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Abstract: We investigate cooperative target tracking of multiple unmanned aerial vehicles (UAVs) with a limited
communication range. This is an integration of UAV motion control, target state estimation, and network topology
control. We first present the communication topology and basic notations for network connectivity, and introduce
the distributed Kalman consensus filter. Then, convergence and boundedness of the estimation errors using the filter
are analyzed, and potential functions are proposed for communication link maintenance and collision avoidance. By
taking stable target tracking into account, a distributed potential function based UAV motion controller is discussed.
Since only the estimation of the target state rather than the state itself is available for UAV motion control and
UAV motion can also affect the accuracy of state estimation, it is clear that the UAV motion control and target
state estimation are coupled. Finally, the stability and convergence properties of the coupled system under bounded
noise are analyzed in detail and demonstrated by simulations.
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1 Introduction

Cooperative target tracking of multiple un-
manned aerial vehicles (UAVs) has received signif-
icant attention in recent years. It is believed that
multiple UAVs can improve the estimation accuracy
and tracking robustness in comparison with a single
UAV (Kim et al., 2010; Yan et al., 2017). Multi-
UAV organization, distributed estimation and in-
formation fusion methods, and UAV motion control
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and network connectivity are the main concerns in
the multi-UAV cooperative target tracking problem
(Stachura and Frew, 2011; Lim et al., 2013; Ma and
Hovakimyan, 2013; Li et al., 2019).

For the state estimation problems over multiple
UAVs, the corresponding results can be categorized
according to whether a fusion center exists or not.
Unfortunately, due to inevitable cost constraints,
such a centralized approach might be infeasible as
it requires significant resources. As such, an alterna-
tive approach called distributed state estimation has
recently received much research attention. The main
idea of the distributed algorithm is to decentralize
the function of the fusion center by employing local
estimators in each intelligent sensor, where each esti-
mator uses the local information and messages from
the neighboring nodes (rather than all the nodes) to
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generate an estimate (Liu QY et al., 2018).
Consensus-based distributed estimation algo-

rithms emerged as the combination of consensus
algorithms and traditional filters, especially the
Kalman filter (Olfati-Saber, 2007a, 2009; Casbeer
and Beard, 2009a, 2009b; Wang YT et al., 2013).
Olfati-Saber (2007a, 2009) developed several similar
distributed Kalman filters based on consensus algo-
rithms and the Kalman filter. The convergence of the
estimation errors without considering the noise has
been proven, and comparison of the algorithms has
also been made. The distributed information filter
(Casbeer and Beard, 2009a, 2009b) can be seen as the
dual form of the Kalman consensus filter. The dis-
tributed unscented information filter was developed
by Wang YT et al. (2013) for coordinated track-
ing of the target with nonlinear dynamics in sensor
networks.

In centralized methods, all nodes transmit the
collected data to a centralized data processing cen-
ter, and the center shares the data processing results
and returns them to each node. Therefore, the com-
putational complexity of the fusion center is high.
In distributed methods, each node exchanges infor-
mation with other nodes within the communication
range. The nodes can generate their own networks
according to the location and energy. The network
topology can be dynamically adjusted with the num-
ber, location, and external environment of the nodes
to achieve the effect of energy saving, fault tolerance,
and a great reduction in computational complexity.

Each UAV in the network fuses others’ infor-
mation through multi-hop communication in multi-
UAV cooperative target tracking, so it is crucial to
preserve network connectivity. The communication
topology in the sensor network can be represented
by undirected graphs in general (Yu et al., 2019).
The second smallest eigenvalue of the graph Lapla-
cian (λ2) is an important parameter for graph con-
nectivity. Maximizing λ2 will result in connectivity
improvement (Kim and Mesbahi, 2006; Zavlanos and
Pappas, 2007). λ2 can also be estimated in a decen-
tralized manner; hence, the global connectivity can
be maintained using decentralized controllers (Yang
et al., 2010).

