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Abstract: The fractional order model of a glucose-insulin regulatory system is derived and presented. It has been extensively 
proved in the literature that fractional order analysis of complex systems can reveal interesting and unexplored features of the 
system. In our investigations we have revealed that the glucose-insulin regulatory system shows multistability and antimono-
tonicity in its fractional order form. To show the effectiveness of fractional order analysis, all numerical investigations like sta-
bility of the equilibrium points, Lyapunov exponents, and bifurcation plots are derived. Various biological disorders caused by an 
unregulated glucose-insulin system are studied in detail. This may help better understand the regulatory system. 
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1  Introduction 
 

Diabetes is a common disorder, in which the 
blood sugar (glucose) level is abnormally high and the 
body cannot produce enough insulin to use it (Kumar 
and Sreedevi, 2017). Many mathematical models 
have been proposed to demonstrate the interaction 
between insulin and glucose and the dynamics of the 
diabetes disease in the body (Ackerman et al., 1964; 
Bajaj et al., 1987; Liszka-Hackzell, 1999; Holt, 2003; 

Chuedoung et al., 2009). The first attempt to pro-
posing this model goes back to the 1960s when re-
searchers suggested a two-dimensional (2D) differ-
ential equation (Ackerman et al., 1964). Considering 
the effect of β-cells (Bajaj et al., 1987), this model has 
been improved to nonlinear three-dimensional (3D) 
equations with different properties which can 
demonstrate the complex behavior of the body. A new 
model considers a predator-prey based model, which 
has shown chaotic behavior (Shabestari et al., 2018). 
As the arrhythmia in the glucose-insulin regulatory 
system can cause different types of disorders (type-1 
diabetes, type-2 diabetes, hypoglycemia, and hyper-
insulinemia), in this study, we propose a model con-
sidering different parameters, leading to different 
types of these diseases. 

Frontiers of Information Technology & Electronic Engineering 

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com 

ISSN 2095-9184 (print); ISSN 2095-9230 (online) 

E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 
* Project supported by the Institute of Research and Development, 
Defence University, Ethiopia (No. DU/IRD/002) 

 ORCID: Karthikeyan RAJAGOPAL, http://orcid.org/0000-0003- 
2993-7182 
© Zhejiang University and Springer-Verlag GmbH Germany, part of 
Springer Nature 2019 



Rajagopal et al. / Front Inform Technol Electron Eng   2020 21(7):1108-1118 1109

Proposing mathematical models for biological 
phenomena can help scientists better understand and 
even control diseases. Many biological systems are in 
the category of nonlinear dynamical systems (Bagh-
dadi et al., 2015; Hadaeghi et al., 2016; Aram et al., 
2017; Bao H et al., 2018; Ginoux et al., 2019). Chaos, 
different types of bifurcations (such as the period 
doubling route to chaos), multistability, and anti-
monotonicity are several properties which have been 
observed in biological systems (Schiff et al., 1994; 
Preissl et al., 1996; Korn and Faure, 2003), also in 
diabetes (Ginoux et al., 2018). Nonlinear analyses 
(like embedding space, correlation dimension, Lya-
punov exponents, singular value decomposition, and 
phase portraits) claim chaotic behavior in experi-
mental glucose and insulin time-series (Hansen, 1923; 
Lang et al., 1979; Pfeiffer et al., 1993; Kroll, 1999). 
Also, 48-h immunoreactive insulin measurements 
from ambulatory-fed subjects indicated chaotic be-
havior in plasma insulin and glucose patterns (Molnar 
et al., 1972). Regarding research in which chaotic 
systems with complex behavior have been analyzed 
and controlled (Pham et al., 2012; Buscarino et al., 
2018), analyzing biological systems becomes more 
possible. 

Fractional order systems are one of the important 
groups of nonlinear systems. They have been widely 
used in real-world applications like field-programmable 
gate array (FPGA) implementation (Tolba et al., 2017) 
and circuit realization (Tsirimokou et al., 2018). 
Fractional order systems have different complex 
properties (Lakshmikantham and Vatsala, 2008; 
Petráš, 2011). These properties have enabled these 
systems to be used in modeling of biological phe-
nomena which have shown some complex dynamics 
in experimental data. For numerical analysis of the 
fractional order nonlinear system, there are three main 
approaches, namely the frequency-domain method 
(Charef, 1992), Adomian decomposition method 
(ADM) (Adomian, 1990), and Adams-Bashforth- 
Moulton (ABM) algorithm (Diethelm, 2010). As 
discussed in Tavazoei and Haeri (2007), the frequency- 
domain method is not always reliable in detecting 
chaotic behavior in nonlinear systems. The ABM 
method is considered to be effective when highly 
sensitive systems are considered. 

