
Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

60

An execution control method for the Aerostack
aerial robotics framework*

Martin MOLINA†‡1, Alberto CAMPORREDONDO1, Hriday BAVLE2,

Alejandro RODRIGUEZ-RAMOS2, Pascual CAMPOY2
1Department of Artificial Intelligence, Universidad Politécnica de Madrid, Madrid 28040, Spain
2Centre for Automation and Robotics, Universidad Politécnica de Madrid, Madrid 28040, Spain

†E-mail: martin.molina@upm.es
Received Sept. 11, 2018; Revision accepted Nov. 27, 2018; Crosschecked Jan. 8, 2019

Abstract: Execution control is a critical task of robot architectures which has a deep impact on the quality of the final system. In
this study, we describe a general method for execution control, which is a part of the Aerostack software framework for aerial
robotics, and present technical challenges for execution control and design decisions to develop the method. The proposed method
has an original design combining a distributed approach for execution control of behaviors (such as situation checking and per-
formance monitoring) and centralizes coordination to ensure consistency of the concurrent execution. We conduct experiments to
evaluate the method. The experimental results show that the method is general and usable with acceptable development efforts to
efficiently work on different types of aerial missions. The method is supported by standards based on a robot operating system
(ROS) contributing to its general use, and an open-source project is integrated in the Aerostack framework. Therefore, its technical
details are fully accessible to developers and freely available to be used in the development of new aerial robotic systems.

Key words: Aerial robotics; Control architecture; Behavior-based control; Executive system
https://doi.org/10.1631/FITEE.1800552 CLC number: TP242.6

1 Introduction

Execution control is a common task in robot
control architectures to communicate two description
levels: a level where a requester, such as a human
operator or an automatic decision system, tells a robot
what to do using symbolic commands, and a level
where a number of computational processes concur-
rently run to generate the required functionalities.
Execution control verifies that the requested com-
mand is correct before execution, ensures a consistent

and efficient execution of concurrent processes dur-
ing execution, and communicates results in terms of
success or failure after execution.

Practical experience in the development of robot
architectures shows that the methods used for execu-
tion control are critical and have a deep impact on the
quality of the final system, such as the safety and
complexity of human-robot interaction. Kortenkamp
et al. (2008) pointed out that designing robotic ar-
chitectures is much more of an art than a science.
Therefore, there is a need for methods that reduce the
required effort to build new system architectures.

We present a general method for execution con-
trol to develop an existing open-source software
framework called “Aerostack” (Sanchez-Lopez et al.,
2017). The method is designed for the framework,
considering the requirements to facilitate the devel-
opment of new systems.

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡Corresponding author
* Project supported by the European Union’s Horizon 2020 Research
and Innovation Program under the Project ROSIN (No. 732287)

 ORCID: Martin MOLINA, http://orcid.org/0000-0001-7145-
1974
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2019

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 61

2 Related work

A three-layer architecture is a popular control

architecture for autonomous robots (Bonasso et al.
1997), which has different versions, such as Atlantis
(Gat, 1992) and LAAS (Alami et al., 1998). This
architecture uses three layers (Kortenkamp et al.,
2008) as follows:

1. Behavioral control layer or functional layer is
the lowest level and consists of behaviors that carry
out actions of a robot. Each behavior connects with
sensors perceiving environments to actuators, thus
creating a sensor-action loop.

2. Executive layer is an intermediate layer that
activates and deactivates behaviors to achieve high-
level tasks, thus avoiding conflicts among behaviors
using the same actuators.

3. Planning layer or decision layer is the highest
level and is responsible for determining the long-
range activities of a robot based on mission goals.

The executive layer includes a task decomposi-
tion module with a specialized language to help de-
veloper specify how to execute a task considering
different situations in the environment of both regular
situations and contingencies. The languages used are
reactive action packages (RAPs) (Firby, 1989), exe-
cution support language (ESL) (Gat, 1996), and plan
execution interchange language (PLEXIL) (Verma et
al., 2005). The executive layer also includes an addi-
tional component that serves as a bridge with the
behavioral control layer. The additional component
can be called “execution control system” in the LAAS
architecture (Alami et al., 1998), which includes an
execution control system called “Kheops” using
production rules. Request and resource checker (R2C)
(Ingrand and Py, 2002) is another execution control
system in the LAAS architecture which is oriented to
fault protection and tries to solve some limitations of
Kheops. Rutten (2001) proposed an execution control
system focusing on model checking.

We present a new method for execution control,
which is a part of the Aerostack aerial robotics soft-
ware framework. Compared with other work, the new
method is designed to satisfy special requirements of
Aerostack (see details in Section 4) which aim at
facilitating the construction of real robotic systems
and emphasizing utility aspects in robot architectures,
such as timeliness in the development and perfor-
mance of effectiveness (Arkin, 1998).

3 Aerostack software framework

Modern autonomous aerial systems integrate

multiple computational methods, such as computer
vision algorithms, motion controllers, self-
localization and mapping methods, automated plan-
ning, and coordination algorithms. Integration of such
heterogeneous methods in a complex operational
system is a technical challenge that requires efficient
and robust architectural solutions.

We have developed the Aerostack software
framework (www.aerostack.org) in our group
Computer Vision and Aerial Robotics (CVAR) at
Universidad Politécnica de Madrid (UPM)
(Sanchez-Lopez et al., 2017). This framework based
on a robot operating system (ROS) provides a
library of software components specialized in aerial
robotics and a general combination mechanism using
an architectural pattern that guides the integration
process.

The framework in our group contributes to a
great productivity in the construction of new systems
and experiments with new algorithms. For example,
Aerostack has been used with great success by our
group in the International Aerial Robotics Competi-
tions, such as IMAV 2013, 2016, and 2017 and IARC
2014. Aerostack has also been used by CVAR
in complex robotic systems related to natural user
interfaces (Suárez Fernández et al., 2016), surface
inspection (Molina et al., 2018), coordinated mul-
ti-robot systems (Sampedro et al. 2016), landing on
moving platforms (Rodriguez-Ramos et al., 2017),
search-and-rescue missions (Sampedro et al. 2018),
and altitude estimation in complex dynamic envi-
ronments (Bavle et al., 2018).

Fig. 1 shows the main components of the Aero-
stack architecture (version 3.0), which shares the
behavioral control layer (or behavioral layer in short)
and executive layer of the three-layer architecture. In
addition, the architecture uses a communication layer
to communicate interfaces.

The behavioral layer in Aerostack includes
components providing basic functionalities of an
aerial robotic system, which are as follows:

1. Feature extractors that read simple states of
sensors and implement complex vision and pattern
recognition algorithms; for example, a feature ex-
tractor is a recognizer of visual markers (e.g., ArUco
markers or QR codes).

