ( )ie t =  

ˆ( ) ( )i ix t x t−− , where ei(t) is the state consensus error, 
and ˆ ( )ix t−  represents the average state of its neigh-
bors. The specific expression on ˆ ( )ix t−  is given later. 
Let ( )sup ( )

iiw ti W iw tρ ∈  denote a known disturb-

ance bound. Assume that the consensus error and 
control input are constrained as ei(t)∈Ei, ui(t)∈Ui. 
Furthermore, Ei, Ui, and Wi are compact sets con-
taining the origin in their interiors.  
Definition 1 (Robust positively invariant (RPI) set 
(Su et al., 2019a))    For the established system model 
(1), a set n

iE ⊆   is called an “RPI set” if for  
all ei(t)∈Ei, 0( ) ( )i ie t l E l ≥+ ∈ ∈  exists for all 
wi(t)∈Wi. 
Definition 2 (Regional ISpS)    If there exists an RPI 
set n

iE ⊆   including the origin, a KL function βi, a 
K function αi, and a constant 0id ≥∈  satisfying  
 

[0, 1]
( ) ( (0) , ) ( sup ( ) ) ,i i i i i i

t
e t e t w d

t
β α t

∈ −
≤ + +    (2) 

 
where each ei(0)∈Ei and wi(t)∈Wi, then the state 
consensus error dynamics of system (1) is said to be 
ISpS in Ei with respect to wi. ei(0) is the initial state 
consensus error, and wi is the disturbance. 
Lemma 1    For every agent i∈{1, 2, …, M}, let 
σi(∙)∈K, α1(∙), α2(∙), α3(∙)∈K∞, and 01 2, .tt >∈  Given 
a set Ei as defined in Definition 2 and a function Vi(ei) 

0
n

≥→   to satisfy the following two conditions:  
 

1. ( ) ( )1 2 1( ) ;i i i ie V e eα α t≤ ≤ +  

2. ( ) ( )3 2 ,( ( 1)) ( ( ))i i i i i i iV e t V e t e wα σ t+ − ≤− + +  

 
for all ei∈Ei, wi∈Wi, the state consensus error dy-
namics of system (1) reaches ISpS in Ei with respect 
to wi, where function Vi(·) is called an ISpS– 
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Lyapunov function. When τ1=τ2=0, Vi(·) is an 
ISS–Lyapunov function. The specific proof can be 
found in Lazar et al. (2008). 

We design a self-triggered robust DMPC con-
sensus algorithm to obtain when and how to select 
control inputs for system (1) so that all agents can 
decrease the communication and computing resources 
and achieve consensus. We also assume that there is 
no delay in the transmission. The whole system op-
eration procedure can be stated as follows: at the 
triggering instant i

kt , each agent first deduces the 
self-triggered conditions according to system stability, 
and then determines the optimal control input se-
quence * * *( ) { ( | ), ( 1| ), , (* i i i i i i

i k i k k i k k i kt u t t u t t u t T= + +u  

1| )}i
kt−  by solving an optimization problem. Before 

the next triggering instant +1
i
kt , each agent receives a 

predicted state sequence from every neighbor j∈Ni. 
Meanwhile, agent i stores its own predicted state 
sequence into a buffer area, and waits for other agents 
who demand it. The next calculation begins at +1

i
kt  

and repeats the above procedure.  
Remark 1    Although this study discusses the  
discrete-time nonlinear MAS, we can apply a nearly 
equal process to solve the consensus problem of the 
continuous-time nonlinear MAS with periodic  
sampling. 

 
 

3  Robust self-triggered DMPC consensus 
algorithm 
 

Let i
kt  denote the kth triggering instant of agent i 

with k≥0. The cost function of each agent at the trig-
gering instant can be defined as 

 

1

0

1

ˆ( ( ), ( ), ( ), ( ), )

ˆ= ( ( | ), ( | ), ( | ), ( | ))

ˆ  ( ( | ), ( | ), ( | ), ( | ))