Connectivity preservation is quite popular in the
multi-agent flocking and formation control problem
(Zavlanos et al., 2009; Kan et al., 2012; Wen et al.,
2012). The potential function method is a funda-

mental way to prevent the original communication
links from disconnecting (Ji and Egerstedt, 2007;
Zavlanos and Pappas, 2008; Zavlanos et al., 2009,
2011; Ajorlou et al., 2010). Thus, local network con-
nectivity can be maintained. A hybrid system, which
is an integration of connectivity control in discrete
space and motion control in continuous space, was
investigated in Zavlanos and Pappas (2008) and Za-
vlanos et al. (2009). The artificial potential func-
tions therein are used to maintain communication
links and avoid collision. Proper potential functions
can also drive multi-agent systems to achieve desired
configurations and flocking behaviors (Olfati-Saber,
2006; Tanner et al., 2007; Kan et al., 2012).

In multi-UAV cooperative target tracking, ap-
propriate motion of UAVs can increase the net-
work’s information about the target, and this is
called information-driven motion control (Olfati-
Saber, 2007b; Olfati-Saber and Jalalkamali, 2012).
In turn, the information increase would also affect
the UAV motion control. Coupled estimation and
motion control framework and algorithms for mobile
sensor network flocking were studied in Olfati-Saber
and Jalalkamali (2012), where stability analysis of
the coupled system was also presented. However, the
filter and the coupled system were analyzed without
taking the input noise into account, and the network
connectivity was not considered explicitly.

In this study, we investigate the multi-UAV co-
operative target tracking problem with a limited
communication range under bounded noise. The
distributed Kalman consensus filter is presented, and
the boundedness of the estimation errors is analyzed.
With the estimation of the target state, we design a
potential function based distributed UAV controller
that drives the network to track a mobile target and
also ensures communication link maintenance and
collision avoidance. The stability and convergence
of the coupled estimation and motion control system
are analyzed in detail. It shows that the network as
a whole tracks the target stably, and the estimation
converges under certain assumptions.

2 Communication topology and net-
work connectivity

Consider a network of N UAVs with integrated
communication and sensing capabilities tracking
a mobile target. Assume that two UAVs can
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communicate with each other when the distance be-
tween them does not exceed R. Let qi ∈ R

m denote
the position of the ith UAV and q = col(qi) the spa-
tial configuration of the team.

Taking UAVs as vertices in the graph, the prox-
imity graph G(q) = (V,E(q)) can be used to repre-
sent the communication topology. Here, V is the set
of vertices, and E(q) is the set of edges defined as

E(q) = {(i, j) ∈ V × V : ‖qi − qj‖ ≤ R, i �= j} ,
where ‖·‖ means the 2-norm. If (i, j) ∈ E(q), then
the jth vertex is adjacent to the ith vertex, also
known as a neighbor of the ith vertex. Clearly, G(q)

is undirected. A path from the ith vertex to the
jth vertex is a sequence of distinct vertices starting
with the ith vertex and ending with the jth vertex,
and the consecutive vertices are adjacent. The undi-
rected graph G = (V,E) is said to be connected if
there exists a path between any two different vertices
in G (Godsil and Royle, 2001).

The Laplacian matrix of graph G is defined as
L = Δ −A, where A = [aij ] denotes the adjacency
matrix with elements aij = 1 if (i, j) ∈ E, and aij =

0, otherwise. ΔΔΔ = diag(σii) denotes the valency
matrix with diagonal elements σii =

∑N
j=1 aij . The

following statements hold for the Laplacian matrix
L (Godsil and Royle, 2001; Olfati-Saber, 2006):

1.L is positive semidefinite. Denote its eigenval-
ues as λ1 ≤ λ2 ≤ . . . ≤ λn. The smallest eigenvalue
λ1 = 0 and 1N = (1, 1, . . . , 1)T is the eigenvector
associated with λ1.

2. zTLz =
1

2

∑

i

∑

j

aij(zj − zi)
2
, z ∈ R

N .

3. If graph G is connected, then the second
smallest eigenvalue λ2(L) > 0. λ2(L) is also known
as algebraic connectivity of graph G, and is often
used to indicate the speed of convergence of a linear
consensus protocol (Olfati-Saber, 2006).

3 Distributed Kalman consensus filter

Consider a mobile target with dynamics:

ẋ = Ax+Bω, (1)

where A ∈ R
n×n, B ∈ R

n×d, and ω is the zero-mean
white Gaussian noise satisfying

E[ω(t)ωT(τ)] = Q(t)δ(t− τ)

with δ(·) the Dirac delta function.

