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Abstract: The super giant slalom (Super-G) is a speed event in alpine skiing, in which the skier trajectory has a significant in-
fluence on the athletes’ performances. It is a challenging task to determine an optimal trajectory for the skiers along the entire 
course because of the complexity and difficulty in the convergence of the optimization model. In this study, a trajectory optimi-
zation model for alpine skiers competing in the Super-G is established based on the optimal control theory, in which the objective 
is to minimize the runtime between the starting point and the finish line. The original trajectory optimization problem is converted 
into a multi-phase nonlinear optimal control problem solved with a pseudospectral method, and the trajectory parameters are 
optimized to discover the time-optimal trajectory. Using numerical solution carried out by the MATLAB optimization toolbox, the 
optimal trajectory is obtained under several equality and inequality constraints. Simulation results reveal the effectiveness and 
rationality of the trajectory optimization model. A test is carried out to show that our code works properly. In addition, several 
practical proposals are provided to help alpine skiers improve their training and skiing performance. 
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1  Introduction 
 

The super giant slalom (Super-G) is a compul-
sory racing discipline in alpine skiing at the Interna-
tional Ski Federation (FIS) Alpine World Ski Cham-
pionships, FIS Alpine Ski World Cup, and Olympic 
Winter Games. This sport combines speed and skill 
perfectly. Some skiers tend to focus on speed and 
neglect the skier trajectory so that they cannot obtain 
an optimal rank. In recent years, alpine skiing has 
become popular in sports studies. However, few 
achievements have been realized in optimal trajectory 
in alpine skiing. For alpine skiers, skiing ability is the 

most basic skill, and the skier trajectory is also crucial, 
because it reflects not only the skiing skills of the 
skier, but also the significant role the trajectory plays 
in medal competitions. In other words, a time-saving 
skier trajectory is tremendously important for alpine 
skiers to improve performance. Therefore, estab-
lishment and analysis of a trajectory optimization 
model have practical significance. 

There are many research works into the trajec-
tory optimization in alpine skiing. In these studies, 
there are mainly three types of modeling methods, i.e., 
particle model, ski model, and rod model. 

The ski-skier system was treated as a particle in 
Sundström et al. (2011) and Dębski (2014). This 
model is relatively simple and effective. Considering 
the influence of different forces, dynamic equations 
are established in each component force direction, but 
some factors are often ignored, such as snow cutting 
force, thrust of ski poles, geometric features of skis, 
and postural angles of the human body. Because of the 
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appropriate simplification of the whole ski-skier 
system, the model has obvious advantages in numer-
ical solution and convergence. 

The ski-skier system was treated as a ski model 
in Hirano (2006), in which the quickest descent line 
between gates on a ski slope was calculated. In the 
model, some details were considered, such as posi-
tions of the ski-skier system on the ski slope, rota-
tional angles of the skis, ski length, ski slope angle, 
system velocity, and rotational velocity at a discrete 
time. However, simulation results seem to be unsat-
isfactory. The quickest descent line through four gates 
could not be obtained due to the numerical difficulty. 
Instead, the descent lines are calculated separately for 
uphill and downhill turns, and then they are simply 
added. A ski model was established by Chen L and Qi 
(2006). In their work, based on the geometric char-
acteristics of skis and the formula for turning radius, 
constraint equations for ski turning movement were 
deduced using a numerical method, and numerical 
simulations and analysis of the ski movement trajec-
tories on flat ground and a slope were carried out, 
including the trajectory of the body’s center of gravity 
and the trajectory of the geometric center of the ski.  

Furthermore, the ski-skier system can be treated 
as a rod model, which is a slightly complicated rod 
system. In the modeling process, the skier’s body is 
simplified as a massless rod and a mass point, and the 
mass point is affixed to the upper end of the rod. By 
building a rod model, a skier’s movement was ana-
lyzed (Youn, 2018), the dynamics of the carving runs 
in alpine skiing was studied (Komissarov, 2019), and 
the effect of the skier’s inclination during the turning 
motion around the pole on the total descent time was 
considered (Rudakov et al., 2010). Nevertheless, it is 
difficult to solve a trajectory optimization problem 
based on the rod model and obtain an optimization 
result for an alpine skiing course with multiple gates. 