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

62

2. Motion controllers that implement combina-
tions of proportional-integral-derivative (PID) con-
trollers. For example, motion controllers can be used
for speed control and height control.

3. SLAM processes that perform self-
localization and mapping (SLAM) using, for example,
extended Kalman filter (EKF) techniques.

4. Motion planners that generate obstacle-free
paths to reach destination points.

5. Methods that communicate with other agents
for robot collaboration or human collaboration.

Aerostack provides a software library of these
components. A developer can configure specific
components from the library and combine them to
build a particular robotic system architecture. In this
architecture, the basic executable component is a
process, which is defined according to a specific
function (e.g., a path planner, an obstacle recognizer,
or a speed controller). Each process in Aerostack is

implemented as an ROS node. Aerostack concur-
rently runs processes that communicate with each
other using message passing methods for inter-
process communication provided by an ROS: a
request-reply service (an ROS service) and a publish-
subscribe method filtering messages using a topic-
based approach (an ROS topic).

The executive layer in the Aerostack consists of
three systems: mission control system, execution
control system, and belief management system. The
mission control system receives an input as a mission
plan specified in certain formal language, such as
task-based mission specification language (TML) in
the Aerostack (Molina et al., 2017), but a standard
language (such as Python) or a graphical editor with
behavior trees can also be used. The mission control
system verifies the correctness of plan and interprets
it to sequentially generate execution requests, such as
activations and deactivations of robot behaviors.

 Robotic agent

Executive layer Behavioral layer Communication layer

Belief management Behavior functions

Belief
generation

Belief
updater

Feature
extraction

Feature
extractor

Sensor
reading

Sensor
interface

Self-
localization &

mapping

SLAM
process Motion

control

Motion
controller

Actuator
operation

Actuator
interface

Motion
planning

Planner
Messaging

Commu-
nicator

Social
channel

Channel
interface

Execution control

Behavior
execution

Execution
controller

Mission
control

Mission
plan

interpreter

Reactive
activator

Behavior
coordinator

Belief
manager

Interactive
system

Graphical
user

interface

Ground control station

Operator

Human
supervision

Human
collaboration

Robot
collaboration

Actuators

Sensors

Environment

Other robots

Fig. 1 Aerostack architecture (version 3.0)

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 63

The execution control system translates these
requests into orders to start or stop processes to re-
configure the set of concurrent behavioral layer pro-
cesses. The belief management system maintains a
consistent memory of relevant data about the world,
which is necessary for decisions related to mission
planning. In the next section, we will describe the
details of these two systems.

4 Requirements for execution control

The execution control system establishes a clean

separation among decisions about mission tasks and
realizes these tasks with concurrent processes. The
execution control system creates a logical interface in
Aerostack helping a developer specify mission plans
in a simpler way and verifies that the mission plan is
executed as expected.

By the specification of mission plans, the exe-
cution control system relieves the developer from
specifying excessive details about how to control the
execution of a task.

By the execution of mission plans, the execution
control system verifies that each task is consistent
with the environmental situation, thus preventing a
robot from performing wrong or dangerous behaviors.
The execution control system reports the presence of
unexpected events, which can be used by a decision
system to formulate a more robust plan or by a human
operator to supervise the correct execution of the
mission plans.

Fig. 2 shows the role of the execution control
system. In a general way, a requester is used to des-
ignate a subject who decides what to do next and asks
a robot to do it. A human operator could be a requester
or, in a multi-layered architecture of an autonomous
system, the requester can be an automatic system (e.g.,
the mission control system in Aerostack).

The execution control system analyzes the fea-
sibility of an execution request to accept or reject it
before it is executed, and responds to each request by
reconfiguring the set of running processes. In addition,
to help a requester make the next decision, the exe-
cution control system communicates results of the
execution by notifying the results in terms of success
or failure and relevant changes in the environment.

One of the important requirements of the

execution control system is to use an appropriate
representation for the requester to express what to do
and interpret execution results at an adequate level of
abstraction. This representation should be expressive
enough, but at the same time, it should abstract exe-
cution details which are not necessary to make deci-
sions about mission tasks to the requester.

There are two additional requirements derived
from Aerostack’s general goal of facilitating the de-
velopment of robotic systems:

1. Generalization. The solution must be appli-
cable in the construction of different aerial robotic
systems and missions.

2. Usability. The solution must be useful for a
developer in building the execution control system of
a specific robot architecture, with an acceptable effort
in the context of a development project.

Finally, there are two requirements related to the
integration in Aerostack:

1. Using standards. The solution must use pro-
gramming standards of the robotic systems that are
used by Aerostack (e.g., ROS middleware).

2. Accessibility. The solution should be freely
accessible as a part of an open-source framework.

5 Representation for the execution requester

In this section, we describe the representation
designed by a requester to operate with the execution
control system, concerning an adequate level of
abstraction.

Requester

Execution
requests

Execution
results

Execution control

Behavior
data

Process
reconfiguration

Robot

Environment

Sequentially decide
what actions must be
done in a mission
plan

Concurrently
execute processes
to carry out
behaviors

Fig. 2 Role of the execution control system

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

64

5.1 Representation of execution requests

The execution control system uses behaviors to
express what actions a robot must do. Behavior is a
natural notion which is familiar to general users; in
simple words, a behavior is anything a robot can do:
taking off, moving forward, landing, etc. It has been
traditionally used in robotics for building systems
(Brooks, 1986; Arkin, 1998) and as a basic concept in
specifying mission plans (Rothenstein, 2002; All-
geuer and Behnke, 2013). In robotic systems, a be-
havior integrates perception algorithms and actuation
controllers to generate a particular pattern perception-
actuation. This integration helps hide details remain-
ing encapsulated about perception-action. Therefore,
a behavior is useful to abstract implementation details
and express, in simple words, how the robot must
operate.

5.1.1 Behavior activation requests

The execution control system uses behavior ac-
tivations to formulate requests. Activation ai by re-
quester rj of behavior bk can be formally represented
as

ai=<rj, bk, {<p1, v1>, <p2, v2>, …, <pn, vn>}>

where {<p1, v1>, <p2, v2>, …, <pn, vn>} is a set of
parameter value pairs that configure the behavior
activation. For example, to activate the behaviors of
an aerial robot—taking off, rotating 45°, and going to
a point with coordinate (1.0, 2.5, 7.0)—the following
activations can be used (where R1 is the requester):

a1=<R1, TAKE_OFF, {}>
a2=<R1, ROTATE, {<angle, 45°>}>
a3=<R1, GO_TO_POINT,

{<coordinate, (1.0, 2.5, 7.0)>}>

In practice, for readability, this is actually writ-

ten in the following way (asked by the requester R1):

TAKE_OFF
ROTATE angle: 45°
GO_TO_POINT coordinate: (1.0, 2.5, 7.0)

A requester can ask an activation ai to initiate or

terminate. When an initiation of the activation is

requested, the execution control system confirms that
it has been accepted or, on the contrary, rejected be-
cause of certain reasons.

