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Abstract: Execution control is a critical task of robot architectures which has a deep impact on the quality of the final system. In 
this study, we describe a general method for execution control, which is a part of the Aerostack software framework for aerial 
robotics, and present technical challenges for execution control and design decisions to develop the method. The proposed method 
has an original design combining a distributed approach for execution control of behaviors (such as situation checking and per-
formance monitoring) and centralizes coordination to ensure consistency of the concurrent execution. We conduct experiments to 
evaluate the method. The experimental results show that the method is general and usable with acceptable development efforts to 
efficiently work on different types of aerial missions. The method is supported by standards based on a robot operating system 
(ROS) contributing to its general use, and an open-source project is integrated in the Aerostack framework. Therefore, its technical 
details are fully accessible to developers and freely available to be used in the development of new aerial robotic systems. 
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1  Introduction 
 

Execution control is a common task in robot 
control architectures to communicate two description 
levels: a level where a requester, such as a human 
operator or an automatic decision system, tells a robot 
what to do using symbolic commands, and a level 
where a number of computational processes concur-
rently run to generate the required functionalities. 
Execution control verifies that the requested com-
mand is correct before execution, ensures a consistent 

and efficient execution of concurrent processes dur-
ing execution, and communicates results in terms of 
success or failure after execution. 

Practical experience in the development of robot 
architectures shows that the methods used for execu-
tion control are critical and have a deep impact on the 
quality of the final system, such as the safety and 
complexity of human-robot interaction. Kortenkamp 
et al. (2008) pointed out that designing robotic ar-
chitectures is much more of an art than a science. 
Therefore, there is a need for methods that reduce the 
required effort to build new system architectures. 

We present a general method for execution con-
trol to develop an existing open-source software 
framework called “Aerostack” (Sanchez-Lopez et al., 
2017). The method is designed for the framework, 
considering the requirements to facilitate the devel-
opment of new systems. 
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2  Related work 
 
A three-layer architecture is a popular control 

architecture for autonomous robots (Bonasso et al. 
1997), which has different versions, such as Atlantis 
(Gat, 1992) and LAAS (Alami et al., 1998). This 
architecture uses three layers (Kortenkamp et al., 
2008) as follows: 

1. Behavioral control layer or functional layer is 
the lowest level and consists of behaviors that carry 
out actions of a robot. Each behavior connects with 
sensors perceiving environments to actuators, thus 
creating a sensor-action loop. 

2. Executive layer is an intermediate layer that 
activates and deactivates behaviors to achieve high- 
level tasks, thus avoiding conflicts among behaviors 
using the same actuators. 

3. Planning layer or decision layer is the highest 
level and is responsible for determining the long- 
range activities of a robot based on mission goals. 

The executive layer includes a task decomposi-
tion module with a specialized language to help de-
veloper specify how to execute a task considering 
different situations in the environment of both regular 
situations and contingencies. The languages used are 
reactive action packages (RAPs) (Firby, 1989), exe-
cution support language (ESL) (Gat, 1996), and plan 
execution interchange language (PLEXIL) (Verma et 
al., 2005). The executive layer also includes an addi-
tional component that serves as a bridge with the 
behavioral control layer. The additional component 
can be called “execution control system” in the LAAS 
architecture (Alami et al., 1998), which includes an 
execution control system called “Kheops” using 
production rules. Request and resource checker (R2C) 
(Ingrand and Py, 2002) is another execution control 
system in the LAAS architecture which is oriented to 
fault protection and tries to solve some limitations of 
Kheops. Rutten (2001) proposed an execution control 
system focusing on model checking. 

We present a new method for execution control, 
which is a part of the Aerostack aerial robotics soft-
ware framework. Compared with other work, the new 
method is designed to satisfy special requirements of 
Aerostack (see details in Section 4) which aim at 
facilitating the construction of real robotic systems 
and emphasizing utility aspects in robot architectures, 
such as timeliness in the development and perfor-
mance of effectiveness (Arkin, 1998). 

3  Aerostack software framework 
 
Modern autonomous aerial systems integrate 

multiple computational methods, such as computer 
vision algorithms, motion controllers, self- 
localization and mapping methods, automated plan-
ning, and coordination algorithms. Integration of such 
heterogeneous methods in a complex operational 
system is a technical challenge that requires efficient 
and robust architectural solutions. 

We have developed the Aerostack software 
framework (www.aerostack.org) in our group  
Computer Vision and Aerial Robotics (CVAR) at 
Universidad Politécnica de Madrid (UPM) 
(Sanchez-Lopez et al., 2017). This framework based 
on a robot operating system (ROS) provides a  
library of software components specialized in aerial 
robotics and a general combination mechanism using 
an architectural pattern that guides the integration  
process. 

The framework in our group contributes to a 
great productivity in the construction of new systems 
and experiments with new algorithms. For example, 
Aerostack has been used with great success by our 
group in the International Aerial Robotics Competi-
tions, such as IMAV 2013, 2016, and 2017 and IARC 
2014. Aerostack has also been used by CVAR  
in complex robotic systems related to natural user 
interfaces (Suárez Fernández et al., 2016), surface 
inspection (Molina et al., 2018), coordinated mul-
ti-robot systems (Sampedro et al. 2016), landing on 
moving platforms (Rodriguez-Ramos et al., 2017), 
search-and-rescue missions (Sampedro et al. 2018), 
and altitude estimation in complex dynamic envi-
ronments (Bavle et al., 2018). 

Fig. 1 shows the main components of the Aero-
stack architecture (version 3.0), which shares the 
behavioral control layer (or behavioral layer in short) 
and executive layer of the three-layer architecture. In 
addition, the architecture uses a communication layer 
to communicate interfaces. 