To address the trajectory optimization problem, 
some methods have been proposed. For instance, 
numerical methods for trajectory optimization were 
summarized in detail (Betts, 1998; Chen G et al., 2011; 
Huang et al., 2012; Rao, 2014), including mainly two 
categories: direct and indirect methods. A hybrid 
approach, a combination of direct and indirect 
methods, was described as a promising way to obtain 
a numerical solution to nonlinear optimal control 
problems (von Stryk and Bulirsch, 1992). A dimen-

sion reduction method based on trajectory shaping 
was put forward to improve the accuracy of trajectory 
optimization using the good shape-characterizing 
ability of Bézier curves to describe the optimal tra-
jectory, and the dimension reduction optimization 
method converts the boundary conditions of the op-
timization problem into the parameter constraints of 
trajectory shaping (Zhang and Hou, 2016). An 
in-cruise optimization method was implemented to 
calculate the optimal trajectory that reduces the flight 
cost, by which the aircraft could perform a horizontal 
deviation or change altitudes via step climbs to reduce 
fuel consumption (Patrón and Botez, 2015). 

Some recent works have thoroughly considered 
the trajectory optimization problem. A joint trajectory 
smoothing and tracking framework for a specific 
class of targets with smooth motion (Li et al., 2019) 
was presented; it models the target trajectory over a 
time window by a continuous function of time (FoT) 
and updates the parameters iteratively with the time 
sliding of the time window. Based on the recursive 
Bayesian filtering and the least squares fitting (LSF) 
frameworks, a computationally efficient approach to 
exploiting the prior trajectory geometry (Li, 2019) 
was presented, for positioning a target that moves on a 
single, deterministic road. An improved dynamic 
programming track-before-detect (DP-TBD) algo-
rithm was proposed (Zheng et al., 2016) to distinguish 
the target from the disturbance more effectively, and 
the improved algorithm does not need prior 
knowledge about the target motion. An adaptive 
multi-spline refinement algorithm, a new dynamic 
programming based parallel algorithm, adapted to 
on-board heterogeneous computers was studied by 
Dębski (2016); it uses a new discrete space of 
C1-continuous functions called the multi-spline as its 
search space representation. Guo et al. (2019) pro-
posed an efficient dynamic programming with 
shooting heuristic as a subroutine (DP-SH) algorithm 
for the integrated optimization problem. Chen D et al. 
(2019) proposed a multi-objective trajectory planning 
method based on an improved immune clonal selec-
tion algorithm to plan the motion trajectory of the 
mobile platform in the Cartesian space with a quintic 
B-spline curve. Liu et al. (2019) proposed a stochastic 
optimal control algorithm to dynamically adjust and 
optimize aircraft trajectories. A novel guidance algo-
rithm based on convex optimization, pseudospectral 
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discretization, and a model predictive control (MPC) 
framework was proposed by Wang et al. (2019) to 
solve the highly nonlinear and constrained fuel- 
optimal rocket landing problem. These algorithms 
have different applications in the field of trajectory 
optimization, and play an important role in trajectory 
optimization. 

In addition, several kinds of software are used 
for trajectory optimization, especially in aircraft, such 
as GPOPS (Graham and Rao, 2015; Benito and 
Johnson, 2016; Hong et al., 2016), SEPSPOT, OTIS 
(Falck and Gray, 2019), POST, CAMTOS, VITA, 
CHEBYTOP (Paek et al., 2016), and TOMLAB 
(Morbidi et al., 2018; Ranogajec et al., 2018; Crain 
and Ulrich, 2019). 

Although some achievements have been made in 
the research on alpine skiing, it is worthwhile to study 
and analyze the trajectory optimization model in 
depth. Therefore, we are eager to do some work in this 
area. 

The main contributions of our study are sum-
marized as follows: 

1. We build a trajectory optimization model. On 
one hand, comparing it with other current methods for 
establishing dynamic equations, we derive a set of 
simpler dynamic equations, and find that the proposed 
method is easier to converge (i.e., obtain the optimal 
solution for an alpine course with multiple gates). On 
the other hand, in the modeling process, we choose 
the Super-G course as the research object and take the 
course data from the official website of FIS, so the 
course setting is within reason. 