The network of N sensors tracks the state of the
target collaboratively. The measurement model of
the ith sensor is given by

zi = Hix+ υi, (2)

where Hi ∈ R
l×n and υi is the zero-mean white

Gaussian noise satisfying

E(υi(t)υ
T
i (τ)) = Ri(t)δ(t− τ).

Assume that the system described by Eqs. (1)
and (2) is controllable and observable, and that the
covariance matrices Q(t) and Ri(t) are finite.

Then, the distributed Kalman consensus filter
is described as follows (Olfati-Saber, 2007a):

˙̂xi = Ax̂i+Ki(zi−Hix̂i)+γPi

∑

j∈Ni

(x̂j−x̂i), (3)

Ki = PiH
T
i Ri

−1, γ > 0, (4)

Ṗi=APi+PiA
T+BQBT−PiH

T
i Ri

−1HiPi, (5)

where x̂i is the estimated state by the ith sensor and
Ki denotes the gain matrix of the filter. Define ηi =

x− x̂i as the estimation error of the ith sensor. η =

col(η1,η2, . . . ,ηN ) denotes the collective estimation
error.
Assumption 1 There exists δ > 0 such that
Λ + 2γL̂ ≥ δI, where Λ = diag(HT

i R
−1
i Hi +

P−1
i BQBTP−1

i ), L̂ = L ⊗ In, and L denotes the
Laplacian matrix of the network.

If there exist constants bω and bυ such that
‖ω‖ ≤ bω and ‖υi‖ ≤ bυ, the input and measure-
ment noise is called bounded. Then we have the
following proposition:
Proposition 1 Consider a network of N sen-
sors tracking a mobile target collaboratively. The
target dynamics and sensor measurement model are
given in Eqs. (1) and (2), respectively. Each sensor
adopts the distributed filter given in Eqs. (3)–(5). If
Assumption 1 holds, the collective estimation error
η = col(η1,η2, . . . ,ηN) is bounded.
Proof Noting x̂j − x̂i = ηi − ηj , we have

˙̂xi = Ax̂i +Ki(zi −Hix̂i)− γPi

∑

j∈Ni

(ηj − ηi)

and

η̇i = (A−KiHi)ηi+γPi

∑

j∈Ni

(ηj −ηi)+Γiωi, (6)

where Γi = [B, Ki] and ωi =
[
ωT, ηT

i

]T.
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Since the system described by Eqs. (1) and (2)
is controllable and observable, there exist constants
p > p > 0 such that pI ≤ Pi ≤ pI for any i ≤ N

(Liu S and Zhang, 2011).
Consider the following candidate Lyapunov

function:

V (η) =

N∑

i=1

ηT
i P

−1
i ηi. (7)

Compute the time derivative of V :

V̇ (η) = −ηTΛη−2γηTL̂η+2
N∑

i=1

ηT
i P

−1
i Γiωi. (8)

With Assumption 1, one obtains

V̇ (η) ≤ −δ‖η‖2 + 2
1

p
ηTΓ ω̃, (9)

where Γ = diag(Γi) and ω̃ = col(ωi). Furthermore,

V̇ (η) ≤− δ‖η‖2 + 1

p
b‖η‖2 + 1

pb
‖Γ ω̃‖2

≤−
(

δp− 1

p
bp̄

)

V (η) +
1

pb
‖Γ ω̃‖2.

Choosing b > 0, δp − 1

p
bp̄ > 0, and bounded

‖Γ ω̃‖, we obtain that η is bounded.
Remark 1 Assume Λ + 2γL̂ ≥ δI in Assump-
tion 1; i.e., Λ+2γL̂ is positive definite. L̂ is positive
semidefinite. The dimension of the input noise or
the dimension of the measurement should be equal
to the dimension of the states to make sure that Λ is
positive definite.

If the network is connected, ηTL̂η = 0 only
when η = 0 or η1 = η2 = . . . = ηN . It is very
rare that all the estimation errors are equal. When
it happens, one obtains

ηTΛη=ηT
1

[∑

i

(HT
i R

−1
i Hi+P−1

i BQBTP−1
i )

]

η1.

Thus, if the summation is positive definite, Λ+

2γL̂ would also be positive definite, which is more
possible in the cases with heterogeneous sensors.