The behavioral layer in Aerostack includes 
components providing basic functionalities of an 
aerial robotic system, which are as follows: 

1. Feature extractors that read simple states of 
sensors and implement complex vision and pattern 
recognition algorithms; for example, a feature ex-
tractor is a recognizer of visual markers (e.g., ArUco 
markers or QR codes). 
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2. Motion controllers that implement combina-
tions of proportional-integral-derivative (PID) con-
trollers. For example, motion controllers can be used 
for speed control and height control. 

3. SLAM processes that perform self- 
localization and mapping (SLAM) using, for example, 
extended Kalman filter (EKF) techniques. 

4. Motion planners that generate obstacle-free 
paths to reach destination points. 

5. Methods that communicate with other agents 
for robot collaboration or human collaboration. 

Aerostack provides a software library of these 
components. A developer can configure specific 
components from the library and combine them to 
build a particular robotic system architecture. In this 
architecture, the basic executable component is a 
process, which is defined according to a specific 
function (e.g., a path planner, an obstacle recognizer, 
or a speed controller). Each process in Aerostack is  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

implemented as an ROS node. Aerostack concur-
rently runs processes that communicate with each 
other using message passing methods for inter- 
process communication provided by an ROS: a  
request-reply service (an ROS service) and a publish- 
subscribe method filtering messages using a topic- 
based approach (an ROS topic). 

The executive layer in the Aerostack consists of 
three systems: mission control system, execution 
control system, and belief management system. The 
mission control system receives an input as a mission 
plan specified in certain formal language, such as 
task-based mission specification language (TML) in 
the Aerostack (Molina et al., 2017), but a standard 
language (such as Python) or a graphical editor with 
behavior trees can also be used. The mission control 
system verifies the correctness of plan and interprets 
it to sequentially generate execution requests, such as 
activations and deactivations of robot behaviors. 
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Fig. 1  Aerostack architecture (version 3.0) 
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The execution control system translates these 
requests into orders to start or stop processes to re-
configure the set of concurrent behavioral layer pro-
cesses. The belief management system maintains a 
consistent memory of relevant data about the world, 
which is necessary for decisions related to mission 
planning. In the next section, we will describe the 
details of these two systems. 

 
 

4  Requirements for execution control 
 
The execution control system establishes a clean 

separation among decisions about mission tasks and 
realizes these tasks with concurrent processes. The 
execution control system creates a logical interface in 
Aerostack helping a developer specify mission plans 
in a simpler way and verifies that the mission plan is 
executed as expected. 

By the specification of mission plans, the exe-
cution control system relieves the developer from 
specifying excessive details about how to control the 
execution of a task. 

By the execution of mission plans, the execution 
control system verifies that each task is consistent 
with the environmental situation, thus preventing a 
robot from performing wrong or dangerous behaviors. 
The execution control system reports the presence of 
unexpected events, which can be used by a decision 
system to formulate a more robust plan or by a human 
operator to supervise the correct execution of the 
mission plans. 

Fig. 2 shows the role of the execution control 
system. In a general way, a requester is used to des-
ignate a subject who decides what to do next and asks 
a robot to do it. A human operator could be a requester 
or, in a multi-layered architecture of an autonomous 
system, the requester can be an automatic system (e.g., 
the mission control system in Aerostack). 

The execution control system analyzes the fea-
sibility of an execution request to accept or reject it 
before it is executed, and responds to each request by 
reconfiguring the set of running processes. In addition, 
to help a requester make the next decision, the exe-
cution control system communicates results of the 
execution by notifying the results in terms of success 
or failure and relevant changes in the environment. 

One of the important requirements of the  

execution control system is to use an appropriate 
representation for the requester to express what to do 
and interpret execution results at an adequate level of 
abstraction. This representation should be expressive 
enough, but at the same time, it should abstract exe-
cution details which are not necessary to make deci-
sions about mission tasks to the requester. 

There are two additional requirements derived 
from Aerostack’s general goal of facilitating the de-
velopment of robotic systems: 

1. Generalization. The solution must be appli-
cable in the construction of different aerial robotic 
systems and missions. 

2. Usability. The solution must be useful for a 
developer in building the execution control system of 
a specific robot architecture, with an acceptable effort 
in the context of a development project. 

Finally, there are two requirements related to the 
integration in Aerostack: 

1. Using standards. The solution must use pro-
gramming standards of the robotic systems that are 
used by Aerostack (e.g., ROS middleware). 

2. Accessibility. The solution should be freely 
accessible as a part of an open-source framework. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

5  Representation for the execution requester 
 

In this section, we describe the representation 
designed by a requester to operate with the execution 
control system, concerning an adequate level of  
abstraction. 
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Fig. 2  Role of the execution control system 
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5.1  Representation of execution requests 

The execution control system uses behaviors to 
express what actions a robot must do. Behavior is a 
natural notion which is familiar to general users; in 
simple words, a behavior is anything a robot can do: 
taking off, moving forward, landing, etc. It has been 
traditionally used in robotics for building systems 
(Brooks, 1986; Arkin, 1998) and as a basic concept in 
specifying mission plans (Rothenstein, 2002; All-
geuer and Behnke, 2013). In robotic systems, a be-
havior integrates perception algorithms and actuation 
controllers to generate a particular pattern perception- 
actuation. This integration helps hide details remain-
ing encapsulated about perception-action. Therefore, 
a behavior is useful to abstract implementation details 
and express, in simple words, how the robot must 
operate. 

