
Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288 1277

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

NIG-AP: a newmethod for automated penetration testing∗

Tian-yang ZHOU1, Yi-chao ZANG†‡1, Jun-hu ZHU2, Qing-xian WANG1

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
2China National Digital Switching System Engineering and Technological R&D Center, Zhengzhou 450001, China

†E-mail: zangyeechao@sina.com

Received Sept. 3, 2018; Revision accepted Feb. 1, 2019; Crosschecked Sept. 4, 2019

Abstract: Penetration testing offers strong advantages in the discovery of hidden vulnerabilities in a network and
assessing network security. However, it can be carried out by only security analysts, which costs considerable time
and money. The natural way to deal with the above problem is automated penetration testing, the essential part of
which is automated attack planning. Although previous studies have explored various ways to discover attack paths,
all of them require perfect network information beforehand, which is contradictory to realistic penetration testing
scenarios. To vividly mimic intruders to find all possible attack paths hidden in a network from the perspective of
hackers, we propose a network information gain based automated attack planning (NIG-AP) algorithm to achieve
autonomous attack path discovery. The algorithm formalizes penetration testing as a Markov decision process and
uses network information to obtain the reward, which guides an agent to choose the best response actions to discover
hidden attack paths from the intruder’s perspective. Experimental results reveal that the proposed algorithm
demonstrates substantial improvement in training time and effectiveness when mining attack paths.

Key words: Penetration testing; Reinforcement learning; Classical planning; Partially observable Markov decision
process

https://doi.org/10.1631/FITEE.1800532 CLC number: TP393.08

1 Introduction

Over the past decades, penetration testing has
played an important role in assessing network secu-
rity by seeking possible exploitable vulnerabilities in
applications or operating systems. However, it is
still a domain-specific area, making it hard for non-
experts to carry out regular and systematic security
tests. Corporations or organizations spent a great
deal of money inviting security analysts to conduct
penetration testing of their networks, which incurs
a significant time cost as well. Automated attack
planning, however, can indicate the direction along

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (No. 61502528)

ORCID: Yi-chao ZANG, http://orcid.org/0000-0002-1791-
586X
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2019

which to cope with these vulnerabilities.
Automated attack planning (Futoransky et al.,

2010), also known as “cyber security planning” in the
artificial intelligence planning community (Zhuang
et al., 2017), aims at automatically finding all possi-
ble attack paths that seek to retrieve sensitive in-
formation. Schneier (1999) first proposed an at-
tack tree model to discover attack paths where the
root node represents the goal of the attack and child
nodes represent requirements of satisfying the parent
nodes. The limitation of the attack tree model lies
in its single-objective-oriented attack path discovery,
which does not accommodate multi-objective scenar-
ios. To solve this problem, Sheyner et al. (2002)
devised an attack graph model, which represents
the collection of possible penetration scenarios in a
specific computer network, where each penetration
scenario is a sequence of actions taken by the in-
truders. Roberts et al. (2011) combined personal

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

1278 Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288

psychology and the attack graph model to implement
personal vulnerability analysis. Though the attack
graph model is widely used in security evaluations,
it can be applied only to small network penetration
testing scenarios because of the state explosion prob-
lem. To overcome this problem, Obes et al. (2013)
transformed the penetration scenario into the plan
domain definition language (PDDL) and adopted a
classical planning algorithm to find attack paths.
The penetration scenario is composed of two parts,
the “problem.pddl” and “domain.pddl” files (Fox and
Long, 2003), where the former is used to describe
the network configuration information and the latter
is used to describe vulnerability and action informa-
tion. Khan and Parkinson (2017) used PDDL to im-
plement automated vulnerability assessment. PDDL
has achieved great success in the commercial prod-
uct “Core Impact” (Core Security, 2019), but there
are still some limitations to this type of method, in
which it needs perfect information about a network
scenario and it yields uncertainty. To take uncer-
tainty into account in a network penetration testing
scenario, Sarraute et al. (2013) adopted partially ob-
servable Markov decision processes (POMDPs) to
formalize the attack planning problem so that ac-
tion uncertainty can be incorporated into attack path
generation. Inspired by previous works, Alexander
Pretschner (2017) introduced POMDP into indus-
trial control systems, trying to automatically verify
the security of industrial control systems. Mean-
while, Shmaryahu et al. (2017) modeled penetration
testing as a partially observable contingent problem
and devised a contingent planning tree algorithm to
plan the attack paths. Instead of introducing new
models, Sarraute et al. (2011) merged probability
into classical planning algorithms to find the optimal
attack paths in nondeterministic scenarios. Even
though uncertainty is considered, solving POMDP
for a large network is still unfeasible (a network with
20 computers is already unfeasible for the POMDP
solver). To overcome this problem, Sarraute et al.
(2012) built a 4AL decomposition algorithm to slice a
large network into smaller ones according to the net-
work structure and solve each of them by POMDP.
Even though the POMDP model has achieved great
success in the academic domain, it is based on a
rigid hypothesis whereby the network structure and
software configuration remain unchanged between
any two penetration tests, which makes it hard to

be applied to realistic penetration scenarios. There
are some other research works that have contributed
to the field of automated attack planning from an
engineering perspective. Samant (2011) offered a
fast, reliable, and automated testing tool to per-
form a protocol-oriented security test. Stefinko and
Piskuzub (2017) developed an expert system com-
posed of an inference engine and a knowledge base
to accomplish modern automated penetration test-
ing. Backes et al. (2017) adopted mitigation anal-
ysis to implement a holistic security assessment in
a simulation penetration test scenario, but it lacked
a solid theoretical understanding. Steinmetz (2016)
proposed an attack planning algorithm from the per-
spective of resource constraints.