  ( (

i
k

i
k

i
k

H i i i i
i i k i k i k i k

H
i i i i i i i i

i i k k i k k i k k i k k
l

T
i i i i i i i i

i i k k i k k i k k i k k
l H

i
i i k

J x t t t t T

L x t l t x t l t u t l t w t l t

L x t l t x t l t u t l t w t l t

F x t

γ

−

−

−
=

−

−
=

+ + + +

+ + + + +

+ +

∑

∑

x u w

ˆ| ), ( | )),i i i
k i k kT t x t T t− +

(3) 
 

where 1T ≥∈  is the prediction horizon, i
kH  is the 

triggering interval calculated by +1
i i i
k k kH t t= −  ( i

kH ∈ 

max[1, ] ).H  Hmax is the maximum triggering interval 

with max [1, ].∈ TH   ( | )i i
i k kx t l t+  is the state predic-

tion of agent i regarding the future step i
kt l+  at  

time step i
kt . ˆ( ( | ), ( | ), ( | ),i i i i i i

i i k k i k k i k kL x t l t x t l t u t l t−+ + +  

ˆ( | )) ( | ) ( | ) (i i i i i i i
i k k i k k i k k i kw t l t x t l t x t l t u tl−+ = + − + +

| ) ( | )i i i
k i k kl t w t l tψ+ − +  is the stage cost and its 

concrete form is a continuous function. Both λ and ψ 
are given weighing scalars and generally adopt 

0l >∈  and 0.ψ >∈  Fi is the terminal cost, and its 

concrete form is also a continuous function ( ( i
i i kF x t +  

ˆ ˆ| ), ( | )) ( | ) ( | ) ,i i i i i i i
k i k k i i k k i k kT t x t T t x t T t x t T tβ− −+ = + − +

and βi>0 is a weighing scalar. Let Li(0, 0, 0)=0 and 
Fi(0, 0)=0. γ∈(0, 1) is a control parameter reflecting 
triggering or a communication effect. ( )i

i kt =u  

{ ( | ), ( 1| ), , ( 1| )}i i i i i i
i k k i k k i k ku t t u t t u t T t+ + −  represents 

the future control inputs to be obtained; ( )i
i kt =w  

{ ( | ),i i
i k kw t t  ( 1| ),i i

i k kw t t+  ,  ( 1| )}i i
i k kw t T t+ −  repre-

sents the additive disturbance sequence. The averaged 
state trajectory of the neighbors of agent i is 
ˆ ( ) { ( | ), ( 1| ), , (ˆ )ˆ 2 | }ˆi i i i i i i

i k i k k i k k i k kt t t tx x t t Tx t− − − −= + +x  with 
 

ˆ ( | )
ˆ ( | ) ,

i

i i
j k ki i

i k k
j N i

x t l t
x t l t

N−
∈

+
+ = ∑                   

 
where ˆ ( | )i i

j k kx t l t+  denotes the assumed state tra-

jectory of agent j at i
kt , which is obtained based on the 

received information of agent j at triggering instant 
( ).i

j ktΓ  ( )i
j ktΓ  stands for the triggering instant that is 

closest and occurs before i
kt  of agent j. In Gao et al. 

(2017) and Zhan et al. (2019a), the assumed state 
trajectory of agent j can be expressed as 

 
*

[0, )

[ ,2 ]

( | ( )),  ,
ˆ ( | )

ˆ ( | ( )),  ,

i i
j k j k Ti i

j k k i i
j k j k T T

x t l t l
x t l t

x t l t lµ

 + Γ ∈+ = 
+ Γ ∈





 (4) 

 
where *ˆ ( ( ) | ( )) ( ( ) | ( )).i i i i

j j k j k j j k j kx t T t x t T tΓ + Γ = Γ + Γ  

To relieve the calculation burden, a fixed parameter μ 
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0( )µ >∈  is chosen to determine which information 
from neighbor agents is useful for cooperation.  
Remark 2    In the cost function, we use term 

ˆ( | ) ( | )i i i i
i k k i k kx t l t x t l t−+ − +  instead of term 

i
ij

j N
a

∈
∑  

2
ˆ· ( | ) ( )i i i

i k k j k Q
x t l t x t+ −  (Li and Yan, 2015), where 

the setting of ˆ ( | )i i
i k kx t l t− +  can reduce part of the 

calculation. Meanwhile, we use the Euclidean norm 
instead of the usual quadratic function. Note that for 
every agent i, we assume some predicted trajectories 
for its neighbors in Eq. (4) before the next state update, 
because the current actual predicted trajectories 

( | )i i
j k kx t l t+  ( )ij N∈  are unknown as the self- 

triggered communication mechanism. 