5.1.2 A library of behaviors

One of the practical utilities of a tool, such as
Aerostack, is to provide a powerful and versatile set
of behaviors for aerial robotics that can be used by a
requester as a part of its language for execution. A
library of behaviors was designed for Aerostack,
which considers quality principles for each behavior
(e.g., generality, stability, clarity, and conciseness). A
part of this library is fully implemented in Aerostack
and used in this study.

In the library, there are goal-based and recurrent
behaviors. Goal-based behaviors are defined to reach
a final state (attaining a goal). Examples of these
behaviors are flight maneuvers related to rotors, such
as simple flight maneuvers (TAKE_OFF, LAND,
KEEP_HOVERING, KEEP_MOVING, and RO-
TATE) and more complex flight maneuvers such as
moving avoiding obstacles (GO_TO_POINT) and
following objects (FOLLOW_OBJECT_IMAGE).
The category of goal-based behaviors may include
behaviors related to other effectors, such as light
(TURN_LIGHT), camera (TAKE_PHOTO and
TAKE_VIDEO), dropping mechanism (DROP_
ITEM), moving camera (MOVE_CAMERA), and
sound (SAY_SENTENCE).

Recurrent behaviors recurrently perform an ac-
tivity or maintain a desired state. Self-localization
behaviors belong to this category (SELF_
LOCALIZE_BY_LIDAR, SELF_LOCALI ZE_BY_
VISUAL_MARKERS, etc.). Other examples are
attention (PAY_ATTENTION_TO_VOICE_
COMMANDS, PAY_ATTENTION_TO_COLORS,
etc.), communications (SPEAK_UP, etc.), data stor-
age behaviors (BUILD_MAP and RECORD_
VIDEO), etc.

5.2 Representation of execution results

Activation of behaviors usually produces a
number of effects. One of the functions of the execu-
tion control system is to inform the requester about
these effects at an adequate level of abstraction. This
is done with two classes of information: the cause of
behavior termination and a memory of beliefs about
the world.

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 65

5.2.1 Cause of behavior termination

After the activation of a behavior, a message
may be generated by the execution control system to
inform a requester about the cause of its termination.
The possible values of this message are:

1. goal achieved: the behavior has achieved its
goal;

2. time out: the behavior has not achieved its
goal in the expected time;

3. wrong progress: the behavior has not pro-
gressed as expected;

4. interrupted: the behavior execution has been
cancelled.

This information is useful for a requester to
confirm that a behavior has operated as expected
(therefore, the mission can continue as planned) or, on
the contrary, the behavior has failed (therefore, the
next step must be reconsidered); for example, execu-
tion failures happen because the requester may have
decided to activate a behavior based on assumptions
about the environment, which are not satisfied when
the behavior is executed (which is usual with au-
tonomous robots operating in the uncertain and dy-
namic environment).

5.2.2 Memory of beliefs about the world

Another type of information which is useful to a
requester is how the world may have changed because
of the operation of behaviors. Therefore, the execu-
tion control system may operate together with a
memory of beliefs that abstract relevant data about the
world. This memory acts as a filter that presents the
requester, in a uniform way, the necessary infor-
mation for decisions related to mission plans.

The memory uses a particular representation for
beliefs. A belief is a proposition about the world that
the robot believes is true (the “world” here refers to
both the external world and the internal state of a
robot).

Beliefs are represented using a logic-based ap-
proach with predicates. Examples of the predicates
with a general format of predicate(object, value) and
the simple form property(object) are shown in Table 1.
The representation follows an object-oriented ap-
proach. Objects are represented with numerical iden-
tifiers as instances of a class; for example, object(32,
obstacle) represents that object 32 is an obstacle.
Additional predicates are used to represent attributes

of objects; for example, color(32, blue) represents
that object 32 is blue.

Attribute values defined for an object are
assumed to be mutually exclusive; for example, the
belief charge(92, empty) is incompatible with the
belief charge(92, full), because the empty and full
values are mutually exclusive (the identifier of 92
represents the battery). If a particular predicate has
values that are not mutually exclusive, this must be
treated as an exception. The predicate visible(x) is
used to indicate that an object is currently observed.

This representation can be used by a robot to
describe the requester how the world changes, and the
requester can use this representation to ask the exe-
cution control system to memorize details about a
mission execution which may be useful for future
decisions. For example, a requester can ask the exe-
cution control system to memorize the coordinates of
the current place with the name point A and with a set
of beliefs as

object(57, place)
name(57, point_A)
position(57, (3.0, 4.5, 0.0))

6 Execution control method

In this section, we describe the distributed ap-
proach of the execution control system designed for
Aerostack and the architecture of processes that im-
plement the execution control system.

6.1 Distributed approach

Fig. 3 shows the distributed scheme used by the

Table 1 Examples of predicates representing beliefs

Predicate Description

Object(x, y) Object x is an instance of class y
Position(x, y) Object x is at the position y
Name(x, y) Name of object x is y
Flight_state(x, y) Aerial robot x is in flight state y
Code(x, y) Numerical code of x is y
Color(x, y) Color of x is y
Charge(x, y) Charge of x is y
Carry(x, y) Agent x carries object y
Visible(x) Object x can be observed

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

66

method of the execution control system. A network of
execution processes, i.e., the processes of a behav-
ioral layer of the Aerostack architecture (such as
processes for the perception and motion control sys-
tem), which can run or stop in a particular moment, is
shown at the bottom of Fig. 3.

The method of the execution control system re-
sponds to each request by reconfiguring the set of
execution processes that are running. The consistency
is ensured by checking conditions which are distrib-
uted in different processes. Fig. 3 shows the condi-
tions used and how they are distributed in processes.

6.1.1 Behavior-based distribution

For each behavior, there is a behavior execution
controller, which is a separate process (in some cases,
for example, when there is only one execution process
for a behavior, it may be more efficient to have a
single process that integrates the behavior execution
controller with the execution process) that starts or
stops the execution processes of behavior and per-
forms local consistency checking using two types of
information: situation conditions and performance
conditions.