2. Gliding inflection points are marked on the 
optimal skier trajectory. These points are the transi-
tion points for concavity and convexity in the ski 
trajectory; however, they have not been presented in 
the optimal ski trajectory in other works in terms of 
concept and coordinate labeling.  

3. Several practical proposals are put forward 
after analysis. It is hoped that these reasonable sug-
gestions can help in the daily training and provide 
efforts for performance improvements for alpine  
skiers. 

 
 

2  Course setting 
 

To make our research object concrete and rep-
resentative, a Super-G course is chosen. Alpine skiing 

is divided mainly into two types: the speed events 
(Downhill and Super-G) and technical events (Slalom 
and Giant Slalom). In Downhill, Super-G, and Giant 
Slalom, two pairs of slalom poles are used, each pair 
of which carries a gate panel between them. There are 
single-color gates in Downhill, and the Giant Slalom 
and Super-G alternate red and blue gates. Although 
the gate color settings are different, they have no 
influence on the research. The biggest difference is in 
the requirements for the gate intervals and the vertical 
drop of the whole course. The choice of the Super-G 
is mainly due to that it is a concrete and representative 
research object for the three events. 

To build a more efficient and effective trajectory 
optimization model for alpine skiers in the Super-G, 
the Super-G course is designed according to technical 
data taken from the International Competition Rules 
(ICR) on the fis-ski.com webpage (https://www.fis- 
ski.com/en/inside-fis/document-library/alpine-
documents), whereby only seven Super-G gates are 
arranged for the study. In Fig. 1, a Super-G gate con-
sists of four slalom poles and two gate panels, where 
the gate line is the shortest imaginary line between the 
turning pole and the outside gate at snow level. By 
establishing a Cartesian coordinate system, whose x 
and y axes are parallel to the horizontal and longitu-
dinal directions, respectively, of the ski slope, the 
coordinate positions of the starting point, inside poles, 
and the finish line can be determined. Ski slope is 
assumed to have an angle β and a flat surface. The two 
inside poles of each gate are marked, and the coor-
dinates of which (unit: m) are shown in Fig. 2.  

Many different trajectories can remain after 
athletes run the ski course several times. However, an 
admissible trajectory demands that the skiers pass the  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Super-G gate components 
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gate lines between two inside poles such that the 
skiers’ ski tips and two feet have crossed the gate line, 
in contrast to the wrong way of bypassing the outside 
poles. If a competitor misses a gate, he/she can no 
longer go through further gates and will eventually 
fail in the race. Therefore, the coordinate positions of 
the inside poles can be transformed into the boundary 
conditions for the trajectory optimization model. 
 
 
3  Modeling and solution 

3.1  Particle model 

As mentioned above, considering the complexity 
and convergence of the trajectory optimization model, 
the whole ski-skier system, including the human body 
and two ski poles and skis, is regarded as a particle, 
whose mass is m. Assume that the particle glides 
along an admissible trajectory and all turns are purely 
carved (i.e., without skidding or take-off). Ski poles 
are not used to change the direction of the skier’s 
gliding and the magnitude of the skier’s velocity. 
Only five forces acting on the particle are described, 

i.e., gravity G, supporting force FN, sliding friction fs, 
air resistance (air drag) fa, and resultant force Fc 
which provides centripetal force in the radial direc-
tion (Fig. 3). Note that FN is perpendicular to the slope 
and that all the other forces are on the slope. Moreover, 
v and ϕ  denote the instantaneous speed and angular 
velocity at a certain moment, respectively (Fig. 3b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Deriving equations 

On the ski slope, we perform force analysis on 
the particle model (Fig. 4). After applying Newton’s 
Second Law in the x1 and y1 directions, we can obtain 
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Fig. 3  Forces acting on an alpine skier: (a) component 
forces generated at each point of action; (b) forces applied 
to a particle on an admissible trajectory 
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Fig. 2  An alpine skiing course for the Super-G 
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where μ is the sliding friction coefficient, Cd the air 
resistance coefficient, ρa the air density, and s the 
windward area of the human body. In the same way, in 
the x2 and y2 directions, we can obtain 
 

2 c a s

2 c a s

sin ( )cos ,
cos ( )sin .