3.1  Min–max optimization 

According to the defined cost function (3), each 
agent solves the following optimization problem SPi: 

 

{
}

( ) ( )
ˆ( ( ), ) min max ( ), ( ),

                          ( ), ( ),

i i
k k

i i
i k i k

H Hi i i
i i k i i k i k

u t w t

i i
i k i k

V e t T J x t t

t t T

− x

u w
 (5a) 

subject to 
( | ) ,i i

i k k iu t l t U+ ∈                     (5b) 

( | ) ,i i
i k k iw t l t W+ ∈                     (5c) 

( 1| ) ( ( | ), ( | ),
                             ( | )),

i i i i i i
i k k i k k i k k

i i
i k k

x t l t f x t l t u t l t
w t l t

+ + = + +
+

 (5d) 

                  

ˆ( | ) (

     

| )

                      

min ( ( )) ,

ˆ ( ( ) | ( ) , ) 

i

i i i i i
i k k i k k j j ki j N

k

i i
j j k j k

ax t l t x t l t x t
T H

x t t

∈

−

+ − + ≤ Γ
−

− Γ Γ

(5e) 
ˆ( | ) ( | ) ,i i i i f

i k k i k k ix t T t x t T t E−+ − + ∈        (5f) 
 
where ( | ) ( ),i i i

i k k i kx t t x t=  ˆ( ) ( ) ( ),i i i
i k i k i ke t x t x t−= −  and 

(0,1)a∈  is a constant. f
iE  is the state consensus 

error terminal region including the origin. In Zhan  
et al. (2019a), the compatibility constraint (Eq. (5e)) 
ensures a certain degree of consensus, which implies 
that the predicted trajectory cannot be far away from 
the assumed one.  

We design the state consensus error terminal re-
gion f

iE  to satisfy  

{
}*

ˆ ( | )  min ( ( ))

ˆ         ( ( ) | ( )) ,  ( ) .
i

f i i i
i i i k k j j kj N

i i i
j j k j k k

aE x X x x t l t x tT

x t t l T H
∈

−

∈ − + ≤ Γ

− Γ Γ > −



 

(6) 
 

Assumption 1    At any triggering instant in system 
(1), an auxiliary local feedback control law 

ˆ( , )i i i iu k x x−=  exists, where : n m
ik →   and ki(0, 

0)=0, such that the state consensus error terminal 
region f

iE  is an RPI set. Meanwhile, i iu U∈  holds 

for all ˆ( ) ;f
i i ix x E−− ∈  i.e., .f

i ie E∈  
Remark 3    For the auxiliary local feedback control 
law, we design a set of fixed gains ki offline (Lazar  
et al., 2008) to satisfy f

iE  as an RPI set. In addition, 
both control behavior and communication behavior 
are involved in Eq. (3). To prove that the considered 
MAS can reach a consensus, for each agent, we de-
note the cost function as ˆ( ( ), ( ), ( ),i i i

i i k i k i kJ x t t t−x u  

( ), )i
i kt Tw  when γ=1 and 1.i

kH =  Then its optimal 

cost is ( ( ), ).i
i i kV e t T  This is the so-called “time-driven 

DMPC” without considering communication cost. 

3.2  Self-triggering in optimization 

Between any two successive triggering instants, 
the control input is in the form of 
 

1

ST *
[0, 1]

( ( | )) ( ),  ,i i
k k

i i i
i i k k i k t t

u x t l t t l
+ − −

+ = ∈u      (7) 

 

where * ( )i
i ktu  is a set of the optimal control sequence 

obtained at i
kt  by solving the optimization problem 

SPi. The triggering instant is defined as follows: 
 

{
}

max

*
1

*
[1, ]

1

( ) ,

( ) max , ( ( ), )

          ( ( ), ) .

i
k

i i i
k k k

Hi i i i
k k k H i i k

i
i i k

t t H

H H H V e t T

V e t T

+ = +

∈

≤

         (8) 

 
Remark 4    Note that for each agent, the control input 
from +1i

kt  to 1 1i
kt + −  is derived from an open-loop 

min–max optimization problem, which depends on 
the previous sampling instant .i

kt  Because of the 
self-triggered mechanism, communication resources 
can be saved as the communication period increases. 
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We obtain the optimal triggering interval *( )i
kH  by 

checking whether the optimal cost is dropping and by 
choosing a satisfied maximum triggering interval. 