The verification of situation conditions is done
before a behavior is executed and is important due to
the property of situated behaviors, meaning that each
behavior works in only specific situations; e.g., to
execute the behavior LAND, the robot must be flying.
In Aerostack, instead of using a model-based mecha-
nism for this verification (e.g., with finite state ma-
chines or Petri nets), situation conditions are directly
verified using data about the state of the environment;
e.g., data derived from sensors is present in the belief
memory or in the content of messages of execution
processes.

Situation conditions are distributed in different
execution controllers. Conditions of each controller
must be formulated with enough precision to cor-
rectly classify the required situation for the behaviors.
The precision depends on the representation used for
conditions, and on the capacity of a robot to perceive
the environment from sensors.

Performance conditions express the expected
performance of a particular behavior, e.g., the max-
imum expected time to achieve a goal. The verifica-
tion of these conditions is important for monitoring
the execution and detecting success or failure. The

1 2 3

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Execution request

Behavior
coordinator

Compatibility
conditions

Start/stop

Behavior
execution controller

Behavior
execution controller

Behavior
execution controller

Situation conditions

Performance conditions

Situation conditions

Performance conditions

Situation conditions

Performance conditions

Conrol

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Execution
process

Fig. 3 Distributed scheme for execution control

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 67

verification is periodically done using data about the
environmental states. This monitoring provides cog-
nizant failures (Gat, 1996, 1998), i.e., the ability of a
system to detect failures, which is important for a
robot to operate in an unpredictable environment.

Performance conditions are written for each
behavior and should be able to identify as many
success or failure situations as necessary for correct
decision making during the mission plan execution.

The modularity provided by execution control-
lers, which separate and encapsulate the execution
details of each behavior, helps add new behaviors
with flexibility, without affecting other behaviors and
the overall execution control mechanism.

6.1.2 Central coordination

The method of execution control system in-
cludes a central process called “behavior coordinator”
that ensures the global consistency of a set of active
behaviors. The coordinator performs a kind of con-
figuration task (Mittal and Frayman, 1989) and re-
sponds to the requests of behavior activation or inhi-
bition by configuring the set of active behaviors, thus
ensuring that a set of compatibility conditions are
satisfied.

The compatibility conditions are explicitly
written for a particular control architecture that uses a
set of behaviors. The compatibility conditions are
expressed at the level of behaviors, but they are based
on properties at the level of execution processes.
There is a type of condition based on Definition 1.
Definition 1 (Incompatible behaviors) Two behav-
iors b1 and b2 are incompatible, noted as incompati-
ble(b1, b2), if they cannot be executed at the same time,
because there is at least an execution process p used
by behaviors b1 and b2 but with different input data, or
they produce contradictory effects in the environment;
i.e., effects of behaviors b1 and b2 in the environment
are mutually opposed.

A condition related to this type of compatibility
is expressed by a set of behaviors B={b1, b2, ..., bn}
that are mutually exclusive; i.e., every pair of be-
haviors in B, bi and bj, satisfies the relation incom-
patible(bi, bj). For example, there may be a condition
expressing that a set of behaviors corresponding to
flight maneuvers (TAKE_OFF, LAND, KEEP_
HOVERING, etc.) are mutually exclusive. The reason
for this constraint is that these behaviors use common
processes for the motion control system with different
input data.

There is another type of condition expressing
precedence between behaviors b1 and b2. This condi-
tion is based on Definition 2.
Definition 2 (Precedence relation) There is a
precedence relation between behaviors b1 and b2,
noted as preceding(b1, b2), if behavior b1 must be
active before b2, because the execution processes of
b1 generate output values required as inputs for the
execution processes of b2.

The coordinator includes a precedence condition
for every pair of behaviors b1 and b2, which satisfies
preceding(b1, b2). The precedence conditions set must
not present loops in the paths established by pairs of
behaviors.

Note that these conditions are specific to the set
of behaviors used in a particular robotic system, and
that they are manually written by a developer. In
principle, it would be desirable to automatically gen-
erate conditions from the structure of execution pro-
cesses, which theoretically seems possible except for
behaviors producing contradictory effects in the en-
vironment. However, in the current implementation,
we find that this would add more complexity to the
development of new behaviors, requiring more efforts
and being more error-prone compared with manually
writing conditions. In fact, because conditions are
defined at the level of behaviors instead of the exe-
cution processes, the representation is simple and
therefore easy to maintain.

The coordinator follows a priority scheme to
activate behaviors based on Definition 3.
Definition 3 (Activation priority) Activation a1 has
a higher priority than activation a2, noted as priori-
ty(a1, a2), if the requester of a1 has a higher priority
than the requester of a2.

In our current implementation, there are two
requesters: an emergency requester requesting the
activation when an emergency is detected following a
reactive approach and a mission plan requester re-
questing activations step by step, to carry out a mis-
sion following a deliberative approach. There are
default requests that correspond to default behaviors.
Default behaviors are behaviors that keep operating
the basic functions of a robot.

For example, an aerial robot should, by default,
activate a behavior to hover in the air when it is flying,
when no other behaviors related to flight maneuvers
are active. The following priority order is assumed in
our current implementation: emergency requester >
mission plan requester > default.

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

68

6.2 Detailed architecture

Fig. 4 shows the detailed architecture of the
execution control system corresponding to the actual
software implementation. However, for clarity, some
services and topics have been presented in the study
with different names; e.g., the service request_
behavior_activation is implemented with the name of
activate_behavior.

There are five components in Fig. 4: three spe-
cific processes (e.g., behavior coordinator, belief
manager, and process manager) and two classes of
processes (behavior execution controller and belief
updater) instantiated into specific processes; for ex-
ample, the class of behavior execution controller
process is instantiated into the behavior GO_TO_
POINT process. In the following subsections, we will
describe these five components in detail.

6.2.1 Behavior execution controllers

As described above, there is a separate process
called “behavior execution controller” for each
behavior. Each execution controller is implemented
as an ROS node that provides the request-reply
services:

1. Checking activation conditions. This service
verifies that the behavior can be activated because en-
vironment is consistent with its situation conditions.

2. Starting behavior. This service starts the exe-
cution in the following way: It launches the execution
processes of the behavior. Then, it publishes

messages with the convenient parameter values for
these processes. Finally, the execution controller
monitors the performance of the execution using the
performance conditions.

3. Stopping behavior. This service stops the be-
havior by requesting that the execution processes of
the behavior are stopped.

For example, there may be an execution con-
troller for the behavior GO_TO_POINT, which may
use two processes: motion controller for motion con-
trol and trajectory planner to generate trajectories that
are free of obstacles.