5.1.1  Behavior activation requests 

The execution control system uses behavior ac-
tivations to formulate requests. Activation ai by re-
quester rj of behavior bk can be formally represented 
as 

 
ai=<rj, bk, {<p1, v1>, <p2, v2>, …, <pn, vn>}> 
 

where {<p1, v1>, <p2, v2>, …, <pn, vn>} is a set of 
parameter value pairs that configure the behavior 
activation. For example, to activate the behaviors of 
an aerial robot—taking off, rotating 45°, and going to 
a point with coordinate (1.0, 2.5, 7.0)—the following 
activations can be used (where R1 is the requester): 

 
a1=<R1, TAKE_OFF, {}> 
a2=<R1, ROTATE, {<angle, 45°>}> 
a3=<R1, GO_TO_POINT, 

{<coordinate, (1.0, 2.5, 7.0)>}> 
 
In practice, for readability, this is actually writ-

ten in the following way (asked by the requester R1): 
 

TAKE_OFF 
ROTATE angle: 45° 
GO_TO_POINT coordinate: (1.0, 2.5, 7.0) 

 
A requester can ask an activation ai to initiate or 

terminate. When an initiation of the activation is  

requested, the execution control system confirms that 
it has been accepted or, on the contrary, rejected be-
cause of certain reasons. 

5.1.2  A library of behaviors 

One of the practical utilities of a tool, such as 
Aerostack, is to provide a powerful and versatile set 
of behaviors for aerial robotics that can be used by a 
requester as a part of its language for execution. A 
library of behaviors was designed for Aerostack, 
which considers quality principles for each behavior 
(e.g., generality, stability, clarity, and conciseness). A 
part of this library is fully implemented in Aerostack 
and used in this study. 

In the library, there are goal-based and recurrent 
behaviors. Goal-based behaviors are defined to reach 
a final state (attaining a goal). Examples of these 
behaviors are flight maneuvers related to rotors, such 
as simple flight maneuvers (TAKE_OFF, LAND, 
KEEP_HOVERING, KEEP_MOVING, and RO-
TATE) and more complex flight maneuvers such as 
moving avoiding obstacles (GO_TO_POINT) and 
following objects (FOLLOW_OBJECT_IMAGE). 
The category of goal-based behaviors may include 
behaviors related to other effectors, such as light 
(TURN_LIGHT), camera (TAKE_PHOTO and 
TAKE_VIDEO), dropping mechanism (DROP_ 
ITEM), moving camera (MOVE_CAMERA), and 
sound (SAY_SENTENCE). 

Recurrent behaviors recurrently perform an ac-
tivity or maintain a desired state. Self-localization 
behaviors belong to this category (SELF_ 
LOCALIZE_BY_LIDAR, SELF_LOCALI ZE_BY_ 
VISUAL_MARKERS, etc.). Other examples are 
attention (PAY_ATTENTION_TO_VOICE_ 
COMMANDS, PAY_ATTENTION_TO_COLORS, 
etc.), communications (SPEAK_UP, etc.), data stor-
age behaviors (BUILD_MAP and RECORD_ 
VIDEO), etc. 

5.2  Representation of execution results 

Activation of behaviors usually produces a 
number of effects. One of the functions of the execu-
tion control system is to inform the requester about 
these effects at an adequate level of abstraction. This 
is done with two classes of information: the cause of 
behavior termination and a memory of beliefs about 
the world. 
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5.2.1  Cause of behavior termination 

After the activation of a behavior, a message 
may be generated by the execution control system to  
inform a requester about the cause of its termination. 
The possible values of this message are: 

1. goal achieved: the behavior has achieved its 
goal; 

2. time out: the behavior has not achieved its 
goal in the expected time; 

3. wrong progress: the behavior has not pro-
gressed as expected; 

4. interrupted: the behavior execution has been 
cancelled. 

This information is useful for a requester to 
confirm that a behavior has operated as expected 
(therefore, the mission can continue as planned) or, on 
the contrary, the behavior has failed (therefore, the 
next step must be reconsidered); for example, execu-
tion failures happen because the requester may have 
decided to activate a behavior based on assumptions 
about the environment, which are not satisfied when 
the behavior is executed (which is usual with au-
tonomous robots operating in the uncertain and dy-
namic environment). 

5.2.2  Memory of beliefs about the world 

Another type of information which is useful to a 
requester is how the world may have changed because 
of the operation of behaviors. Therefore, the execu-
tion control system may operate together with a 
memory of beliefs that abstract relevant data about the 
world. This memory acts as a filter that presents the 
requester, in a uniform way, the necessary infor-
mation for decisions related to mission plans. 

The memory uses a particular representation for 
beliefs. A belief is a proposition about the world that 
the robot believes is true (the “world” here refers to 
both the external world and the internal state of a 
robot). 

Beliefs are represented using a logic-based ap-
proach with predicates. Examples of the predicates 
with a general format of predicate(object, value) and 
the simple form property(object) are shown in Table 1. 
The representation follows an object-oriented ap-
proach. Objects are represented with numerical iden-
tifiers as instances of a class; for example, object(32, 
obstacle) represents that object 32 is an obstacle. 
Additional predicates are used to represent attributes 

of objects; for example, color(32, blue) represents 
that object 32 is blue. 