The self-triggered robust DMPC consensus al-
gorithm for system (1) is summarized in Algorithm 1. 
 
Algorithm 1   Self-triggered robust DMPC consensus 
Off-line: 
Require: max, , , , , , , ,i ik T Hl ψ µ γ α β  
On-line:  

1    for each agent i∈{1, 2, …, M} do 
2        set 0 0=it  as the first triggering instant with k=0; 

3        transmit its state sequence ˆ ( | 0)ix t  to its neighbors 

                     and receive ˆ ( | 0)jx t  from every number j∈Ni, 

                     τ∈[0, T);  
4        solve problem SPi to obtain *( )i

kH  and *(0);iu  
5    end for // Initialization 
6    while each ( | )i i f

i k k ie t l t E+ ∉  do 

7        while ( 1)i
kt k ≥  is not triggered do 

8            apply ST
1( )i

i ku t −  at 1 1[ , );− −∈ +i i
k kt t t T  

9            obtain ˆ ( | )i
i kx tt  1( [ , ])i i

k kt tt +∈  based on  
                         Eqs. (3) and (4); 

10          store *
1( | )i i

i k ku t t −  and *
1( | );i i

i k kx t t −  
11       end while 
12       measure the current state ( );i

kx t  
13       solve SPi in problem (5) and DPMC mechanism (8)  

                     to obtain *( | )i
i ku tt  and *( )i

i kH t ( )[ , ) ;i i
k kt t Tt ∈ +  

14       set k=k+1;  
15  end while 
16  apply the auxiliary feedback control law ˆ( , )i i i iu k x x−=   

                 to the corresponding subsystems; 

 
Remark 5     In Algorithm 1, the initial state trajectory 

0ˆ ( )i
i t−x  of the neighbors of agent i is assumed by 

applying zero control without constraint (5e) or (5f). 
Constraints (5e) and (5f) are adopted to solve problem 
SPi only when k≥1. Meanwhile, the control actions 
switch from solving problem SPi to the auxiliary 
feedback control law as long as all subsystems’ state 
consensus error trajectories enter the error terminal 
region, which further saves computation resources. 
The above control idea is called a “dual-mode strat-
egy” (Dunbar, 2005). In addition, we must point out 
that although the self-triggered robust consensus al-
gorithm effectively eases the communication load in 

this study, it also adds optimization computation due 
to the triggering mechanism. The quantization tech-
nique is an effective tool for saving control costs and 
communication resources, and many interesting re-
sults have been reported, such as in Feng et al. (2018), 
Xu et al. (2018), Yang et al. (2018), and Wan et al. 
(2019). Therefore, it is important to use quantized 
self-triggered control to optimize control and com-
munication costs. 
 
 
4  Feasibility and stability analysis 
 

The optimization independence of MPC in ad-
jacent time shows that the optimization feasibility of 
SPi at the current moment does not guarantee the 
feasibility of the next moment. Thus, we must provide 
conditions to ensure that Algorithm 1 has iterative 
feasibility. Moreover, the property of iterative feasi-
bility ensures that the optimization problem (5) is 
solvable. 
Assumption 2    f

iE  satisfies f
i iE E⊆  and 0 .f

iE∈  
Assumption 3    There exist αl, αf, αF∈K∞, αw, and 
σ∈K, such that 
 

(1) ( ) ( )ˆ ˆ( , , , ) 0,i i i i i l i i w iL x x u w x x wα α− −≥ − − ≥  

ˆ( ) , , ;i i i i i i ix x E u U w W−∀ − ∈ ∀ ∈ ∀ ∈  
(2) ( ) ( )Fˆ ˆ ˆ( , ) ,f i i i i i i ix x F x x x xα α− − −− ≤ ≤ −  

ˆ( ) ;f
i i ix x E−∀ − ∈  
(3) 1ˆ( ( 1| ), ( 1| )) ( (i i i i i

i i k k i k k i i kF x t T t x t T t F x t− ++ + + + − +

1 1ˆ ˆ| ), ( | )) ( ( | ), ( | ),i i i i i i i
k i k k i i k k i k kT t x t T t L x t T t x t T t− + − ++ ≤− + +

( )( | ), ( | )) ( ) ,i i i i i
i k k i k k i ku t T t w t T t w t Tσ+ + + +  ( ix∀  