To start this behavior, the execution controller
launches the motion controller and trajectory planner
processes by sending messages to the process man-
ager, and then publishes a message with the destina-
tion point (a parameter given as an input). This mes-
sage is used by the trajectory planner process to gen-
erate a candidate trajectory, which is used by the mo-
tion controller process to move the robot.

Finally, the execution controller monitors mes-
sages related to the robot position published by pro-
cesses related to self-localization and mapping to
detect if the robot reaches its destination. Because of
this performance of monitoring, the behavior execu-
tion controller may publish a message (for the ROS
topic end-of-behavior) to communicate the cause of
termination with the values related to success or
failure (such as goal achieved, time out, wrong pro-
gress, or interrupted).

Execution control

Belief management

Check_activ._
conditions

Start_behavior

Stop_behavior

Behavior_
coordinator

Request_start_
processes

…

Inform_unused_
processes

Process_
manager

Start_process
Stop_process

Belief_
manager

…

Self_localization/pose
Motion_ref/position
…Other topics…

Messages of processes
organized in ROS topics

Robot processes

Add_belief
Remove_belief
Consult_belief

Request_behavior_activation
Request_behavior_inhibition
Check_b._activation_format
Consult_available_behaviors

End_of_behavior

Requester

<<belief_
updater>>

common_belief_
undater

<<behavior_
execution_
controller>>

behavior_go_
to_point

Fig. 4 Detailed architecture of the execution control system

Circles: Aerostack processes (ROS nodes); rectangles with dashed arrows: request-reply ROS services; rectangles with contin-
uous arrows: publish-subscribe messages as ROS topics

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 69

6.2.2 Behavior coordinator

The behavior coordinator is a process that re-
sponds to behavior activation or inhibition requests
by reconfiguring a set of active behaviors.

The behavior coordinator uses a catalog which is
an information resource containing metadata about
behaviors. The catalog is written by a developer and
stored in a file using YAML format.

Fig. 5 shows a partial example of the catalog that
includes a list of behavior descriptors. Each descriptor
specifies information about the behaviors, such as
name, category (goal-based or recurrent), time out (in
seconds), default (the value of “yes” means that this
behavior must be active, unless another incompatible
behavior is already active), processes (a list of exe-
cution processes that are required to execute the be-
haviors), and parameters (with names and allowed
values).

The catalog includes a list of compatibility con-

ditions that are used for consistency checking of
concurrent execution (Fig. 5); for example, there is a
condition expressing that a set of behaviors, such as
taking off and landing, corresponding to flight

maneuvers, are mutually exclusive, and a precedence
constraint ensuring that a behavior related to
self-localization must be active before the activation
of certain motion behaviors.

In the design of a language for catalog, we pay
special attention to keeping it simple and flexible and
making it easy for developers to add new behaviors.
The catalog uses a declarative representation. Each
behavior descriptor is independent of others, and
conditions are independent of each other; thus, they
can be added or removed with flexibility.

The coordinator is implemented as an ROS node
and provides the following two request-reply services
related to behavior activation:

1. Requesting behavior activation. This service
requests the activation of a behavior and can be ac-
cepted or rejected.

2. Requesting behavior inhibition. This service
stops an active behavior. Therefore, it uses the service
of stop behavior of the execution controller.

The service of requesting behavior activation
analyzes whether the request satisfies the activation
conditions of the corresponding behavior. If the con-
ditions are not satisfied, the service rejects the acti-
vation; otherwise, the algorithm checks whether the
behavior is compatible with other behaviors that are
already active. If an incompatible behavior with a
high priority is active, then this service rejects the
request.

If there are incompatible behaviors that are ac-
tive with a low priority, the service will stop them, but
these stops may generate the activation of other be-
haviors by default. These potential activations are
verified in advance to guarantee that they satisfy the
precedence constraints. Finally, when all the condi-
tions are satisfied, this service stops the incompatible
behaviors and starts the necessary behaviors.

The coordinator receives a message when a be-
havior terminates with success or failure (topic
end-of-behavior). When the coordinator receives this
message, it executes a procedure removing the be-
havior from the list of active behaviors and activating
all default behaviors, which are incompatible with the
removed behavior. The activation of default behav-
iors verifies the precedence, and compatibility con-
straints guarantee that they are satisfied.

Fig. 6 shows an example of behavior coordina-
tion to illustrate how the coordinator works. Two

behavior_descriptors:

- behavior: GO_TO_POINT
 category: goal_based
 timeout: 120
 default: no
 processes:
 - droneTrajectoryController
 - droneTrajectoryPlanner
 - droneYawPlanner
 parameters:
 - parameter: coordinates
 allowed_values: [-100,100]
 dimensions: 3
...

compatibility_conditions:

- mutually_exclusive:
 - TAKE_OFF
 - LAND
 - KEEP_HOVERING
 - GO_TO_POINT
 - ROTATE
 ...

- active:
 - SELF_LOCALIZE_BY_VISUAL_MARKERS
 before:
 - GO_TO_POINT
 - ROTATE
 - KEEP_HOVERING
 ...

 ...

Fig. 5 A partial example of behavior catalog

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

70

requesters (mission plan requester and emergency
requester) send activation requests to the coordinator,
and thus the coordinator sends requests to the execu-
tion controllers. Fig. 6 shows how the coordinator
activates and terminates a default behavior that is not
requested by both requesters (behavior KEEP_
HOVERING) and how the coordinator rejects the
activation from the first requester when another be-
havior from the second requester with a high priority
is active.

Fig. 7 shows an extension of the architecture that
is necessary to facilitate human-robot collaboration.
The idea of this extension is that a behavior execution
controller can request the activation or the inhibition
of other behaviors; for example, it is useful to have
behavior REQUEST_OPERATOR_ASSISTANCE,
which can pause the execution of certain behaviors
while interacting with an operator. Details of this
extension can be found in Molina et al. (2018).

Besides the request-reply services, the coordi-
nator provides the service of checking behavior acti-
vation format. This service checks that a behavior
activation expression (a text sentence) has a correct
format with a valid behavior name, arguments, and
values for arguments using the behavior descriptors of
the catalog. This validation can protect the system
against producing errors when a request is written by
a human operator.

6.2.3 Process manager

The process manager starts and stops the execu-
tion of the processes by efficiently using the resources.
When a behavior is activated, its execution controller
asks the process manager to start the execution pro-
cesses. When the behavior is inhibited, its execution
controller informs the process manager that the pro-
cesses are not needed and then the process manager
stops unnecessary processes to minimize resource
consumption. Therefore, the process manager pro-
vides two request-reply services: requesting start
processes and informing unused processes.