= −
 ′= − −
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ϕ ϕ
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          (3) 

 
Considering that 0ϕ > (because φ increases over 
time) on the upper half part of the trajectory and 

0ϕ <  (because φ decreases over time) on the lower 
half part of the trajectory, we can obtain the general 
expression as 
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We do not want to obtain the overly complex dynamic 
equations used for trajectory optimization. Therefore, 
we attempt to cancel out Fc. According to the kine-
matic knowledge of 
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and combining Eqs. (4) and (5), the following equa-
tion holds: 
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For simplification, we can obtain 

ccos sgn .′= + mv G Fϕ ϕ ϕ                   (6) 
 

Appling Newton’s Second Law in the radial and 
tangential directions, we can obtain 
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where Rc is the turning radius (i.e., the radius of cur-
vature) that reflects the bending degree of the skier 
trajectory at a certain point. Combining Eq. (6) and 
the second equation of Eq. (7), the following equation 

holds: 
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3.3  Dynamic equations 

The trajectory equation of the particle can be 
described by four state variables: 
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where x(t), y(t), φ(t), and v(t) are the lateral dis-
placement, longitudinal displacement, angle between 
the tangent and horizontal direction, and tangential 
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Fig. 4  Plane force analysis performed on the admissible 
trajectory 
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velocity of the trajectory curve, respectively. Ac-
cording to the kinematics, the following equations are 
obtained:  
 

{ cos ,
sin .

x v
y v

ϕ
ϕ

=
=




                           (12) 

 
Combining Eqs. (10) and (12), the dynamic equation 
ż=f(z, u, t) can be expressed as follows: 
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where the control variable u(t) is defined as 

c

1( ) sgn ( ).
( )

= u t t
R t

ϕ                     (14) 

 
The control variable describes the bending de-

gree and direction of the ski trajectory. Skiers can 
achieve the quickest trajectory by controlling the 
control variable. 

3.4  Boundary conditions 

The original trajectory optimization problem is 
converted into a multi-phase optimal control problem, 
and the whole ski trajectory is divided into eight 
phases on the Super-G course. The first phase is be-
tween the starting point and the first gate line; the 
second phase is between the first and the second gate 
lines; the third phase is between the second and the 
third gate lines; the remaining phases are defined in 
the same way. Let t0{p} be the initial time of the pth 
phase and t0{1} the time when the skier leaves the 
starting point O(0, 0). Similarly, let tf{p} be the final 
time of the pth phase and tf{8} the time when the skier 
passes the finish line. Let the initial, final, and general 
states of the pth phase be expressed, respectively, as 
follows: 
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To obtain the optimal trajectory, time and states 

are constrained as 
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where q=1, 2, …, 7, p=1, 2, …, 8, xp1 and xp2 are the 
x-axis coordinates of Pp1 and Pp2 respectively, and yp1 
is the y-axis coordinate of Pp1. 

3.5  Objective function 

In this study, the purpose of trajectory optimiza-
tion is to minimize the final race time of the whole 
skiing process, so it is a minimum-time problem. 
Such a problem can be considered the minimization 
of the objective function: 

 
f

f0
d ,

t
J t t= =∫                           (23) 

 
where tf is equal to tf{8}. 