ˆ ) , .f
i i i ix E w W−− ∈ ∀ ∈  

 
It can be observed that Fi(∙,·) is an ISS– 

Lyapunov function in .f
iE  

Lemma 2    If Assumption 3 is satisfied for any state 
consensus error 0 0ˆ( ( ) ( )) f

i i ix t x t E−− ∈  and admissible 
additive disturbance wi∈Wi, then  
 

( )( )
0 0

1

0

ˆ ˆ( ( ), ( )) ( ( ), ( ))

ˆ  ( ( ), ( ), ( ), ( )) ( ) ,

i i m i m i i i
m

i i p i p i p i p i p
p

F x t x t F x t x t

L x t x t u t w t w tσ

− −

−

−
=

− ≤

− −∑
(9) 
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where ( )i mx t  is calculated by applying the auxiliary 
feedback control law iu , [1, ]Tm∈ .  
Proof    According to Assumption 3(3), we have 
 

( )

1 1

1

ˆ ˆ( ( 1| ), ( 1| )) ( ( | ), ( | ))
ˆ              ( ( ( | ), ( | ), ( | ), ( | ))

                 ( | ) ,

i i k i k i i k i k

i i k i k i k i k

i k

F x l t x l t F x l t x l t
L x l t x l t u l t w l t

w l tσ

− + − +

− +

+ + −
≤ −
−

(10) 
 
for all ˆ( ) .−− ∈ f

i i ix x E  Because f
iE  is an RPI set, by 

summing inequality (10) from l=0 to l=m−1, ine-
quality (9) can be proved for agent i. 
Theorem 1 (Feasibility and stability)    For each agent 
i under Assumption 3, if SPi is feasible at the initial 
triggering instant 0

it , then Algorithm 1 is iteratively 
feasible. Furthermore, the state consensus error dy-
namics of system (1) reaches ISpS with respect to 
additive disturbances and it follows that as t→∞, 

0i jx x− =  for all i, j∈{1, 2, …, M}, MAS with 

self-triggered robust DMPC mechanisms (7) and (8) 
can reach consensus.  

The proof of Theorem 1 involves two parts: 
feasibility and consensus analysis. 

4.1  Feasibility analysis 

Definition 3 (Initial feasible set)    For every agent i, 
the set MPC ( )∈i iE T E  is called the “initial feasible set” 
of Algorithm 1, which indicates that the set of state 
consensus errors can be controlled robustly into f

iE  

in T  steps for all MPC
0( ) ( )i ie t E T∈  and all wi∈Wi. 

Suppose that we obtain a feasible solution 
* ( )i
i ktu  of problem SPi and *( )i

kH  at .i
kt  Then we 

construct a feasible solution at triggering instant 1.+
i
kt  

This can be expressed as 
 

{

}

* * * *
1 1 1 1

*
1 1 1

*
1 1 1

               

               

( ) ( | ), ( 1| ), , ( ( )

1| ), ( ( ) | ), (

( ) +1| ), , ( 1| ) ,

i i i i i i i
i k i k k i k k i k k

i i i i i
k i k k k i k

i i i i
k k i k k

t u t t u t t u t T H

t u t T H t u t T

H t u t T t

+ + + +

+ + +

+ + +

= + + −

− + − +

− + −






u

 
(11)

  
with 1 1 1 1 1ˆ( | ) ( ( | ), (i i i i i

i k k i i k k i ku t q t k x t q t x t q+ + + + − ++ = + +  

1| ))i
kt +  and *[ ( ) , 1]

.
− −

∈ i
kT H T

q   

When *
1 1 ( ) ,i i i

k k kt t t T H+ +≤ < + −  constraints (5b)– 

(5f) can be easily satisfied since *
1( | ) ( | )i i

i k i ku t t u t t+ =  

during this period. When *
1 1( ) ,i i i

k k kt T H t t T+ ++ − ≤ < +  
using Assumption 1, constraints (5b)–(5d) and (5f) 
can be satisfied. In addition, according to the defini-
tion of the terminal region of the state consensus error 
in inequality (6), we can obtain compatibility con-
straint (5e) when *

1 1( ) .+ ++ − ≤ < +i i i
k k kt T H t t T  Thus, 

all constraints in problem SPi are satisfied, and 

1( )i
i kt +u  is indeed a feasible solution at 1.+

i
kt  In sum-

mary, as long as problem SPi admits a feasible solu-
tion at the initial instant 0

it , from the induction prin-
ciple we can obtain feasible solutions for all k≥0. 