4 Kinematic model of unmanned aerial
vehicles

Consider a team of N UAVs tracking a mobile
target. Assume that the UAVs are flying at a con-
stant height. The dynamics of the ith UAV is given

by

⎧
⎪⎪⎨

⎪⎪⎩

qi,x = pi,v cos θi,

qi,y = pi,v sin θi,

ṗi,v = ai,

θ̇i = wi,

(10)

where [qi,x, qi,y] is the position of the ith UAV, pi,v
and θi are the velocity and heading of the ith UAV
respectively, and ai and wi are the control inputs.
The velocity and control inputs are constrained by
the capabilities of the UAVs. It is assumed that

⎧
⎨

⎩

pv,min ≤ pi,v ≤ pv,max,

amin ≤ ai ≤ amax,

wmin ≤ wi ≤ wmax.

Defining qi = [qi,x, qi,y]
T and pi =

[pi,x, pi,y]
T = [pi,v cos θi, pi,v sin θi]

T, we obtain
(Oriolo et al., 2002)

q̈i =ṗi

=

(
cos θi −pi,v sin θi
sin θi pi,v cos θi

)(
ai
ωi

)

=

(
ui,x

ui,y

)

, (11)

where ⎧
⎪⎨

⎪⎩

ai =ui,x cos θi + ui,y sin θi,

wi =
ui,y cos θi − ui,x sin θi

pi,v
.

(12)

The input wi is singular if pi,v = 0, and this
will never occur while the ith UAV is moving. The
equivalent linear system of Eq. (10) is given as

{
q̇i =pi,

ṗi =ui,
(13)

where ui = [ui,x, ui,y]
T, qi, pi, ui ∈ R

2. We further
design the control input ui for the linear system (13).

5 Motion control design of unmanned
aerial vehicles

Since norm ‖z‖ is not differentiable at z = 0,
the σ-norm was introduced by Olfati-Saber (2006)
to derive the smooth controller:

‖z‖σ =
1

ε

(√

1 + ε‖z‖2 − 1

)

,
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where ε > 0 is a constant. The σ-norm is differen-
tiable everywhere. The gradient of ‖z‖σ is given by
(Olfati-Saber, 2006)

σε(z) = ∇‖z‖σ =
z

√

1 + ε‖z‖2
.

For the sake of collision avoidance and connec-
tivity maintenance, repulsive and attractive actions
of UAVs are needed. Let r, ra, rc, and R denote
the safety distance, repulsive distance, attractive dis-
tance, and communication range, respectively, where
0 < r < ra < rc < R. Two bounded continuous func-
tions φa, φc: R≥0 → R are defined to represent the
repulsive and attractive forces respectively (Wang L
et al., 2015):

φa(z)

{
=0, z∈[

0, ‖r‖σ
]∪[‖ra‖σ,+∞)

,

<0, z∈(‖r‖σ, ‖ra‖σ
)
,

(14a)

φc(z)

{
=0, z∈[

0, ‖rc‖σ
]∪[‖R‖σ,+∞)

,

>0, z∈(‖rc‖σ, ‖R‖σ
)
.

(14b)

The potential function is given as

ϕa(h) =

∫ h

‖ra‖σ

φa(z)dz.

We obtain

0 ≤ ϕa(h) ≤ ϕa(‖r‖σ), 0 ≤ ϕc(h) ≤ ϕc(‖R‖σ).

Taking into account the object of target track-
ing, initial link maintenance, and collision avoid-
ance, we design the following UAV motion controller
(Olfati-Saber, 2006; Wang L et al., 2015):

ui =
∑

j∈Ni

φa

(‖qj − qi‖σ
)
σε

(
qj − qi

)

+
∑

j∈Ni∩N0
i

φc

(‖qj − qi‖σ
)
σε(qj − qi)

+ bisgn

( ∑

j∈Ni∩N0
i

pj − pi

)

+ f̂ξ
i , (15)

where

f̂ξ
i = −c1(qi − q̂i,ξ)− c2(pi − p̂i,ξ). (16)

In Eq. (15), N0
i denotes the set of neighbors of

the ith UAV at the beginning, Ni denotes the set of
neighbors of the ith UAV at the current time, bi is a

positive constant, and sgn(·) is the signum function
satisfying

sgn(z) =

⎧
⎪⎨

⎪⎩

1, z > 0,

0, z = 0,

− 1, z < 0.

f̂ξ
i is for target tracking, which drives the ith UAV

to move toward the target, improving the accuracy
of target estimation. In Eq. (16), q̂i,ξ and p̂i,ξ are
the estimated target position and velocity respec-
tively obtained by the ith UAV using the estimation
algorithm in Eqs. (3)–(5). c1 > 0 and c2 > 0 are
the feedback gains. Clearly, the UAV motion control
and target state estimation are coupled.