3.6  Problem solving 

For the solution to the trajectory optimization 
problem, a pseudospectral method is used. The basic 
principle of the pseudospectral method is to ap-
proximate the state variables and control variables 
using a set of basis functions that are typically La-
grange interpolation polynomials, and the differential 
algebraic constraint conditions are enforced at a 
specified set of collocation points (Tang and Chen, 
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2016). 
According to the choice of discrete points, the 

pseudospectral methods include mainly the Legendre 
pseudospectral method (LPM), Gauss pseudospectral 
method (GPM), Chebychev pseudospectral method 
(CPM), and Radau pseudospectral method (RPM). In 
this study, RPM is adopted for the solution to the 
trajectory optimization problem, the interpolation 
polynomial of which is the Lagrange polynomial and 
the discrete point is the Legendre-Gauss-Radau (LGR) 
point (Garg et al., 2009; Jiang et al., 2017). Calcula-
tion steps are described as follows: 

First, an affine transformation is defined as 
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where τ∈[−1, 1]. The dynamic equation ż=f(z, u, t) 
can be written as 
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Next, the state variable z(τ) is approximated us-

ing Lagrange interpolation polynomials: 
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Then, time derivative of the state approximation 

of Eq. (26) is given as 
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where k=1, 2, …, N−1. 

Finally, the dynamic constraint equation is col-

located at the (N−1) LGR points as follows: 
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where ki i kD L t= ( )  (k=1, 2, …, N−1, i =1, 2, …, N) is 
the element of the (N−1)×N Radau pseudospectral 
differentiation matrix. 

Similarly, the control variable u(τ) is approxi-
mated using Lagrange interpolation polynomials: 
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where τ1, τ2, …, τN−1 are the interpolation nodes. 

The system equations and objective function 
expressed using the RPM are as follows: 
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where wk (k=1, 2, …, N−1) are the LGR weights. 
 
 
4  Simulation results and discussion 
 

In this section, numerical solution is carried out 
using the MATLAB optimization toolbox and simu-
lation results are given. 

4.1  Optimal trajectory 

Suppose the mass of the whole system m=65 kg, 
gravity acceleration g=9.8 m/s2, angle of the ski slope 
β=20°, air resistance coefficient Cd=0.45, air density 
ρa=1.225 kg/m3, windward area of the human body 
s=0.4 m2, and sliding friction coefficient μ=0.03. 

Let the control variable be constrained by 
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−0.046≤u(t)≤0.046 and then the optimal trajectory 
can be obtained. 

It can be seen from Fig. 5c that there is a straight 
line in the fifth and eighth phases, according to the 
tangential angle that changes much more slowly 
(almost remains constant) within a certain interval of 
the two phases, but not over the whole skier trajecto-
ries of the two phases. 

From the changes of u(t) in Fig. 5e, three typical 
features should be noted. First, the control variable  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

remains constant near the turning poles, which means 
that the skier passes through each gate with a certain 
turning radius generally. Second, the control variable 
fluctuates over a period of time at each phase. Ac-
cording to the definition of the control variable 
(Eq. (14)), it can be split into two parts: 1/Rc(t) and 
sgn ( ).tϕ  The former can be regarded as a numerical 
magnitude, while the latter is related mainly to the 
turning direction. When the rate of the tangential 
angle curve changes slightly at some points, the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Changes in the lateral (a) and longitudinal (b) displacements over time, tangential angle curve (c), velocity  
curve (d), control variable changing curve (e), and the optimal trajectory curve where the coordinates of the gliding 
inflection points are shown (f) 
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control variable will fluctuate correspondingly. In 
other words, the control variable is constrained by 
sgn ( ).tϕ  Third, the change of u(t) seems fast at some 
moments (almost like the Heaviside step function) 
mainly due to the function characteristic of sgn ( ),tϕ  
which jumps at ( ) 0tϕ =  (i.e., ( ) 0tϕ =  is a jump 
break point). 

As shown in Fig. 5f, the optimal trajectory of the 
Super-G course in this study is a smooth curve that 
satisfies the condition of being an admissible trajec-
tory. Calculated numerically by MATLAB, the coor-
dinates of the gliding inflection points (P1–P6) can be 
obtained and marked on the trajectory, which are 
considered to be the transition points for concavity 
and convexity in the skier trajectory curve and can tell 
skiers when and where they should begin to swing 
around the turning poles. At the same time, the 
minimum time worked out is 11.86 s. 

However, the final time is different because of 
the control variables with different upper and lower 
limits. In Table 1, 20 groups of data points are listed, 
and we refer to the minimum turning radius of 17.2 m 
(Gilgien et al., 2014) (the corresponding curvature 
value is 0.058). Based on this, the control variable is 
constrained to a certain range. It can be seen that the 
final time decreases with the increase of the control 
variable, which shows that the smaller the minimum 
turning radius, the shorter the total skiing time.  