To analyze the proposed biological models 
which are in the group of complex nonlinear dynamical 

systems, one should consider nonlinear methods like 
stability of equilibria, Lyapunov exponents, bifurca-
tion diagrams, and the basin of attraction of the sys-
tem (Hilborn, 2000). As for dynamical diseases, a 
wide range of diseases are in this nonlinear category. 
Changes in physiological control parameters cause 
abnormal dynamics (Bao BC et al., 2018). Thus, to 
model the dynamical changes in pathophysiological 
situations, one can change the parameters of the con-
sidered model outside the predefined values. The 
bifurcation diagram and basin of attraction are two 
methods that can show the dynamics of the model in a 
wide range of controlling parameters and initial con-
ditions, respectively (Hilborn, 2000). Hence, we use 
them to evaluate the behavior of the proposed system 
inside and outside the physiological region.  

 
 
2  Glucose-insulin regulatory system 
 

A 2D linear differential equation was proposed 
in Ackerman et al. (1964) to represent the data ob-
tained from the glucose-tolerance test. The proposed 
mathematical model is as follows: 

 
1 2 1

3 4 2

,
,

x a y a x c

y a y a x c I

  
     




                 (1) 

 
where x and y are the insulin and glucose concentra-
tions respectively and I indicates the rate of increase 
in blood glucose. 

Later, it was discovered that β-cells have an es-
sential role in regulating glucose and insulin concen-
trations (Bajaj et al., 1987). Note that this was not 
considered in Ackerman et al. (1964). In Bajaj et al. 
(1987), a third-order differential equation considering 
the effect of β-cells was proposed: 
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where z represents the population density of β-cells, N 
is a constant, and the other parameters are defined in 
Table 1. 
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As can be seen, the glucose-insulin relationship 
is like a predator-prey model, and hence a new model 
using the Lotka-Volterra model (Elsadany et al., 2012) 
was developed in Shabestari et al. (2018). In the 
proposed model, it was assumed that the derivatives 
of the variables are cubic functions of the state vari-
ables. The proposed new model (Shabestari et al., 
2018) is as follows: 
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      (3) 

 
where parameters a1, a2, a8, and a11 represent the 
insulin reduction in the absence of glucose, the rate of 
propagation of insulin in the presence of glucose, the 
insulin effect on glucose, and the growth of glucose 
when insulin is absent, respectively. Note that all 
these parameters are positive. Parameters a3 and a4 
are the increase in the rate of insulin with increase in 
glucose; a5–a7 are the insulin levels determined by 
β-cells; a9 and a10 show the insulin effect of glucose 
level reduction; a12–a14 show the effect of insulin 
secreted by β-cells on the glucose level result; a15–a17 
show the rate of β-cells with increase in glucose; a18 

and a19 are the decrease in β-cells due to their current 
level.  

Fig. 1 shows the 2D phase portraits of system (3), 
where the values of parameters are given in Table 2. 
The initial conditions are taken as (0.53, 1.31, 1.03). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Fractional order glucose-insulin regulatory 
system (FOGIRS) 

 
To model biological systems that are memory- 

dependent, one can use delayed differential and frac-
tional order systems. In this case, fractional order 

Table 1  Definitions of parameters in Eq. (2) 

Parameter Definition 
R1 Rate of increase in insulin concentration due 

to blood glucose increase 
R2 Rate of insulin reduction 
R3 Rate of loss of β-cells 
R4 Decrease in rate of glucose in response to 

insulin generation  
R5 Rate of increase in dividing β-cells due to 

interaction between blood glucose and 
β-cells 

R6 Rate of increase in β-cells due to dividing 
and non-dividing β-cells 

R7 Rate of decrease in β-cells due to its current 
level 

c1 Constant rate of increase in x 
c2 Constant rate of increase in y 
T Total number of dividing and non-dividing 

cells 

Table 2  Values of parameters used in system (3) 

Parameter Value Parameter Value Parameter Value
a1 2.04 a8 0.22 a15 0.30
a2 0.10 a9 −3.84 a16 −1.35
a3 1.09 a10 −1.20 a17 0.50
a4 −1.08 a11 0.30 a18 −0.42
a5 0.03 a12 1.37 a19 −0.15
a6 −0.06 a13 −0.30 a20 −0.19
a7 2.01 a14 0.22 a21 −0.56