Attribute values defined for an object are  
assumed to be mutually exclusive; for example, the 
belief charge(92, empty) is incompatible with the 
belief charge(92, full), because the empty and full 
values are mutually exclusive (the identifier of 92 
represents the battery). If a particular predicate has 
values that are not mutually exclusive, this must be 
treated as an exception. The predicate visible(x) is 
used to indicate that an object is currently observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 

This representation can be used by a robot to 
describe the requester how the world changes, and the 
requester can use this representation to ask the exe-
cution control system to memorize details about a 
mission execution which may be useful for future 
decisions. For example, a requester can ask the exe-
cution control system to memorize the coordinates of 
the current place with the name point A and with a set 
of beliefs as 

 
object(57, place) 
name(57, point_A) 
position(57, (3.0, 4.5, 0.0)) 

 
 
6  Execution control method 
 

In this section, we describe the distributed ap-
proach of the execution control system designed for 
Aerostack and the architecture of processes that im-
plement the execution control system. 

6.1  Distributed approach 

Fig. 3 shows the distributed scheme used by the 

Table 1  Examples of predicates representing beliefs 

Predicate Description 

Object(x, y) Object x is an instance of class y 
Position(x, y) Object x is at the position y 
Name(x, y) Name of object x is y 
Flight_state(x, y) Aerial robot x is in flight state y 
Code(x, y) Numerical code of x is y 
Color(x, y) Color of x is y 
Charge(x, y) Charge of x is y 
Carry(x, y) Agent x carries object y 
Visible(x) Object x can be observed 
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method of the execution control system. A network of 
execution processes, i.e., the processes of a behav-
ioral layer of the Aerostack architecture (such as 
processes for the perception and motion control sys-
tem), which can run or stop in a particular moment, is 
shown at the bottom of Fig. 3. 

The method of the execution control system re-
sponds to each request by reconfiguring the set of 
execution processes that are running. The consistency 
is ensured by checking conditions which are distrib-
uted in different processes. Fig. 3 shows the condi-
tions used and how they are distributed in processes. 

6.1.1  Behavior-based distribution 

For each behavior, there is a behavior execution 
controller, which is a separate process (in some cases, 
for example, when there is only one execution process 
for a behavior, it may be more efficient to have a 
single process that integrates the behavior execution 
controller with the execution process) that starts or 
stops the execution processes of behavior and per-
forms local consistency checking using two types of 
information: situation conditions and performance  
conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The verification of situation conditions is done 
before a behavior is executed and is important due to 
the property of situated behaviors, meaning that each 
behavior works in only specific situations; e.g., to 
execute the behavior LAND, the robot must be flying. 
In Aerostack, instead of using a model-based mecha-
nism for this verification (e.g., with finite state ma-
chines or Petri nets), situation conditions are directly 
verified using data about the state of the environment; 
e.g., data derived from sensors is present in the belief 
memory or in the content of messages of execution 
processes. 

Situation conditions are distributed in different 
execution controllers. Conditions of each controller 
must be formulated with enough precision to cor-
rectly classify the required situation for the behaviors. 
The precision depends on the representation used for 
conditions, and on the capacity of a robot to perceive 
the environment from sensors. 

Performance conditions express the expected 
performance of a particular behavior, e.g., the max-
imum expected time to achieve a goal. The verifica-
tion of these conditions is important for monitoring 
the execution and detecting success or failure. The 
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Fig. 3  Distributed scheme for execution control 
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verification is periodically done using data about the 
environmental states. This monitoring provides cog-
nizant failures (Gat, 1996, 1998), i.e., the ability of a 
system to detect failures, which is important for a 
robot to operate in an unpredictable environment. 

Performance conditions are written for each 
behavior and should be able to identify as many 
success or failure situations as necessary for correct 
decision making during the mission plan execution. 

The modularity provided by execution control-
lers, which separate and encapsulate the execution 
details of each behavior, helps add new behaviors 
with flexibility, without affecting other behaviors and 
the overall execution control mechanism. 

6.1.2  Central coordination 

The method of execution control system in-
cludes a central process called “behavior coordinator” 
that ensures the global consistency of a set of active 
behaviors. The coordinator performs a kind of con-
figuration task (Mittal and Frayman, 1989) and re-
sponds to the requests of behavior activation or inhi-
bition by configuring the set of active behaviors, thus 
ensuring that a set of compatibility conditions are 
satisfied. 

The compatibility conditions are explicitly 
written for a particular control architecture that uses a 
set of behaviors. The compatibility conditions are 
expressed at the level of behaviors, but they are based 
on properties at the level of execution processes. 
There is a type of condition based on Definition 1. 
Definition 1 (Incompatible behaviors)    Two behav-
iors b1 and b2 are incompatible, noted as incompati-
ble(b1, b2), if they cannot be executed at the same time, 
because there is at least an execution process p used 
by behaviors b1 and b2 but with different input data, or 
they produce contradictory effects in the environment; 
i.e., effects of behaviors b1 and b2 in the environment 
are mutually opposed. 

A condition related to this type of compatibility 
is expressed by a set of behaviors B={b1, b2, ..., bn} 
that are mutually exclusive; i.e., every pair of be-
haviors in B, bi and bj, satisfies the relation incom-
patible(bi, bj). For example, there may be a condition 
expressing that a set of behaviors corresponding to 
flight maneuvers (TAKE_OFF, LAND, KEEP_ 
HOVERING, etc.) are mutually exclusive. The reason 
for this constraint is that these behaviors use common 
processes for the motion control system with different 
input data. 

There is another type of condition expressing 
precedence between behaviors b1 and b2. This condi-
tion is based on Definition 2. 
Definition 2 (Precedence relation)    There is a 
precedence relation between behaviors b1 and b2, 
noted as preceding(b1, b2), if behavior b1 must be 
active before b2, because the execution processes of 
b1 generate output values required as inputs for the 
execution processes of b2. 