Through further simulations, Figs. 5−7 show that 
solutions with higher upper limits of the control var-
iable u(t) yield shorter runtimes and straighter (or 
shorter) paths from gate to gate, which does not con-
tradict with the conclusions in Lind and Sanders 
(2004), who stated that the shortest path between two 
points on a slope is not necessarily the fastest path. A 
more important factor is the different nature of our 
problem. In contrast to Lind and Sanders (2004), our 
quickest descent path is subject to constraints re-
quiring the path to pass through a set of gates. While 
Lind and Sanders (2004)’s solution allows skiers to 
reach the first gate quickly, the exit parameters of 
their trajectory are likely to make the path between 
the first and the second gate lines longer, which takes 
longer runtime than our method, unless the curvature 
radius is allowed to become very small at the first gate 
and so on. 

From Figs. 6 and 7, it is found that although the 
total skiing time is reduced, the minimum turning 

radius also decreases, which is more difficult for al-
pine skiers to achieve. According to the relevant re-
search on alpine skiing (Spörri et al., 2016, 2017), a 
high skiing speed combined with a small turning 
radius can shorten the skiing time, but it will increase 
the acting ground reaction force and cause a higher 
risk of sideslip and even injury. That is to say, the 
smaller the minimum turning radius, the higher the 
requirements for alpine skiers in the Super-G.  

For the accuracy to 0.01 s (the precision men-
tioned here referring to the total skiing time obtained 
by numerical computation is kept to the decimal place 
and the time is accurate to the hundredth in alpine 
skiing competition), considering both skiing time and 
skiing safety, the trajectory shown in Fig. 5f is re-
garded to be optimal. 

4.2  Code testing 

To show that our simulation code works properly, 
a useful test has been carried out. We set air drag and 
sliding friction to zero and check that our optimiza-
tion method delivers the same solution to the 
one-phase problem (start-to-first gate) as in Lind and 
Sanders (2004). 

Based on the results of Lind and Sanders (2004), 
we can obtain the parametric equation of a cycloid as 

 

( sin ),
(1 cos ),

x R
y R

φ φ
φ

= −
 = −

                      (34) 

 
where φ is a rolling angle and radius R=A/(2g′) (A is a 
constant and g′ the effective gravitational acceleration 
for the slope). 

The starting and final points are O(0, 0) and 
P11(6, 30), respectively. The following equation 
holds: 
 

11 11 11

11 11

6 ( sin ),
30 (1 cos ).
= −

 = −

R
R
φ φ

φ
                  (35) 

 
Using MATLAB, two parameters are obtained: 
φ11=0.5930 rad and R11=175.7356 m. The brachisto-
chrone trajectory on the ski slope can be described as  
 

175.7356( sin ),
175.7356(1 cos ).

= −
 = −

x
y

φ φ
φ

              (36) 

 
In addition, to obtain the one-phase optimal  
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trajectory by our optimization method, time and states 
are constrained as follows: 
 

0

f

{1} 0 s,
0 s {1} 30 s.
t

t
=

 ≤ ≤
                       (37) 

0

f

{1} 0 m
6 m {1} 12 m,

20 m {1} 20 m,

x ,
x

x

= ≤ ≤
− ≤ ≤

                 (38) 

0

f

{1} 0 m,
{1} 30 m,

0 m {1} 235 m,

y
y

y

= =
 ≤ ≤

                  (39) 

0

f

{1} π 2,
0 {1} π,
0 {1} π,

ϕ
ϕ
ϕ

=
 ≤ ≤
 ≤ ≤

                             (40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

f

{1} 5 m s,
0m s {1} 50m s,
0m s {1} 50m s.

v
v
v

= ≤ ≤
 ≤ ≤

                 (41) 

 
According to Table 1, for the accuracy to 0.01 s, 

0.046 is the best limit of the control variable with the 
shortest time 11.86 s mentioned above. Likewise, let 
the control variable be constrained by −0.046≤u(t)≤ 
0.046. Test results are shown in Fig. 8. 