Because an execution process pi may be used at
the same time by different behaviors, process pi is
stopped only when it is not used by any behavior.
Therefore, the process manager maintains an updated
reference counter ri for each process pi to count the

Mission plan
 requester Emergency

requester
Behavior coordinator

Behavior execution controllers

TAKE_OFF KEEP_
HOVERING

GO_TO_
POINT LAND

Initiate TAKE_OFF

TAKE_OFF achieved

Initiate KEEP_HOVERING

Terminate KEEP_HOVERING

Initiate GO_TO_POINT (3, 2, 1)

Terminate GO_TO_POINT (3, 2, 1)

Initiate LAND

LAND
achieved

Initiate TAKE_OFF

Initiate GO_TO_
 POINT (3, 2, 1)

Initiate LAND

Initiate GO_TO_
 POINT (3, 2, 1)

Reject

Fig. 6 Example of behavior coordination

…

Behavior
coordinator

Consult_incompatible_
behavior

Request_behavior_
activation

Request_behavior_
inhibition

<<behavior_
execution_controller>>

behavior_request_
operator_assistance

Fig. 7 Extension of the architecture to facilitate human-
robot collaboration

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 71

number of behaviors using process pi in a given
moment. Only when the number of references is zero
(e.g., ri=0), does the process manager stop process pi.

To avoid an unnecessary stop when two con-
secutive behavior activations use the same process,
the process is not immediately stopped when the ser-
vice of informing unused process is called. It is de-
layed to keep the process running after the service of
requesting start processes is called. The service of
requesting start processes updates the reference
counters with new values, and then the processes with
zero references are stopped. This strategy is useful to
provide the continuity to the process execution and
avoid inefficient disruptions.

6.2.4 Belief manager

The belief manager stores the sets of beliefs,
maintains their consistency, and provides the re-
quest-reply services of adding belief, removing belief,
and consulting belief. For the services of adding be-
lief and removing belief, the belief manager updates
the content of the memory of beliefs and maintains
consistency among beliefs which are mutually ex-
clusive. When a belief is added, e.g., charge(92,
empty), the incompatible beliefs are automatically
retracted, e.g., charge(92, full).

The service of consulting belief can be used to
know whether a belief is true and determine parame-
ter values, using belief expressions that may include
variables. For example, a consultation with the
expression

object(?x, battery), charge(?x, ?y)

can return the values of variables ?x=92 and ?y=full
matching their corresponding values in the belief
memory.

6.2.5 Belief updaters

The belief memory includes beliefs that require
abstract data for general decisions. This abstraction is
done by the process called “belief updaters.” Each
belief updater is a process specialized in updating a
category of beliefs and modifies the content of the
belief memory using the services provided by the
belief manager.

In Aerostack, there is a special belief updater
called “common belief updater” maintaining an up-
dated number of basic beliefs that are common for

most robots, such as beliefs related to the position and
battery charge.

Belief updaters periodically revise beliefs using
dynamic information generated by execution pro-
cesses (e.g., data from sensors); for example, the
update frequency of these updates must be consistent
with the time required for requesters to make deci-
sions. The frequency of these updates is usually
smaller than what the motion controllers used.

The proposed architecture has been conceived to
include several belief updaters that are independent of
each other, and thus a developer can flexibly add or
remove specific belief updaters to a particular appli-
cation according to operational needs.

7 Experimental evaluation

In this section, we summarize the evaluations of
the method for the execution control system presented
in this study. The evaluation includes two types of
tasks: experimental flights and analysis of the inte-
gration effort. Experimental flights have been carried
out to evaluate the performance of the method. The
analysis of the integration effort has been done to
verify if the method can be acceptable for potential
developers who use the Aerostack software
framework.

7.1 Experimental flights

7.1.1 Aerial mission

The execution control system was evaluated
with the help of a type of aerial mission based on the
competition rules of Autonomous Drone Racing
(ADR) of IROS 2018 (International Conference of
Intelligent Robots and Systems). The competition is a
race with indoor autonomous flight challenges (e.g.,
frames to cross, and obstacles).

Fig. 8 shows an aerial robot and a set of frames
in the experimental flights. We generated this sce-
nario with the simulator RotorS (Furrer et al., 2016),
which was used to perform a set of experiments
helping refine the design of the initial versions of the
execution control system.

Fig. 9 shows a real experimental flight corre-
sponding to the same mission. Real experimental
flights were conducted for the final version of the
execution control system. In these experimental

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

72

flights, we used an aerial vehicle, parrot bebop 2, and
a laptop computer (the same computer used for sim-
ulated flights) equipped with CPU Intel i7-7700HQ, 8
cores, 2.8 GHz, and 16 GB RAM.

A preliminary version of the execution control

method presented in this study was validated with the
second type of aerial mission related to surface in-
spection. It was useful in verifying the generality of
the approach with another type of mission and in
verifying the correct execution control in collabora-
tion with an operator, where the operator provides
assistance to the aerial robot to complete the mission.
Details about this second type of experiment can be
found in Molina et al. (2018).

7.1.2 Evaluation method

The method we used to evaluate the execution
control system includes a first analysis of sequences
of behavior activations and sequences of process
executions corresponding to the experimental flights.
The goal of this analysis was to verify that the system
correctly translated the sequences of behavior activa-
tions into consistent changes in the configuration of
running processes.

The performance of the execution control system
was evaluated by measuring the time spent by the
behavior coordinator in activating behaviors. This
was measured as time τi, from the moment the coor-
dinator receives a message to activate a behavior bi to
the moment the coordinator asks the execution con-
troller of behavior bi to start the execution. An ag-
gregated value (e.g., average, minimum, or maximum)
of the measurement set {τ1, τ2, …, τn} (where n is the
number of behavior activations) was used as a per-
formance indicator for the execution control system.

The evaluation method verified that the trajec-
tories generated by the aerial autonomous robot were
correct according to the mission goal; i.e., they
crossed all the frames in a reasonable period of time.

7.1.3 Evaluation results

The evaluation method was applied to six dif-
ferent real flights that performed the same type of
mission. A dataset was generated with the following
information: the temporal sequence of behavior ac-
tivations including 126 behavior activations, the
temporal sequence of process executions, and the 3D
point coordinates of the aerial trajectories followed by
the robot in different missions.

The sequences of behavior activation requests
were automatically generated by a mission plan in-
terpreter of Aerostack that used a mission plan speci-
fication (written in Python language) describing the
tasks in the mission. This mission plan specified that
the robot had to cross several frames whose location
was only approximately known before the execution
of the mission. Therefore, during the mission, the
robot had to reach a certain point and search for a
frame. When a frame was found, the robot ap-
proached the center of the frame to cross it and started
this cycle again until all frames were crossed.