 

y
z

Fig. 1  Two-dimensional phase portraits of system (3) in 
the x-y plane (a) and x-z plane (b) 
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models give long-time memory and an extra degree of 
freedom to the system (Rihan et al., 2016). Also, 
analyzing a system in fractional order is closely re-
lated to fractals (Rocco and West, 1999), which are 
abundant in biological systems. Note that in a more 
realistic predator-prey model memory effect should 
be considered; e.g., the predator growth rate at present 
depends on past quantities of prey, which can be eas-
ily accessible if we use fractional order analysis. As 
this predator-prey system with integer order (Eq. (3)) 
has been used, we become interested in analyzing the 
system using fractional derivatives. Apart from this, 
much recent research has shown that many integer 
order chaotic systems have complex features like 
multistability, megastability, and bispectrum when 
they are investigated as fractional order systems 
(Rajagopal et al., 2017a, 2017b, 2019). The fractional 
order form of the glucose-insulin model (Eq. (3)) is 
derived using the predictor-corrector method (Dieth-
elm, 1997; Diethelm and Ford, 2002). In this section 
the predict-evaluate-correct-evaluate (PECE) method 
of ABM studied in Diethelm and Freed (1999) is used. 
Its convergence and accuracy have been discussed in 
Diethelm et al. (2004).  

Consider the fractional order form of the  
FOGIRS as 
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To derive the general model of the PECE method 

(Diethelm, 1997; Diethelm and Ford, 2002), consider 
a fractional order dynamical system with order q as 

 
( , ),  qD x f t x                          (5) 

 
where 0≤t≤T and 0(0)k kx x  for k[0, n−1].  

Eq. (5) is similar to the Volterra integral equa-
tion given by 
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The discrete form of Eq. (6) can be defined as 
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h=T/N, and tn=nh with h[0, N]. 

The error estimate is e=max|x(ti)−xh(ti)|=0(hp), 
where i=0, 1, …, N and p=min(2, 1+q). 

Using the above definitions (Eqs. (7) and (8)), 
the discrete form of FOGIRS can be defined as Eq. (9) 
with parameters given in Eqs. (10) and (11) (see the 
next page, l=1, 2, 3 and i=x, y, z). 

Fig. 2 shows the 2D phase portraits of the dis-
cretized form of FOGIRS when qi=0.995 and the 
other parameters are as given in Table 2. Also, the 
initial conditions are considered as (0.53, 1.31, 1.03). 

 
 

4  Dynamical analysis of FOGIRS 
 

In this section, we discuss the dynamical prop-
erties of FOGIRS, including stability of equilibrium 
points and Lyapunov exponents. 

4.1  Stability of equilibrium points 

The dynamical behavior of FOGIRS can be an-
alyzed with the help of eigenvalues. Similar to the 
discussion in Shabestari et al. (2018), we are inter-
ested in the analysis of the positive equilibrium points. 
The FOGIRS shows two positive equilibrium points, 
E1(0.805, 1.815, 1.319) and E2(0.624, 0.935, 0.877).  
Corollary 1    For the FOGIRS to exhibit chaotic 
dynamics like its integer order form discussed, the 
necessary condition is  
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Fig. 2  Two-dimensional phase portraits of the discretized FOGIRS in the x-y plane (a) and x-z plane (b) 
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for any λ of the equilibrium points.  
The eigenvalues of Eq. (3) at equilibrium E1 are 

λ1,2=−1.7564±7.5090i and λ3=1.3802; to satisfy con-
dition (12), we have qi>0.86. Similarly, the eigen-
values of Eq. (3) at equilibrium E2 are λ1,2=0.5262± 
2.3472i and λ3=−2.8372, and we should have qi>0.85 
for i=x, y, z to satisfy condition (12). 
Corollary 2    For the chaotic attractor to exist in 
FOGIRS as in the integer order model (Shabestari et 
al., 2018), the equilibrium points corresponding to the 
oscillations should exhibit instability. Hence, the 
necessary condition for unstable equilibrium exist-
ence is  

 π min arg( ) 0,
2 i

iM
                 (13) 

 

where λi are the roots of det diag , ,yx MqMq   

  0Jz

i

Mq
E    for each Ei (i=1, 2).  

From Corollaries 1 and 2, we can conclude that 
FOGIRS exhibits chaotic dynamics when qi>0.86 for 
E1 and qi>0.85 for E2, where i=x, y, z.  