6 Analysis of the coupled system

Let qξ and pξ denote the position and velocity
of the target, respectively. Then Eq. (16) can be
rewritten as

f̂ξ
i =− c1(qi − qξ + qξ − q̂i,ξ)

− c2(pi − pξ + pξ − p̂i,ξ)

=fξ
i −Cηi,

where fξ
i = −c1(qi − qξ) − c2(pi − pξ), C =

[c1Im, c2Im], and ηi = [(qξ − q̂i,ξ)
T, (pξ − p̂i,ξ)

T]T

is the estimation error. If Assumption 1 holds, the
estimation error ηi is bounded, and there exists a
constant b′ > 0 satisfying ‖Cηi‖ < b′.

The controller described in Eq. (15) depends on
the initial states of the UAVs. Define the collective
potential function as

V (q, q0) =
1

2

∑

i

∑

j∈Ni

ϕa

(‖qj − qi‖σ
)

+
1

2

∑

i

∑

j∈Ni∩N0
i

ϕc

(‖qj − qi‖σ
)
.

The dynamics of the ith UAV can be expressed
as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̇i =pi,

ṗi =−∇qiV (q, q0) + bisgn

( ∑

j∈Ni∩N0
i

(pj − pi)

)

+ fξ
i −Cηi.

(17)

Let qc =
1

N

N∑

i=1

qi and pc =
1

N

N∑

i=1

pi be the

position and velocity center of the UAV group, re-
spectively. The relative position and velocity of the
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ith UAV are given as xi = qi − qc and vi = pi − pc,
respectively. We have xi − xj = qi − qj , vi − vj =

pi − pj ,
∑

i

xi = 0, and
∑

i

vi = 0.

Consider the target dynamics and sensor mea-
surement model in Eqs. (1) and (2), and the lin-
ear kinematic model and distributed controller in
Eqs. (13) and (15). Each UAV adopts the distributed
Kalman consensus filter in Eqs. (3)–(5) for target
state estimation. Define the target state estimation
of the UAV network as Σe, the collective UAV mo-
tion dynamics as Σc, and the coupled system as Σ.

Since the feedback term f̂ξ
i in Eq. (15) is lin-

ear, according to Lemma 2 in Olfati-Saber (2006),
we have the following proposition (Olfati-Saber and
Jalalkamali, 2012):

Proposition 2 Σc can be separated into subsys-
tems which consist of the dynamics of UAVs rela-
tive to the group center (Σs) and the translational
dynamics of the UAV group center (Σt); i.e., the
coupled system Σ is an integration of translational
dynamics, relative dynamics of UAVs, and collective
estimation dynamics:

Σs :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi = vi,

v̇i = −∇xiV (x,x0)

+bisgn

(
∑

j∈Ni∩N0
i

(vj − vi)

)

−c1xi − c2vi + δi − δ̄,

Σt :

{
q̇c = pc,

ṗc = −c1(qc − qξ)− c2(pc − pξ) + δ̄,

Σe : η̇i = Fiηi + γPi

∑

j∈Ni

(ηj − ηi) + Γiωi,

where δi = −Cηi and δ̄ =
1

N

∑

i

δi.

Let q0 and p0 be the initial position and velocity
of the UAV network, respectively, and G0 be the
initial proximity graph. The corresponding initial
relative states are given by x0 and v0. Define the
energy function of system Σs as

H(x0,x,v) = V (x,x0) +
1

2
‖x‖2 + 1

2
‖v‖2.

Since system Σs depends on the initial states,
the invariant set theory may not be efficient. Define

the admissible set as (Wang L et al., 2015)

Ω =

{

(x,v) : H(x0,x,v) < c∗,

c∗ = min(ϕa(‖r‖σ), ϕc(‖R‖σ)),
∑

i

xi = 0,

∑

i

vi = 0, xi �= xj for i �= j

}

.