Fig. 10 shows a partial view (first 60 s) of the
behavior activation sequence and running processes
related to motion planning and motion control gen-
erated in a real experimental flight (experiment 6).
Other behaviors and processes related to different
functions, such as self-localization and mapping, are
not presented in Fig. 10.

The sequence showed that when the behavior
GO_TO_POINT was approximately activated at 1 s,
two processes (motion controller and trajectory
planner) were started by the execution control system

Fig. 8 Flight simulation using RotorS

Fig. 9 A real flight experiment

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 73

to support the behavior execution. When the behavior
GO_TO_POINT approximately terminated at 9 s, the
execution control system correctly stopped the tra-
jectory planner process and kept running the motion
controller process. This is adequate for efficiency
reasons, because the next behavior to activate
SEARCH_FRAME used the motion controller pro-
cess. The sequence showed that incompatible con-
trollers (e.g., motion controller and vision-based
controller) were correctly executed in alternation.

This type of sequence analysis was done for all
the cases included in the evaluation dataset. The
analysis demonstrated that all processes were con-
sistently executed according to the mission goal.

Coordination time {τ1, τ2, …, τn} was obtained
from the evaluation dataset (n=126). The arithmetic
mean coordination time was 119 ms and the minimum
and maximum were 36 ms and 204 ms, respectively.
These values showed that the execution control sys-
tem which should be used by execution requesters
worked at a frequency up to 1 Hz, which is adequate
for making decisions during the development of a
wide range of autonomous aerial missions in un-
known environments (e.g., inventory missions and
inspection missions).

Fig. 11 shows an example of a trajectory in ex-
periment 6, and this trajectory was completed in 118 s.
The autonomous robot correctly crossed all frames,
and the trajectories generated in the rest of the real
experimental flights also correctly crossed all frames.

Fig. 12 shows more details about the trajectory
in experiment 6 to cross the first frame, and with
different colors, the motion behaviors were active
during each part of the trajectory (first 29 s).

For example, in the first part of the movement,
the active behavior was TAKE_OFF. The next active

behavior was GO_TO_POINT, which was activated
to reach a high point from which the aerial robot can
observe the frames well. Then the next active be-
havior was SEARCH_FRAME, which performed a
prefixed movement until the image of a frame was
detected with the help of the frontal camera. The
aerial robot activated the behavior APPROACH_
FRAME, which correctd the position of the drone;
thus, it was in front of the frame and ready to cross.
Finally, the robot activated the behavior MOVE_
FORWARD to cross the frame.

TAKE_OFF
GO_TO_POINT

SEARCH_FRAME
APPROACH_FRAME

MOVE_FORWARD
ROTATE

Motion controller
Vision-based controller

Open loop controller
Trajectory planner

Behaviors

Execution
processes

Time (s)
0 10 20 30 40 50 60

Fig. 10 Partial sequence of behavior activations (blue) and execution of processes (red)
References to color refer to the online version of this figure

3

2

1

0

3
2

1

4
5

6
7

0

−3
−4

−2
−1

x

y

z

0

Fig. 11 An example of the trajectory generated in a real
flight

MOVE_
FORWARD

TAKE_OFF

0.5 00
1

23
0

1

2

3

−0.5x
y

z

SEARCH_
FRAME

APPROACH_
FRAME

GO_TO_POINT

−1.0

Fig. 12 Details of the trajectory to cross the first frame
References to color refer to the online version of this figure

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75

74

7.2 Integration effort

To verify that the execution control method may
be acceptable for potential developers who use the
Aerostack software framework, we evaluated the
integration effort of new behaviors using the follow-
ing two measurements:

1. Programming effort. This is the amount of
work in person-hours for software developers to in-
tegrate a new behavior.

2. Code size. This is the number of lines of code
programmed to integrate a new behavior and its rela-
tion to the size of the reused code.

Table 2 shows the values associated with inte-
grating five behaviors in Aerostack (the behavior
SELF_LOCALIZE was implemented following two
different approaches M1 and M2). To measure the
programming effort, four tasks were considered:
learning the behavior implementation (L), designing
the execution controller (D), programming the exe-
cution controller (P), and validating the integration
(V). These evaluation numbers corresponded to inte-
gration tasks performed by two different developers
with more than six months in Aerostack.

As expected, the effort significantly varied for

different behaviors, due to their diverse complexity.
The average value was 45.1 person-hours (5.6 person-
days) and the maximum was 112 person-hours (14
person-days), which are acceptable according to the
usability objectives of Aerostack.

The line number of the execution control system
corresponding to the part which is common for all
behaviors was 4754, including the following com-
ponents: behavior coordinator, process manager, be-
lief manager, common belief updater, and common
classes. The code size to integrate a new behavior was
estimated at 368 lines (the average value of execution
controllers of the previous five behaviors), which is a
significantly low value compared with the amount of
code reused for the execution control system.

8 Conclusions

We have described the results of our work in the
development of a general solution for execution con-
trol systems, which is one of the critical components
of control architectures in robotics.

The solution shares parts of the design concepts
of the current state of the art in robotic control archi-
tectures. We have conceived an original design to
respond to the need to be parts of a software frame-
work, practically useful and efficient for building real
robotic systems.

The design combines two main ideas: (1) A dis-
tributed organization separates and encapsulates the
execution details of each behavior helping developers
add new behaviors with flexibility without affecting
other behaviors; (2) There is a central coordination
supported with the help of a catalog with compatibil-
ity conditions formulated at the behavior level (which
is simpler than that at the process level). The catalog
uses a declarative flexible representation to easily add
information about new behaviors.

The experimental flights demonstrate that the
method is valid for practical applications in aerial
robotics and can be applied to specific systems with
acceptable development efforts.

The solution is integrated in the Aerostack
open-source framework (version 3.0). Consequently,
its technical details are fully accessible to be con-
sulted and reused in developing new applications in
aerial robotics. Our design is supported by standards
used in robotics (e.g., ROS), which facilitates its
general use.