The coordinator includes a precedence condition 
for every pair of behaviors b1 and b2, which satisfies 
preceding(b1, b2). The precedence conditions set must 
not present loops in the paths established by pairs of 
behaviors. 

Note that these conditions are specific to the set 
of behaviors used in a particular robotic system, and 
that they are manually written by a developer. In 
principle, it would be desirable to automatically gen-
erate conditions from the structure of execution pro-
cesses, which theoretically seems possible except for 
behaviors producing contradictory effects in the en-
vironment. However, in the current implementation, 
we find that this would add more complexity to the 
development of new behaviors, requiring more efforts 
and being more error-prone compared with manually 
writing conditions. In fact, because conditions are 
defined at the level of behaviors instead of the exe-
cution processes, the representation is simple and 
therefore easy to maintain. 

The coordinator follows a priority scheme to 
activate behaviors based on Definition 3. 
Definition 3 (Activation priority)    Activation a1 has 
a higher priority than activation a2, noted as priori-
ty(a1, a2), if the requester of a1 has a higher priority 
than the requester of a2. 

In our current implementation, there are two 
requesters: an emergency requester requesting the 
activation when an emergency is detected following a 
reactive approach and a mission plan requester re-
questing activations step by step, to carry out a mis-
sion following a deliberative approach. There are 
default requests that correspond to default behaviors. 
Default behaviors are behaviors that keep operating 
the basic functions of a robot. 

For example, an aerial robot should, by default, 
activate a behavior to hover in the air when it is flying, 
when no other behaviors related to flight maneuvers 
are active. The following priority order is assumed in 
our current implementation: emergency requester > 
mission plan requester > default. 
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6.2  Detailed architecture 

Fig. 4 shows the detailed architecture of the  
execution control system corresponding to the actual 
software implementation. However, for clarity, some 
services and topics have been presented in the study 
with different names; e.g., the service request_ 
behavior_activation is implemented with the name of 
activate_behavior. 

There are five components in Fig. 4: three spe-
cific processes (e.g., behavior coordinator, belief 
manager, and process manager) and two classes of 
processes (behavior execution controller and belief 
updater) instantiated into specific processes; for ex-
ample, the class of behavior execution controller 
process is instantiated into the behavior GO_TO_ 
POINT process. In the following subsections, we will 
describe these five components in detail. 

6.2.1  Behavior execution controllers 

As described above, there is a separate process 
called “behavior execution controller” for each  
behavior. Each execution controller is implemented 
as an ROS node that provides the request-reply  
services:  

1. Checking activation conditions. This service 
verifies that the behavior can be activated because en- 
vironment is consistent with its situation conditions. 

2. Starting behavior. This service starts the exe-
cution in the following way: It launches the execution 
processes of the behavior. Then, it publishes  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

messages with the convenient parameter values for 
these processes. Finally, the execution controller 
monitors the performance of the execution using the 
performance conditions. 

3. Stopping behavior. This service stops the be-
havior by requesting that the execution processes of 
the behavior are stopped. 

For example, there may be an execution con-
troller for the behavior GO_TO_POINT, which may 
use two processes: motion controller for motion con-
trol and trajectory planner to generate trajectories that 
are free of obstacles. 

To start this behavior, the execution controller 
launches the motion controller and trajectory planner 
processes by sending messages to the process man-
ager, and then publishes a message with the destina-
tion point (a parameter given as an input). This mes-
sage is used by the trajectory planner process to gen-
erate a candidate trajectory, which is used by the mo-
tion controller process to move the robot. 

Finally, the execution controller monitors mes-
sages related to the robot position published by pro-
cesses related to self-localization and mapping to 
detect if the robot reaches its destination. Because of 
this performance of monitoring, the behavior execu-
tion controller may publish a message (for the ROS 
topic end-of-behavior) to communicate the cause of 
termination with the values related to success or 
failure (such as goal achieved, time out, wrong pro-
gress, or interrupted). 
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Fig. 4  Detailed architecture of the execution control system 

 

Circles: Aerostack processes (ROS nodes); rectangles with dashed arrows: request-reply ROS services; rectangles with contin-
uous arrows: publish-subscribe messages as ROS topics 



Molina et al. / Front Inform Technol Electron Eng   2019 20(1):60-75 69 

6.2.2  Behavior coordinator 

The behavior coordinator is a process that re-
sponds to behavior activation or inhibition requests 
by reconfiguring a set of active behaviors. 

The behavior coordinator uses a catalog which is 
an information resource containing metadata about 
behaviors. The catalog is written by a developer and 
stored in a file using YAML format. 

Fig. 5 shows a partial example of the catalog that 
includes a list of behavior descriptors. Each descriptor 
specifies information about the behaviors, such as 
name, category (goal-based or recurrent), time out (in 
seconds), default (the value of “yes” means that this 
behavior must be active, unless another incompatible 
behavior is already active), processes (a list of exe-
cution processes that are required to execute the be-
haviors), and parameters (with names and allowed 
values). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The catalog includes a list of compatibility con-

ditions that are used for consistency checking of 
concurrent execution (Fig. 5); for example, there is a 
condition expressing that a set of behaviors, such as 
taking off and landing, corresponding to flight  

maneuvers, are mutually exclusive, and a precedence 
constraint ensuring that a behavior related to 
self-localization must be active before the activation 
of certain motion behaviors. 

In the design of a language for catalog, we pay 
special attention to keeping it simple and flexible and 
making it easy for developers to add new behaviors. 
The catalog uses a declarative representation. Each 
behavior descriptor is independent of others, and 
conditions are independent of each other; thus, they 
can be added or removed with flexibility. 