4.2  Consensus analysis  

Due to the iterative feasibility, we know that the 
optimization calculation between two successive 
triggering instants in Algorithm 1 is relevant, and that 
the value of the cost function defined in inequality (2) 
is relevant and comparable. 
Lemma 3    For the optimal cost defined in  
problem (5), 1( ( ), ) ( ( ), )i i

i i k i i kV e t T V e t T≤  exists.  

Proof    Suppose that * *( ) { ( | ), (i i i
i k

* i
i k ik ku t t ut t +=u  

*1| ), , ( 1| )}i i i
k i k kt u t T t+ −  and *{ ( | ,( )) i i

i
* i
i k k kw t tt =w  

* *( 1| ), , ( 1| )}i i i i
i k k i k kw t t w t T t+ + −  are the solutions 

obtained using ( ( ), ).i
i i kV e t T  Then according to opti-

mality, we obtain 
 

1 1 *

( )

*

*

( )

ˆ( ( ), ) max ( ( ), ( ), ( ), ( ), )

ˆmax ( ( ), ( ), ( ),

ˆ( 1) ( ( ), ( ), ( ), ( ))
ˆ( ), ) ( 1) ( ( ),

( ), )

  
( (

i
i k

i
i k

i i i i i
i i k i i k i k i k i k

t

i i i i
i i k i k i k

i i i i
i i k i k i k i k

i k
t

i
i i

i k i i k i

L x t x t u t w t
e

V e t T J x t t t t T

J x t t t t

t T

T

V L x t x t
γ

γ

−

−

−

−

−

+ −

≤

=

+

=

w

w

x u w

x u w

*

),
( ), ( )).

i
k

i i
i k i ku t w t

 

 
According to Assumption 3(1), ( ( ),i

i i kL x t  
*ˆ ( ), ( ), ( )) 0,i i i

i k i k i kx t u t w t− ≥  and (0,1).γ ∈  Lemma 3 
holds. 

Using the definition of SPi in problem (5), for all 
MPC( ) ( ),i

i k ie t E T∈  we obtain 
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( )

* *

*

( ) ( ) * *

( )

( )

ˆ) ( ( ), ( ), ( ), ( ), )

                        min (

              

( ( ),

ˆ

       

( ), ( ), ( ),0, )

ˆ( ) ( )  .

i i
k k

i
k

i
i k

H H i i i i
i i i k i k i k i k

H
i

t

i
i k

i i i
i k i k i k

i i
l i k i k

e t T

x t

V J x t t t t T

J t t T

x t x tγα

−

−

−=

≥

≥ −

1
x u

x u w

(12) 
 

To obtain the upper bound of the class K∞ func-
tion of the value function, define a field of origin 

{ }r ˆ ˆ ˆ( ) ( ) ,i i i i i i iO x x x x E x x r− − −= − − ∈ − <  that satisfies 

r .f
iO E⊆  Or exists as f

iE  includes the origin. Then, 
consider the following two situations: 

Case1: for all ( ) .i f
i k ie t E∈  We have 

 
1

1 *

ˆ( ( ), ( ), ( ), 1)
ˆ( ( ), (

( ),

( ),
ˆ( ( 1| ), ( 1| ))

ˆ( ( | ), ( | )) ( ( | )
ˆ ( | )

), ( ), )

, |

,

(

i i i
i i k i k i k

i i i

i
i k

i
i k

i i i i
i i k k i k k

i i i i

i i k i

i i
i i k k i k k i i k k

i i i

k i

i

k

i k k k

x t

x t

F x t T t

J t t t T

J t t t T

x t T t

F x t T t x t T t L x t T t

x t T t u t T

−

−

−

−

−

+ + + + +

+ + + +

+

=

−

+

+x u w

x u w

), ( | )),i i i
k i k kt w t T t+

(13) 
 

where * ( | )]( ) [ ( ),i i i i
i ki i k kk u t tt Tt +=u u  and ( |i

i ku t T+  

ˆ) ( ( | ), ( | )).i i i i i
k i i k k i k kt k x t T t x t T t−= + +  Under Assump- 

tion 3(3) and the sub-optimality of the input control 
signals ( ),i

i ktu  we have 
 

1 1

( )