In spite of this, the method can be improved. The
capabilities of the Aerostack executive system could
be extended with a declarative language to formulate

Table 2 Evaluation numbers of programming effort in
person-hours

Behavior

Evaluation number
(person-hour)

L D P V Total

GO_TO_POINT 16 24 16 16 72

MOVE_FORWARD 0.5 1.0 5.0 3.0 9.5

SEARCH_FRAME 1 2 5 10 18

SELF_LOCALIZATION
(M1) 1 1 8 4 14

SELF_LOCALIZATION
(M2) 56 16 24 16 112

L: learning the behavior implementation; D: designing the execution
controller; P: programming the execution controller; V: validating the
integration

Molina et al. / Front Inform Technol Electron Eng 2019 20(1):60-75 75

complex behaviors that use other behaviors. In addi-
tion, to execute more complex mission plans, the
belief memory management could be extended with
rich representations and good methods (e.g., repre-
sentation with uncertainty, complex methods for per-
sistency, and belief revision methods).

References
Alami R, Chatila R, Fleury S, et al., 1998. An architecture for

autonomy. Int J Robot Res, 17(4):315-337.
 https://doi.org/10.1177/027836499801700402
Allgeuer P, Behnke S, 2013. Hierarchical and state-based

architectures for robot behavior planning and control.
Proc 8th Workshop on Humanoid Soccer Robots and 13th
IEEE-RAS Int Conf on Humanoid Robots, p.1-6.

Arkin RC, 1998. Behavior-Based Robotics (Intelligent Ro-
botics and Autonomous Agents). MIT Press, Cambridge,
USA.

Bavle H, Sanchez-Lopez JL, de la Puente P, et al., 2018. Fast
and robust flight altitude estimation of multirotor UAVs
in dynamic unstructured environments using 3D point
cloud sensors. Aerospace, 5(3):94.

 https://doi.org/10.3390/aerospace5030094
Bonasso RP, Firby RJ, Gat E, et al., 1997. Experiences with an

architecture for intelligent, reactive agents. J Exp Theor
Artif Intell, 9(2-3):237-256.

 https://doi.org/10.1080/095281397147103
Brooks R, 1986. A robust layered control system for a mobile

robot. IEEE J Rob Autom, 2(1), 14-23.
Firby RJ, 1989. Adaptive Execution in Complex Dynamic

Worlds. PhD Thesis, Yale University, New Haven, USA.
Furrer F, Burri M, Achtelik M, et al., 2016. RotorS—a modular

gazebo MAV simulator framework. In: Koubaa A (Ed.),
Robot Operating System (ROS). Springer, Cham, p.595-
625. https://doi.org/10.1007/978-3-319-26054-9_23

Gat E, 1992. Integrating planning and reacting in a heteroge-
neous asynchronous architecture for controlling real-
world mobile robots. Proc 10th National Conf on Artificial
Intelligence, p.809-815.

Gat E, 1996. ESL: a language for supporting robust plan exe-
cution in embedded autonomous agents. IEEE Aerospace
Conf, p.319-324.

 https://doi.org/10.1109/AERO.1997.574422
Gat E, 1998. On three-layer architectures. In: Kortenkamp D,

Bonnasso RP, Murphy R (Eds.), Artificial Intelligence
and Mobile Robots. MIT Press, Cambridge, USA,
p.195-210.

Ingrand F, Py F, 2002. An execution control system for au-
tonomous robots. Proc IEEE Int Conf on Robotics and
Automation, p.1333-1338.

 https://doi.org/10.1109/ROBOT.2002.1014728
Kortenkamp D, Simmons R, Brugali D, 2008. Robotic systems

architectures and programming. In: Siciliano B, Khatib O
(Eds.), Springer Handbook of Robotics. Springer Berlin
Heidelberg, p.187-206.

 https://doi.org/10.1007/978-3-540-30301-5_9
Mittal S, Frayman F, 1989. Towards a generic model of con-

figuration tasks. 11th Int Joint Conf on Artificial Intelli-
gence, p.1395-1401.

Molina M, Suarez-Fernandez RA, Sampedro C, et al., 2017.
TML: a language to specify aerial robotic missions for the
framework Aerostack. Int J Intell Comput Cybern,
10(4):491-512.
https://doi.org/10.1108/IJICC-03-2017-0025

Molina M, Frau P, Maravall D, 2018. A collaborative approach
for surface inspection using aerial robots and computer
vision. Sensors, 18(3):893.

 https://doi.org/10.3390/s18030893
Rodriguez-Ramos A, Sampedro C, Bavle H, et al., 2017.

Towards fully autonomous landing on moving platforms
for rotary unmanned aerial vehicles. Int Conf on Un-
manned Aircraft Systems, p.170-178.
https://doi.org/10.1109/ICUAS.2017.7991438

Rothenstein AL, 2002. A Mission Plan Specification Lan-
guage for Behaviour-Based Robots. MS Thesis, Univer-
sity of Toronto, Toronto, Canada.

Rutten E, 2001. A framework for using discrete control syn-
thesis in safe robotic programming and teleoperation.
Proc IEEE Int Conf on Robotics and Automation,
p.4104-4109.
https://doi.org/10.1109/ROBOT.2001.933259

Sampedro C, Bavle H, Sanchez-Lopez JL, et al., 2016. A
flexible and dynamic mission planning architecture for
UAV swarm coordination. Int Conf on Unmanned Air-
craft Systems, p.355-363.

 https://doi.org/10.1109/ICUAS.2016.7502669
Sampedro C, Rodriguez-Ramos A, Bavle H, et al., 2018. A

fully-autonomous aerial robot for search and rescue ap-
plications in indoor environments using learning-based
techniques. J Intell Robot Syst, p.1-27.

 https://doi.org/10.1007/s10846-018-0898-1
Sanchez-Lopez JL, Molina M, Bavle H, et al., 2017. A multi-

layered component-based approach for the development
of aerial robotic systems: the aerostack framework. J In-
tell Robot Syst, 88(2-4):683-709.

 https://doi.org/10.1007/s10846-017-0551-4
Suárez Fernández RA, Sanchez-Lopez JL, Sampedro C, et al.,

2016. Natural user interfaces for human-drone multi-
modal interaction. Int Conf on Unmanned Aircraft Sys-
tems, p.1013-1022.

 https://doi.org/10.1109/ICUAS.2016.7502665
Verma V, Estlin T, Jónsson A, et al., 2005. Plan execution

interchange language (PLEXIL) for executable plans and
command sequences. Int Symp on Artificial Intelligence,
Robotics and Automation in Space, p.1-8.

	Martin MOLINA†‡1, Alberto CAMPORREDONDO1, Hriday BAVLE2, Alejandro RODRIGUEZ-RAMOS2, Pascual CAMPOY2
	Abstract: Execution control is a critical task of robot architectures which has a deep impact on the quality of the final system. In this study, we describe a general method for execution control, which is a part of the Aerostack software framework fo...
	Key words: Aerial robotics; Control architecture; Behavior-based control; Executive system