The coordinator is implemented as an ROS node 
and provides the following two request-reply services 
related to behavior activation: 

1. Requesting behavior activation. This service 
requests the activation of a behavior and can be ac-
cepted or rejected. 

2. Requesting behavior inhibition. This service 
stops an active behavior. Therefore, it uses the service 
of stop behavior of the execution controller. 

The service of requesting behavior activation 
analyzes whether the request satisfies the activation 
conditions of the corresponding behavior. If the con-
ditions are not satisfied, the service rejects the acti-
vation; otherwise, the algorithm checks whether the 
behavior is compatible with other behaviors that are 
already active. If an incompatible behavior with a 
high priority is active, then this service rejects the 
request. 

If there are incompatible behaviors that are ac-
tive with a low priority, the service will stop them, but 
these stops may generate the activation of other be-
haviors by default. These potential activations are 
verified in advance to guarantee that they satisfy the 
precedence constraints. Finally, when all the condi-
tions are satisfied, this service stops the incompatible 
behaviors and starts the necessary behaviors. 

The coordinator receives a message when a be-
havior terminates with success or failure (topic 
end-of-behavior). When the coordinator receives this 
message, it executes a procedure removing the be-
havior from the list of active behaviors and activating 
all default behaviors, which are incompatible with the 
removed behavior. The activation of default behav-
iors verifies the precedence, and compatibility con-
straints guarantee that they are satisfied. 

Fig. 6 shows an example of behavior coordina-
tion to illustrate how the coordinator works. Two  

behavior_descriptors:

- behavior: GO_TO_POINT
    category: goal_based
    timeout: 120
    default: no
    processes:
      - droneTrajectoryController
      - droneTrajectoryPlanner
      - droneYawPlanner
    parameters:
      - parameter: coordinates
        allowed_values: [-100,100]
        dimensions: 3
...

compatibility_conditions:

- mutually_exclusive:
  - TAKE_OFF
  - LAND
  - KEEP_HOVERING
  - GO_TO_POINT
  - ROTATE
  ...

- active:
    - SELF_LOCALIZE_BY_VISUAL_MARKERS
  before:
    - GO_TO_POINT
    - ROTATE
    - KEEP_HOVERING
    ...
 
 ...

 
 

Fig. 5  A partial example of behavior catalog 



Molina et al. / Front Inform Technol Electron Eng   2019 20(1):60-75 

 

70 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
requesters (mission plan requester and emergency 
requester) send activation requests to the coordinator, 
and thus the coordinator sends requests to the execu-
tion controllers. Fig. 6 shows how the coordinator 
activates and terminates a default behavior that is not 
requested by both requesters (behavior KEEP_ 
HOVERING) and how the coordinator rejects the 
activation from the first requester when another be-
havior from the second requester with a high priority 
is active. 

Fig. 7 shows an extension of the architecture that 
is necessary to facilitate human-robot collaboration. 
The idea of this extension is that a behavior execution 
controller can request the activation or the inhibition 
of other behaviors; for example, it is useful to have 
behavior REQUEST_OPERATOR_ASSISTANCE, 
which can pause the execution of certain behaviors 
while interacting with an operator. Details of this 
extension can be found in Molina et al. (2018). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Besides the request-reply services, the coordi-
nator provides the service of checking behavior acti-
vation format. This service checks that a behavior 
activation expression (a text sentence) has a correct 
format with a valid behavior name, arguments, and 
values for arguments using the behavior descriptors of 
the catalog. This validation can protect the system 
against producing errors when a request is written by 
a human operator. 

6.2.3  Process manager 

The process manager starts and stops the execu-
tion of the processes by efficiently using the resources. 
When a behavior is activated, its execution controller 
asks the process manager to start the execution pro-
cesses. When the behavior is inhibited, its execution 
controller informs the process manager that the pro-
cesses are not needed and then the process manager 
stops unnecessary processes to minimize resource 
consumption. Therefore, the process manager pro-
vides two request-reply services: requesting start 
processes and informing unused processes. 

Because an execution process pi may be used at 
the same time by different behaviors, process pi is 
stopped only when it is not used by any behavior. 
Therefore, the process manager maintains an updated 
reference counter ri for each process pi to count the 
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Fig. 6  Example of behavior coordination 
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number of behaviors using process pi in a given 
moment. Only when the number of references is zero 
(e.g., ri=0), does the process manager stop process pi. 

To avoid an unnecessary stop when two con-
secutive behavior activations use the same process, 
the process is not immediately stopped when the ser-
vice of informing unused process is called. It is de-
layed to keep the process running after the service of 
requesting start processes is called. The service of 
requesting start processes updates the reference 
counters with new values, and then the processes with 
zero references are stopped. This strategy is useful to 
provide the continuity to the process execution and 
avoid inefficient disruptions. 

6.2.4  Belief manager 

The belief manager stores the sets of beliefs, 
maintains their consistency, and provides the re-
quest-reply services of adding belief, removing belief, 
and consulting belief. For the services of adding be-
lief and removing belief, the belief manager updates 
the content of the memory of beliefs and maintains 
consistency among beliefs which are mutually ex-
clusive. When a belief is added, e.g., charge(92, 
empty), the incompatible beliefs are automatically 
retracted, e.g., charge(92, full). 

The service of consulting belief can be used to 
know whether a belief is true and determine parame-
ter values, using belief expressions that may include 
variables. For example, a consultation with the  
expression 

 
object(?x, battery), charge(?x, ?y) 

 
can return the values of variables ?x=92 and ?y=full 
matching their corresponding values in the belief 
memory. 