Proposition 3 Given the initial UAV states
(q0,p0), the corresponding relative states are de-
noted as (x0,v0). If (1) (x0,v0) ∈ Ω, (2) the initial
proximity graph G0 is complete, (3) Assumption 1
holds, and (4) the constant bi in Eq. (15) satisfies
bi > 2b′, then the initial communication links are
maintained and the inter-UAV distances are always
larger than the safety distance.
Proposition 4 For a mobile target with bounded
acceleration inputs, the deviation between the states
of the group center and the target is bounded; i.e.,
the group would keep pace with the target. The
deviation is also related to the estimation errors and
the acceleration input of the target.

Proofs of Propositions 3 and 4 are given in the
Appendix.

7 Simulation results

Consider a target moving in a two-dimensional
(2D) space with the discrete-time kinematic model:

x(k + 1) = Ax(k) +Bω(k),

where x = [qT
ξ , p

T
ξ ]

T, A =

[
I2 TI2
0 I2

]

, B =

[
(T 2

/
2)I2

I2

]

, and T = 0.1 s is the time step.

The sensing model of the ith UAV is given by

zi(k) = Hix(k) + υi(k),

where

Hi = [I2, 0].

Here, ω(k) and υi(k) are zero-mean Gaussian noise
with statistics:

{
E
[
ω(k)ωT(l)

]
= Qkδkl,

E
[
υi(k)υ

T
i (l)

]
= Ri,kδkl.
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Without loss of generality, assume that the mea-
surement errors are related to the distance between
the ith UAV and the target; hence,

Ri = (α(di − rs)
2 + σ2

0)I2,

where α, rs, and σ0 are positive constants, and di
is the distance between the ith UAV and the target.
We can see that Ri reaches its minimum if di = rs.

The functions φa and φc in Eq. (14) are defined
as (Wang L et al., 2015)

φa(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, z ∈ [0, ‖r‖σ] ∪ [‖ra‖σ,+∞),

− α1 sin

(
z − ‖r‖σ

‖ra‖σ − ‖r‖σ
π

)

,

z ∈ (‖r‖σ, ‖ra‖σ),

φc(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, z ∈ [0, ‖rc‖σ] ∪ [‖R‖σ,+∞),

α2 sin

(
z − ‖rc‖σ

‖R‖σ − ‖rc‖σ
π

)

,

z ∈ (‖rc‖σ, ‖R‖σ),
where the constants are chosen as α1 = α2 = 20.
Example 1 Consider a network of four UAVs
tracking a mobile target cooperatively. The initial
position of the target is (600, 600) m, and the ini-
tial positions of the UAVs are (200, 200), (400, 200),
(400, 400), and (200, 400) m. The communica-
tion range and safety distance between UAVs are
R=350 m and r=50 m, respectively. The initial prox-
imity graph G0 is complete.

The acceleration and changing rate of the head-
ing angle of the ith UAV are computed from Eq. (12).
The control input constraints are given as [−5,
5] m/s2 and [−0.3, 0.3] rad/s. The velocity of the
UAVs is constrained within [20, 30] m/s. The ini-
tial velocities and heading angles of the UAVs are
all set as 21 m/s and 0.79 rad, respectively. The
initial velocity of the target is pξ = [15, 10]T m/s,
and the acceleration input of the target satisfies
uξ ∼ N(0, 52I2). Parameters of estimation are given
as Q = 100I2, α = 0.003, rs = 150 m, σ0 = 10, and
P0 = diag(500, 500, 50, 50).

Figs. 1–4 show the numerical results of Exam-
ple 1. The trajectories of the target, UAVs, and the
center of the UAV group are presented in Fig. 1. It
can be seen that the UAVs move toward the target
cooperatively. The distance between each UAV can
be found in Fig. 2. It shows that the distances be-
tween the initially connected UAVs are smaller than

1000

900

800

700

600

500

400

300

200

100
200 400 600 800 1000 1200
UAV 1 UAV 2

UAV 3UAV 4

x (m)

y 
(m

)

Target

Group center
Initial target position
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Fig. 3 Target trajectory and estimated trajectories
of the four UAVs in Example 1

the communication range R. The distances between
any two UAVs are larger than the safety distance r.
The target trajectory and the estimated trajectories
of the four UAVs are presented in Fig. 3. The mean
of norm of estimation errors,