In Fig. 8f, it can be seen that our solution is al-
most coincident with Lind and Sanders (2004)’s so-
lution, both of which are parts of a cycloid. This 
suggests that our method delivers the same solution to 
the one-phase trajectory optimization problem as in 
Lind and Sanders (2004). Moreover, the test results  

Fig. 6  Simulation results when the control variable is constrained by −0.025≤u(t)≤0.025 under the constraint conditions 
of Eqs. (18)–(22): (a) lateral displacements; (b) longitudinal displacements; (c) tangential angle curve; (d) velocity  
curve; (e) control variable changing curve; (f) the optimal trajectory curve 
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Table 1  Minimum time for the optimal trajectories with different upper and lower limits of control variables 
Upper and lower 

limits of u(t) 
Convergence/ 
Divergence Final time (s) Upper and lower 

limits of u(t) 
Convergence/ 
Divergence Final time (s) 

±0.019 d – ±0.040 c 11.8712 
±0.021 d – ±0.042 c 11.8687 
±0.023 d – ±0.044 c 11.8666 
±0.025 c 11.9195 ±0.046 c 11.8647 
±0.030 c 11.8919 ±0.048 c 11.8631 
±0.031 c 11.8887 ±0.050 c 11.8616 
±0.033 c 11.8834 ±0.052 c 11.8602 
±0.035 c 11.8791 ±0.054 c 11.8590 
±0.037 c 11.8755 ±0.056 c 11.8579 
±0.039 c 11.8725 ±0.058 c 11.8569 

Skiing time listed is accurate to four decimal places for comparison. “–” means that the numerical results cannot be worked out 

Fig. 7  Simulation results when the control variable is constrained by −0.058≤u(t)≤0.058 under the constraint conditions 
of Eqs. (18)–(22): (a) lateral displacements; (b) longitudinal displacements; (c) tangential angle curve; (d) velocity  
curve; (e) control variable changing curve; (f) the optimal trajectory curve 
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not only show that our multi-phase trajectory opti-
mization problem is obviously different from the 
one-phase problem in nature, but also verify that our 
code is well designed and is effective. 

 
 

5  Conclusions and future work 
 

In this study, we established a trajectory opti-
mization model for alpine skiers in the Super-G and 
demonstrated its rationality and validity by numerical 
simulations. In contrast to the previous achievements 
in alpine skiing, we have obtained the optimal tra-
jectory of a specific Super-G course to provide alpine 
skiers with help and reference. Based on this, we have 
made parameter optimization and carried out a useful 
test for our code. Results showed that the skier tra-
jectory can be considered optimal within a reasonable 
range of control variables after comprehensive con-
sideration of safety and time. Furthermore, we have 
marked the inflection points on the skier trajectory, 
and obtained the coordinates by working out the 
transition points for concavity and convexity in the 

skiing curve. The concept and coordinate labeling of 
the inflection points on the optimal trajectory have not 
been presented in other papers. 

Several skiing suggestions for alpine skiers have 
been presented. At first, choose the optimal route. 
Alpine skiers should ski along an S-shape trajectory 
and be as close as possible to the turning poles when 
passing through the gates in a correct way. Then, turn 
at the inflection points. Generally speaking, inflection 
points are closer to the turning poles (Fig. 5f), and 
their positions are different for different gates or dif-
ferent courses. However, the positions of the inflec-
tion points are too far from the turning poles; i.e., 
skiers begin a turn far from the turning poles when 
passing through the gates (Fig. 6f). Finally, ski with a 
small turning radius. Considering the risks of alpine 
skiing, it is recommended that skiers should reduce 
the turning radius to achieve a faster skiing trajectory 
on the premise of ensuring safety and not breaking the 
rules. 

In addition to establishing the trajectory opti-
mization model, simulation results have been ana-
lyzed and the optimal trajectory has been obtained, 
although some details were ignored in the modeling 
process, such as geometric features of the skis and 
postural angles of the human body. Therefore, we will 
carry out in-depth research and analysis to improve 
the model in future work. 
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