4.2  Lyapunov exponents 

The Lyapunov exponents (LEs) of FOGIRS are 
derived using the Wolfs algorithm (Wolf et al., 1985) 
and the fractional order predictor-corrector (Diethelm 
and Freed, 1999) solver fde12 (Garrappa, 2011) in-
stead of the ordinary differential equation (ODE) 
solvers (Danca, 2015). The Lyapunov exponents of 
FOGIRS when the parameters are set to the values in 
Table 1 and commensurate fractional order qi>0.85, 
are numerically found as L1=0.166, L2=0, and 
L3=−1.98. Since there is a positive Lyapunov expo-
nent, FOGIRS exhibits chaotic oscillations. The 
Kaplan-Yorke dimension of FOGIRS is also calcu-
lated, i.e., DKY=2.09. 
 
 
5  Numerical analysis of FOGIRS in different 
glucose-insulin arrhythmias 
 

In this section, we discuss different types of 
glucose and insulin related disorders, by investigating 

the respective bifurcation diagrams. Considering the 
fractional order form of the glucose-insulin model can 
reveal important features like multistability and co-
existing attractors. In this study, we consider the 
FOGIRS model and derive the bifurcation plots. 

5.1  Type-2 diabetes 

The type-2 diabetes is a disorder due to the rise 
in the glucose level in the blood. There may be two 
reasons for the glucose level rise. The first is when the 
human body becomes resistant to insulin and the 
second is when the human body cannot track the 
glucose level. The parameter a8 in Eq. (9) represents 
the effect of secreted insulin on the glucose level. 
Studying the bifurcation of a8 is important for under-
standing the effect of insulin on the glucose level and 
the resulting chaotic dynamics. We consider the 
commensurate fractional order of the system when 
qi=0.995 and the other parameters are fixed to the 
values in Table 2. The initial transitions are removed 
and the local maxima of the state variable x denoting 
the population density of insulin are plotted against a8 
(varying from 0 to 0.9) (Fig. 3). As can be seen from 
Fig. 3, the system takes a period doubling route to 
chaos. The sensitive nature of FOGIRS can be ob-
served from the chaotic dynamics shown by the bi-
furcation plot. Clinically, the key elements playing 
the significant role in such sensitive behavior are the 
shape and volume of the cells. These are related to 
electrical activities and play a main role in insulin 
secretion. 

 
 
 
 
 
 
 
 
 
 
 
 

5.2  Hypoglycemia 

Excessive secretion of insulin in blood is known 
as hypoglycemia. This is directly related to parameter 
a1, and the other parameters are fixed to the values in 

Fig. 3  Bifurcation diagram of FOGIRS when a8 varies 
from 0 to 0.9, qi=0.995, and the other parameters are 
fixed to the values in Table 2 
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Table 2 in the FOGIRS model. Depending on the 
increase or decrease in parameter a1, FOGIRS be-
haves chaotically. Parameter a1 varies from 1.5 to 2.6 
and the local maxima of z are plotted. It is interesting 
to note that the bifurcation plot shown in Fig. 4 ex-
hibits the property of antimonotonicity (referring to 
period doubling and inverse period doubling occur-
rence) for a1[1.70, 1.74]. To check the existence of 
multistability, we consider forward bifurcation where 
the parameter increases with reinitializing the initial 
condition to the end value of the previous trajectory 
and backward bifurcation where the parameter de-
creases. In Fig. 5a, we show forward bifurcation in 
blue and backward bifurcation in red. Fig. 5d shows 
the specified region of Fig. 5a which contains multi-
stability. The corresponding Lyapunov exponents for 
FOGIRS are shown in Fig. 5b (forward) and Fig. 5c 
(backward). The coexisting attractors of FOGIRS for 
qi=0.995 are given in Fig. 6. Note that such properties  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

do not exist in the integer order form of the model, 
which was discussed in Shabestari et al. (2018). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3  Hyperinsulinemia 

The permanent over-stimulation of insulin from 
β-cells of pancreas due to the high glucose level is 
known as hyperinsulinemia. Parameter a7 in the FO-
GIRS model refers to the amplification rate of secre-
tion of insulin by β-cells. The bifurcation of FOGIRS 
with regard to parameter a7 is shown in Fig. 7. In-
creasing a7 from 1.5 will make FOGIRS enter chaotic 
dynamics with period doubling. Such undesirable 
behavior of the system confirms the unstable nature of 
insulin secretion by β-cells. 