∑
i ‖ηi‖/N , is given

in Fig. 4. It can be seen that the estimation errors



Zhou et al. / Front Inform Technol Electron Eng 2020 21(10):1494-1503 1501

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

∑
i║
η i
║

/N

t (s)

Fig. 4 Mean of norm of the estimation errors in Ex-
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converge within 10 s after 3 s and that the target
tracking can be accomplished.
Example 2 The assumption that the initial prox-
imity graph is complete in Proposition 3 is a little
conservative here. In the simulations, we consider
the case in which the UAVs are arranged in a line so
that each UAV can communicate with only its imme-
diate neighbors. The initial positions of the UAVs are
(50, 500), (220, 300), (400, 100), and (590, −100) m.
Other parameters are the same as in Example 1.

Figs. 5–8 show the numerical results of Exam-
ple 2. The trajectories of the target, UAVs, and the
center of the UAV group are presented in Fig. 5. The
distance between each UAV can be found in Fig. 6.
It shows that the connectivity preservation and colli-
sion avoidance constraints are all satisfied. The tar-
get trajectory and estimated trajectories of the four
UAVs and the mean of the norm of the estimation
errors are presented in Figs. 7 and 8, respectively.

8 Conclusions

The distributed Kalman consensus filter has
been presented, and the boundedness of estimation
errors has also been analyzed. The kinematic model
of UAVs has been linearized, and the distributed
potential-based UAV motion controller for target
tracking, connectivity maintenance, and collision
avoidance has been designed. The analysis of the
multi-UAV target tracking system which integrates
estimation and motion control showed that the
network connectivity and collision avoidance can be
guaranteed, and that the estimation errors would
converge. For a mobile target with bounded noise
as acceleration input, the group of UAVs would
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Fig. 5 Trajectories of the target and UAVs in Exam-
ple 2
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track the target stably. Numerical simulations
demonstrated the validity of the proposed method.
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Appendix: Proofs of Propositions 3
and 4

Proof of Proposition 3 Given (x0,v0) ∈ Ω, we
assume that

H(x0,x0,v) = c′.

Since c′ < c∗ = min(ϕa(‖r‖σ), ϕc(‖R‖σ)),
there exists a constant γ′ > 0 such that
H(x0,x,v) > c′ for any (x, v) in the set
{
(x,v) : ∃i �= j such that

r < ‖xi − xj‖ < r + γ′(R − r)

or ∃(k, l) ∈ E(G0) such that

r + (1− γ′)(R − r) < ‖xk − xl‖ < R
}
.

For any (x0,v0) ∈ Ω, define the following com-
pact set:

Ψ(G0, γ
′, c′) =

{

(x,v) : H(x0,x,v) ≤ c′,
∑

i

xi = 0,
∑

i

vi = 0, ‖xi − xj‖ ≥ r + γ′(R− r)

for i �= j, ‖xk − xl‖ ≤ r + (1− γ′)(R − r)

for (k, l) ∈ E(G0)

}

.

It is shown that if Ḣ(x0,x,v) ≤ 0, starting
with the initial state (x0,v0) ∈ Ω, the solution of
system Σs will be in the set Ψ forever (Wang L et al.,
2015).

It is assumed that G0 is complete. We have
⎧
⎪⎨

⎪⎩

ẋi =vi,

v̇i =−∇xiV (x,x0)− bisgn(vi)− c1xi − c2vi

+ δi − δ̄.

The derivative of the energy function is given by

Ḣ(x0,x,v)=−c2‖v‖2−
∑

i

bi‖vi‖1+
∑

i

vT
i (δi−δ̄)

≤− c2‖v‖2 −
∑

i

(bi −
∥
∥δi − δ̄

∥
∥) ‖vi‖

≤0.

Therefore, the initial communication links are
maintained and the inter-UAV distances are always
larger than the safety distance.
Proof of Proposition 4 The dynamics of the
mobile target is given by

{
q̇ξ =pξ,

ṗξ =uξ,

where uξ is the bounded noise as acceleration input.
Define the deviations of the state between the group
center and the target as y1 = qc − qξ and y2 =

pc − pξ. The dynamics of the deviations can be
written as

{
ẏ1 =y2,

ẏ2 =− c1y1 − c2y2 + δ̄ − uξ.

Choosing c1 and c2 to ensure the stability of
the linear system, and noting that the input δ̄ −
uξ is bounded, one obtains that the deviations are
bounded.
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