1

ˆ( , 1) max ( , ( ), ( ), ( ),

                           1)

( ) (

), ) (

)

( ( ).

i
i k

i i i
i i i k i k i

i i
i k i k

ii

k
t

i
i k

V T J t t t

T V

e t t

e T

x

t σ ρ

−+ ≤

+ ≤ +



w
x u w

 

(14) 
 
Similarly, according to the triggering mechanism 

(8) and the above idea, we have 
 

1

1

F

( ( ), ) ( ( ), )
( ( ),1) ( 1) ( )

ˆ( ( ), ( )) ( )
ˆ  ( 1) ( ( ), ( ), ( ), ( ))

ˆ(|| ( ) ( ) ||) ( ).

i
kH i i

i i k i i k
i

i i k i
i i

i i k i k i
i i i i

i i k i k i k i k
i i

i k i k i

V e t T V e t T
V e t T
F x t x t T

L x t x t u t w t
x t x t T

σ ρ
σ ρ

γ
α σ ρ

−

−

−

≤
≤ + −
≤ +
+ −

≤ − +

  (15) 

 
Case 2: for all MPC( ) ( ) ,i

i f
k i it E Te E∈ ∉  r( ) ,i

i ke t O∉  
and ˆ .i ix x r−− ≥  Since the iterative feasibility of the 
optimization problem has been proved previously, a 

group of feasible control solutions that can satisfy all 
constraints of the optimization problem exists. 
Meanwhile, the optimal cost is bounded. Therefore, 
for the finite prediction horizon T, a large positive 
number D<+∞ is admitted such that ( ( ), )

i
kH i

i i kV e t T D<  
for all time instants. Define Fmax(1, ( ))D rθ α=  and 
a class of F: ( ) ( ).K s sα θα∞ =  Apparently, F( ) ( )s sα α≥  

for all 0.>∈s   The result is represented as 
 

( )
( )

( )

F

F

 

                   

ˆ( ) ( )
( ( ), ) +

 

( )

ˆ( ) ( ) ( ).

i
k

i i
i k i kH i

i i k i

i i
i k i k i

x t x t
V e t T D T

r

x t x t T

α
σ ρ

α

α σ ρ

−

−

−
≤

≤ − +

(16) 

 
Combining inequalities (15) and (16), we can 

conclude that 
 

( )ˆ( ( ), ) ( ) ( ) ( ).
i
kH i i i

i i k i k i k iV e t T x t x t Tα σ ρ−≤ − +    (17) 
 

In accordance with the triggering mechanism 
and Lemma 3, the result is inequality (18) (on the next 
page). 

For *[0, ( ) 1]i
kT H

l
− −

∈  and using the triangle ine-

quality and constraint (5e), it holds that 
 

* *
1 1 1 1

1 1 1 1

1 1 1

ˆ( | ) ( | ) ( | )

ˆ ˆ ˆ( | ) ( | ) ( | )

ˆ ˆ( | ) ( | )
                          

                      

i

i i i i i i
i k k i k k i k k

i i i i i i
i k k i k k i k k

i i i i
j k k j k k

j N i

x t l t x t l t x t l t

x t l t x t l t x t l t

x t l t x t l t
N

+ − + + +

− + − + + − +

+ + +

∈

+ − + − +

− + ≤ + − +

+ − +
= ∑

ˆ    ( ) ( | ) .i i i
i k i k ki

k

a x t x t t
T H −≤ −
−

 

(19) 
 

Substituting inequality (19) into inequality (18) 
and considering Lemma 2, we obtain inequality (20) 
(on the next page). 

The last two terms in inequality (20) can be 
treated as a constant τ2. According to the sufficient 
conditions of ISpS in Lemma 1, we show that the state 
consensus error dynamics of system (1) is ISpS at 
triggering instants in MPC ( )iE T  with respect to wi, and 
it follows that ( )ˆlim ( ) ( ) 0,i it

x t x t−→∞
− =  which implies 

that the considered MAS can reach consensus. 
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5  Simulations 
 

Considering a four-agent cart-damper-spring 
system, the dynamics of each agent is 
 

,1

,1 1 ,1 ,2

,
( )

2 ,1 ,21

( ) ( ) ( ) ,

( ( )

(

( ) e )   (21)