 
 
 
 
 
 
 
 
 
 
 
 

5.4  Type-1 diabetes 

The decrease in population density of β-cells in 
the pancreas due to autoimmune destruction is termed 
type-1 diabetes. In the proposed model, parameter a15 

Fig. 7  Bifurcation diagram of FOGIRS with regard to 
parameter a7 

z m
ax

Fig. 6  Coexisting attractors for different initial condi-
tions ((0, 1.5, 1), (0.5, 1, 1), (1.4, −1.5, 1.31)) when com-
mensurate fractional order qi=0.995 and other parame-
ters are as mentioned in Table 2 
References to color refer to the online version of this figure
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Fig. 4  Bifurcation diagram of FOGIRS when a1 varies 
from 1.5 to 2.6 and the other parameters are fixed to the 
values in Table 2 

Fig. 5  Bifurcation diagram and Lyapunov exponents of 
FOGIRS as parameter a1 changes: (a) forward and 
backward bifurcation diagrams of FOGIRS; (b) LEs of 
FOGIRS changing the parameter in forward continua-
tion; (c) LEs of FOGIRS changing the parameter in 
backward continuation; (d) specified portion with 
multistability 
References to color refer to the online version of this figure



Rajagopal et al. / Front Inform Technol Electron Eng   2020 21(7):1108-1118 1115

corresponds to the rate of increase in the population 
density of β-cells. If the population density of β-cells 
decreases, the glucose level cannot be stabilized be-
cause of the insufficient secretion of insulin. So, we 
derive the bifurcation of FOGIRS with regard to a15 
(Fig. 8). We can again notice the period doubling and 
period halving bifurcations in Fig. 8, which confirm 
the property of antimonotonicity. 

 
 

 
 
 
 
 
 
 
 
 

5.5  Bifurcation with fractional order 

To show the impact of fractional order on FO-
GIRS, we consider the commensurate fractional order 
as the bifurcation parameter, and the local maxima of 
y are plotted in Fig. 9. Note that the phenomenon of 
antimonotonicity in the bifurcation plot has not been 
reported in any earlier fractional order literature. It 
can also be seen that the system shows more complex 
behavior in the fractional order range 0.994≤qi≤0.997 
for i{x, y, z}. This confirms our claim that fractional 
order analysis can help us better understand and 
model more complex behaviors than integer order 
analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 shows the 2D bifurcation diagram of the 

FOGIRS system when qi=0.995. The two parameters 
considered for the analysis are a3 which represents the 

increase in the rate of insulin with increase in glucose 
and a8 which represents the insulin effect on glucose.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.6  Basin of attraction 

A chaotic system whose basin of attraction has 
an equilibrium point is called a self-excited attractor 
and one whose basin does not have any equilibrium 
point is called a hidden attractor (Leonov et al., 2011, 
2012; Dudkowski et al., 2016). There have been 
studies showing that such hidden oscillations are seen 
in many real-life physical systems (Leonov et al., 
2015a, 2015b) and considering the control of the 
complex attractor in such systems (Sharma et al., 
2015a, 2015b). We derive the basin of attraction of 
FOGIRS for two different cases. The first is when 
a1=2.04, y=1.31, and qi=0.995. Here the system 
shows a self-excited attractor. The cross-section of 
basin of attraction is shown in Fig. 11a with the two 
fixed points shown in red dots. The blue color shows 
the initial conditions that lead to unbounded oscilla-
tions, and the yellow color shows the initial condi-
tions that lead to a strange attractor. Fig. 11b shows 
the second case when a1=2.04, z=1.03, and qi=0.996, 
for which FOGIRS has no defined equilibrium points 
and hence the attractor is hidden. 
 
 
6  Conclusions 
 

The interaction between glucose-insulin and 
β-cells plays an important role in glucose-insulin  

Fig. 8  Bifurcation diagram of FOGIRS with regard to 
parameter a15 

Fig. 9  Bifurcation diagram of FOGIRS for different 
values of the fractional order of the system 

q
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Fig. 10  Two-dimensional bifurcation diagram of FO-
GIRS for parameters a3 and a8  
Regions “U,” “C,” “L,” and “S” show the parameter values 
leading to unbounded response, strange attractor, limit cycle, 
and stable converging orbit, respectively 
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regulation. Recently, a new glucose-insulin regulation 
model was derived using a predator-prey system. In 
this study a fractional order model of that new system 
has been derived. The PECE method of discretization 
has been adopted to numerically analyze the proposed 
fractional order model. Various dynamical properties 
have been derived and presented. Also, the condition 
for the existence of chaotic oscillations in the frac-
tional order model has been derived and presented. 
The proposed fractional order model exhibited the 
properties of coexisting attractors and antimono-
tonicity which have not been reported in the literature. 
For future research, controlling this biological  
fractional order system with a fractional order  
proportional-integral-derivative (PID) controller 
(Zhao et al., 2005; Caponetto et al., 2010) and sliding 
mode control (Chen et al., 2012; Yin et al., 2012) can 
be considered. 
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