6.2.5  Belief updaters 

The belief memory includes beliefs that require 
abstract data for general decisions. This abstraction is 
done by the process called “belief updaters.” Each 
belief updater is a process specialized in updating a 
category of beliefs and modifies the content of the 
belief memory using the services provided by the 
belief manager. 

In Aerostack, there is a special belief updater 
called “common belief updater” maintaining an up-
dated number of basic beliefs that are common for 

most robots, such as beliefs related to the position and 
battery charge. 

Belief updaters periodically revise beliefs using 
dynamic information generated by execution pro-
cesses (e.g., data from sensors); for example, the 
update frequency of these updates must be consistent 
with the time required for requesters to make deci-
sions. The frequency of these updates is usually 
smaller than what the motion controllers used. 

The proposed architecture has been conceived to 
include several belief updaters that are independent of 
each other, and thus a developer can flexibly add or 
remove specific belief updaters to a particular appli-
cation according to operational needs. 
 
 
7  Experimental evaluation 
 

In this section, we summarize the evaluations of 
the method for the execution control system presented 
in this study. The evaluation includes two types of 
tasks: experimental flights and analysis of the inte-
gration effort. Experimental flights have been carried 
out to evaluate the performance of the method. The 
analysis of the integration effort has been done to 
verify if the method can be acceptable for potential 
developers who use the Aerostack software  
framework. 

7.1  Experimental flights 

7.1.1  Aerial mission 

The execution control system was evaluated 
with the help of a type of aerial mission based on the 
competition rules of Autonomous Drone Racing 
(ADR) of IROS 2018 (International Conference of 
Intelligent Robots and Systems). The competition is a 
race with indoor autonomous flight challenges (e.g., 
frames to cross, and obstacles). 

Fig. 8 shows an aerial robot and a set of frames 
in the experimental flights. We generated this sce-
nario with the simulator RotorS (Furrer et al., 2016), 
which was used to perform a set of experiments 
helping refine the design of the initial versions of the 
execution control system. 

Fig. 9 shows a real experimental flight corre-
sponding to the same mission. Real experimental 
flights were conducted for the final version of the 
execution control system. In these experimental 
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flights, we used an aerial vehicle, parrot bebop 2, and 
a laptop computer (the same computer used for sim-
ulated flights) equipped with CPU Intel i7-7700HQ, 8 
cores, 2.8 GHz, and 16 GB RAM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A preliminary version of the execution control 

method presented in this study was validated with the 
second type of aerial mission related to surface in-
spection. It was useful in verifying the generality of 
the approach with another type of mission and in 
verifying the correct execution control in collabora-
tion with an operator, where the operator provides 
assistance to the aerial robot to complete the mission. 
Details about this second type of experiment can be 
found in Molina et al. (2018). 

7.1.2  Evaluation method 

The method we used to evaluate the execution 
control system includes a first analysis of sequences 
of behavior activations and sequences of process 
executions corresponding to the experimental flights. 
The goal of this analysis was to verify that the system 
correctly translated the sequences of behavior activa-
tions into consistent changes in the configuration of 
running processes. 

The performance of the execution control system 
was evaluated by measuring the time spent by the 
behavior coordinator in activating behaviors. This 
was measured as time τi, from the moment the coor-
dinator receives a message to activate a behavior bi to 
the moment the coordinator asks the execution con-
troller of behavior bi to start the execution. An ag-
gregated value (e.g., average, minimum, or maximum) 
of the measurement set {τ1, τ2, …, τn} (where n is the 
number of behavior activations) was used as a per-
formance indicator for the execution control system. 

The evaluation method verified that the trajec-
tories generated by the aerial autonomous robot were 
correct according to the mission goal; i.e., they 
crossed all the frames in a reasonable period of time. 

7.1.3  Evaluation results 

The evaluation method was applied to six dif-
ferent real flights that performed the same type of 
mission. A dataset was generated with the following 
information: the temporal sequence of behavior ac-
tivations including 126 behavior activations, the 
temporal sequence of process executions, and the 3D 
point coordinates of the aerial trajectories followed by 
the robot in different missions. 

The sequences of behavior activation requests 
were automatically generated by a mission plan in-
terpreter of Aerostack that used a mission plan speci-
fication (written in Python language) describing the 
tasks in the mission. This mission plan specified that 
the robot had to cross several frames whose location 
was only approximately known before the execution 
of the mission. Therefore, during the mission, the 
robot had to reach a certain point and search for a 
frame. When a frame was found, the robot ap-
proached the center of the frame to cross it and started 
this cycle again until all frames were crossed. 

Fig. 10 shows a partial view (first 60 s) of the 
behavior activation sequence and running processes 
related to motion planning and motion control gen-
erated in a real experimental flight (experiment 6). 
Other behaviors and processes related to different 
functions, such as self-localization and mapping, are 
not presented in Fig. 10. 

The sequence showed that when the behavior 
GO_TO_POINT was approximately activated at 1 s, 
two processes (motion controller and trajectory 
planner) were started by the execution control system  

 
 

Fig. 8  Flight simulation using RotorS 

 
 

Fig. 9  A real flight experiment 
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to support the behavior execution. When the behavior 
GO_TO_POINT approximately terminated at 9 s, the 
execution control system correctly stopped the tra-
jectory planner process and kept running the motion 
controller process. This is adequate for efficiency 
reasons, because the next behavior to activate 
SEARCH_FRAME used the motion controller pro-
cess. The sequence showed that incompatible con-
trollers (e.g., motion controller and vision-based 
controller) were correctly executed in alternation. 

This type of sequence analysis was done for all 
the cases included in the evaluation dataset. The 
analysis demonstrated that all processes were con-
sistently executed according to the mission goal. 