                ) ( ),

i
i kti i i i i i

k
i i

i

i i i
i k i k i k

i

i i

i

x i i
i i k i k

i i
i k i k

k T M
x t x t x t T

hTt
M M
T T
M M

x x t x t

u t w t

+

−
+


 − = − +


 + +


= +


 

where xi,1 and xi,2 express the displacement of the cart 
and its velocity, respectively, and ki=0.25 N/m is the 
linear spring factor, hi=1.20 N·s/m is the damper 
factor, Mi=1 kg is the mass of the cart, and Ti=0.4 s is 
the sampling period. For simplicity, each agent has 
the same system parameters. The input control force 
is ui, which is limited to −2≤ui≤2. The additive dis-
turbance constraint is set as −0.2≤wi≤0.4. In addition, 
each agent can communicate with its neighbor agents. 

For the four agents, their neighboring sets are 
N1={2}, N2={1, 3}, N3={2, 4}, and N4={3}. Some 
parameters obtained offline are selected as T=5, 
λ=0.01, Hmax=4, ψ=2, α=0.2, 2,=f

iE  and βi=3 for all 
i’s. The auxiliary local feedback control gain and the 
initial state of four agents are designed as k=[−0.6, 
−0.4; −0.6, −0.4; −0.5, −0.3; −0.5, −0.4] and x=[3.4, 

−1.5; 0.6, 0.5; −1.2, 2; 2.5, −1.2], respectively. Using 
the MATLAB fminimax module, the proposed self- 
triggered DMPC consensus algorithm is executed. To 
show the performance level under Algorithm 1, we 
consider two configurations of γ=0.85 and γ=0.5 on 
the constrained min–max optimization problems. 
Parameter k represents the number of samples. The 
performance results are shown in Figs. 1 and 2. For 
each agent, Figs. 1a and 1b display the state trajecto-
ries of each agent, while Fig. 1c displays the control 
inputs. Figs. 2a and 2b display the corresponding 
triggering instants of each agent, showing that all 
triggering intervals converge to Hmax=4. It can be 
observed that a smaller γ has a lower triggering fre-
quency, which suggests that the burden of commu-
nication can be reduced. For further comparisons, we 
use time-driven DMPC with the same parameters 
when γ=0.85 to obtain results. The comparison of 
number of triggering times regarding different γ’s and 
time-driven parameter is presented in Table 1, which 
shows that the self-triggered approach significantly 
reduces the communication cost. Figs. 3a and 3b plot 
the evolution of system states using self-triggered and 
time-driven control, respectively. Note that the per-
formance of self-triggered control is comparable with 
that of time-driven control, where the considered 
MAS reaches consensus in two strategies. Fig. 3c 
provides the control inputs of two strategies. 

( )

* *
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*

*
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1

( )1
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* *

1 1 1 1 1
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ˆ ˆ                 ( | ) ( | ) ( | ) ( | )

i i
k k

i
k

i
k

H Hi i
i i k i i k

Hi i
i i k i i k

T H
i i i i i i i i
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6  Conclusions 
 

In this study, a robust DMPC method has been 
used to study the consensus problem of discrete  

nonlinear MAS with additive disturbances. We have 
proposed a self-triggered control scheduler based on a 
min–max optimization problem to determine the 
control inputs and maximize the triggering interval. 
The control sequence updates and transmits at  
only triggering instants, which can significantly re-
duce communication costs. The conditions that 
guarantee the feasibility of the algorithm and the 
consensus over the perturbed nonlinear MAS are 
sufficient and practicable, and we have used the in-
variant set theory to realize ISpS with respect to the 
state consensus error to ensure that the closed-loop 
MAS can achieve consensus. Furthermore, simula-
tion examples have shown the effectiveness of the 
algorithm. 
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Fig. 1  Trajectories of system states xi,1 (a), xi,2 (b), and ui (c) with γ=0.85 (solid lines) and γ=0.5 (dashed lines) 
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Fig. 3  State trajectories xi,1 (a), xi,2 (b), and ui (c) using self-triggered (solid lines) and time-driven (dashed lines) control 

 

Table 1  Comparison of total number of triggering times 

Control parameter Average number of  
triggering times 

Total  
number of  
triggering 

times 
Time-driven 1.000 (for agents 1–4) 100 
Self- 
triggered 

γ=0.85 3.571 (for agents 1 and 2) 30 
3.125 (for agents 3 and 4) 

γ=0.5 3.571 (for agents 1–4) 28 
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