Coordination time {τ1, τ2, …, τn} was obtained 
from the evaluation dataset (n=126). The arithmetic 
mean coordination time was 119 ms and the minimum 
and maximum were 36 ms and 204 ms, respectively. 
These values showed that the execution control sys-
tem which should be used by execution requesters 
worked at a frequency up to 1 Hz, which is adequate 
for making decisions during the development of a 
wide range of autonomous aerial missions in un-
known environments (e.g., inventory missions and 
inspection missions). 

Fig. 11 shows an example of a trajectory in ex-
periment 6, and this trajectory was completed in 118 s. 
The autonomous robot correctly crossed all frames, 
and the trajectories generated in the rest of the real 
experimental flights also correctly crossed all frames. 

Fig. 12 shows more details about the trajectory 
in experiment 6 to cross the first frame, and with 
different colors, the motion behaviors were active 
during each part of the trajectory (first 29 s). 

For example, in the first part of the movement, 
the active behavior was TAKE_OFF. The next active 

 
 
 
 
 
 
 
 
 
 
 

 
behavior was GO_TO_POINT, which was activated 
to reach a high point from which the aerial robot can 
observe the frames well. Then the next active be-
havior was SEARCH_FRAME, which performed a 
prefixed movement until the image of a frame was 
detected with the help of the frontal camera. The 
aerial robot activated the behavior APPROACH_ 
FRAME, which correctd the position of the drone; 
thus, it was in front of the frame and ready to cross. 
Finally, the robot activated the behavior MOVE_ 
FORWARD to cross the frame. 
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Fig. 10  Partial sequence of behavior activations (blue) and execution of processes (red) 
References to color refer to the online version of this figure 
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Fig. 11  An example of the trajectory generated in a real 
flight 
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Fig. 12  Details of the trajectory to cross the first frame 
References to color refer to the online version of this figure 
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7.2  Integration effort 

To verify that the execution control method may 
be acceptable for potential developers who use the 
Aerostack software framework, we evaluated the 
integration effort of new behaviors using the follow-
ing two measurements: 

1. Programming effort. This is the amount of 
work in person-hours for software developers to in-
tegrate a new behavior. 

2. Code size. This is the number of lines of code 
programmed to integrate a new behavior and its rela-
tion to the size of the reused code. 

Table 2 shows the values associated with inte-
grating five behaviors in Aerostack (the behavior 
SELF_LOCALIZE was implemented following two 
different approaches M1 and M2). To measure the 
programming effort, four tasks were considered: 
learning the behavior implementation (L), designing 
the execution controller (D), programming the exe-
cution controller (P), and validating the integration 
(V). These evaluation numbers corresponded to inte-
gration tasks performed by two different developers 
with more than six months in Aerostack. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
 
 

 
As expected, the effort significantly varied for 

different behaviors, due to their diverse complexity. 
The average value was 45.1 person-hours (5.6 person- 
days) and the maximum was 112 person-hours (14 
person-days), which are acceptable according to the 
usability objectives of Aerostack. 

The line number of the execution control system 
corresponding to the part which is common for all 
behaviors was 4754, including the following com-
ponents: behavior coordinator, process manager, be-
lief manager, common belief updater, and common 
classes. The code size to integrate a new behavior was 
estimated at 368 lines (the average value of execution 
controllers of the previous five behaviors), which is a 
significantly low value compared with the amount of 
code reused for the execution control system. 
 
 
8  Conclusions 
 

We have described the results of our work in the 
development of a general solution for execution con-
trol systems, which is one of the critical components 
of control architectures in robotics. 

The solution shares parts of the design concepts 
of the current state of the art in robotic control archi-
tectures. We have conceived an original design to 
respond to the need to be parts of a software frame-
work, practically useful and efficient for building real 
robotic systems. 

The design combines two main ideas: (1) A dis-
tributed organization separates and encapsulates the 
execution details of each behavior helping developers 
add new behaviors with flexibility without affecting 
other behaviors; (2) There is a central coordination 
supported with the help of a catalog with compatibil-
ity conditions formulated at the behavior level (which 
is simpler than that at the process level). The catalog 
uses a declarative flexible representation to easily add 
information about new behaviors. 

The experimental flights demonstrate that the 
method is valid for practical applications in aerial 
robotics and can be applied to specific systems with 
acceptable development efforts. 

The solution is integrated in the Aerostack 
open-source framework (version 3.0). Consequently, 
its technical details are fully accessible to be con-
sulted and reused in developing new applications in 
aerial robotics. Our design is supported by standards 
used in robotics (e.g., ROS), which facilitates its 
general use. 

In spite of this, the method can be improved. The 
capabilities of the Aerostack executive system could 
be extended with a declarative language to formulate 

Table 2  Evaluation numbers of programming effort in 
person-hours 

Behavior 

Evaluation number 
(person-hour) 

L D P V Total 

GO_TO_POINT 16 24 16 16 72 

MOVE_FORWARD 0.5 1.0 5.0 3.0 9.5 

SEARCH_FRAME 1 2 5 10 18 

SELF_LOCALIZATION 
(M1) 1 1 8 4 14 

SELF_LOCALIZATION 
(M2) 56 16 24 16 112 

L: learning the behavior implementation; D: designing the execution 
controller; P: programming the execution controller; V: validating the 
integration 
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complex behaviors that use other behaviors. In addi-
tion, to execute more complex mission plans, the 
belief memory management could be extended with 
rich representations and good methods (e.g., repre-
sentation with uncertainty, complex methods for per-
sistency, and belief revision methods). 
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