In spite of the importance of the previous stud-
ies, it is still impossible for these attack planning
methods to achieve penetration testing without prior
knowledge. For instance, PDDL-based methods
need an intact network structure and host configura-
tion information, and POMDP-related methods need
parts of that information. None of these methods can
discover attack paths without prior knowledge. To
achieve realistic penetration testing, there are two
challenges: how to drive an agent to penetrate au-
tomatically and intelligently and how to choose the
best attack action when faced with a specific situa-
tion. To deal with these challenges, we propose a net-
work information gain based attack planning (NIG-
AP) algorithm. First, network information gain is
proposed to formalize the penetration testing. Then
a reinforcement learning model is reconstructed to
guide discovery of the attack paths based on a cu-
mulative network information gain.

In this study, we propose the NIG-AP algo-
rithm, in which there is no need for prior network
structure, software configuration information, and
domain knowledge to discover the attack paths. The
algorithm can intelligently retrieve essential penetra-
tion information in the penetration testing.

2 Preliminaries

Automated attack planning is an interdis-
ciplinary domain, involving cyber security and
intelligent planning domains. In this section, we
present some background on automated attack plan-
ning, covering mainly penetration testing and deep
reinforcement learning.

Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288 1279

2.1 Penetration testing

Penetration testing aims to obtain control over
specific computers in a target network. Usually
it starts with a controlled computer, where hack-
ers try to gather computer and network information
through scanning or exploit operations. After gath-
ering information, hackers choose the best action to
penetrate the target network, which we call an “ex-
ploit.” Fig. 1 shows an example of penetration test-
ing. The steps of penetration testing are as follows:

1. Gathering information
This is an essential step in penetration testing

and usually takes a long time. The collected informa-
tion contains opened ports, services, operating sys-
tem version, and vulnerability information, obtained
through scan tools such as Nmap and X-Scan. The
information is the basis for choosing the proper ex-
ploitation action.

2. Exploitation
Given the essential penetration information

gathered above, hackers choose the corresponding
exploitation action to attack and control the tar-
get computer according to the intended penetration
objective. A typical exploit action contains various
vulnerability exploits, such as the structured query
language (SQL) injection and binary vulnerability
exploits.

3. Privilege escalation
This is a pivotal step to continue the subse-

quent attacks. The privilege that hackers achieved
in the last step is usually fairly constrained, which
can limit the hackers’ choice of action. By adopting
privilege escalation, the available action space can be
enlarged and contribute to the hacker’s subsequent
attack choices.

4. Trace elimination

Internet
Internet

DMZ

1 2 3

4

5

6

...

...

Fig. 1 Typical penetration testing scenario

After achieving control of the victim computer,
attack traces (security or operation logs) left behind
in the computer have to be eliminated, so that the
hackers can safely log on to the computer again.
Trace elimination can be done by deleting security
logs and other log information files.

2.2 Deep reinforcement learning

As shown in Fig. 2a, reinforcement learning
(Sutton and Barto, 1998) is a kind of trial-of-error
algorithm. The agent or learner is not told what
to do but takes action guided by numerical reward.
Formally, reinforcement learning can be represented
as (S,A,R, P, γ), where S represents the state space,
A represents the action space, R represents a reward
function, P represents the state transition probabil-
ity function, and γ ∈ (0, 1) is a discount factor. The
objective of reinforcement learning is to optimize pol-
icy π(a|s) so as to maximize the cumulative reward
shown as

E(Gt|π) = Rt+1 + γRt+2 + . . .+ γn−1Rt+n, (1)

where Rt is instant reward attained at time t and
Gt is cumulative reward retrieved from that time on
to the end of the episode t + n. A Q-learning algo-
rithm is often used to solve the above objective func-
tion (Szepesvári, 2010). In Q-learning, the cumula-
tive reward during this process can be represented
as

Qπ(s, a) = E[Gt|st = s, at = a, π]. (2)

Within the policy space, there exist some poli-
cies π∗ that satisfyQ∗(s, a) ≥ Qπ(s, a), where ∗ is the
optimal policy and Q∗(s, a) is the optimal state ac-
tion value function following the Bellman optimality
equation shown as

Q∗(s, a) = Es′∼S [r + γmax
a′

Q(s′, a′)|s, a]. (3)

According to the Banach fixed-point theo-
rem (Mnih et al., 2013), Q(s, a) will iterate to an

Agent

 rt+1

st+1

Environment

Reward rt
Action at

State st
 rt+1

st+1

Environment

Reward rt
Action at

State st

... ...

(a) (b)

Fig. 2 Reinforcement learning (a) and deep reinforce-
ment learning (b)

1280 Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288

optimal value, so that we can infer the optimal pol-
icy according to the formula shown below after the
policy iteration:

π∗(a|s) = argmax
a

Q(s, a). (4)

However, with the increase of the sizes of S and
A, the iterative process for solving the optimal pol-
icy becomes unfeasible. One natural way to deal
with this problem is to adopt a nonlinear function
approximator, such as an artificial neural network,
to represent the state action value function. After
incorporating a deep neural network into reinforce-
ment learning (Fig. 2b), it becomes deep reinforce-
ment learning (DRL) (Mnih et al., 2015). The Adam
algorithm (Kingma and Ba, 2014) is usually adopted
to train a deep neural network, whose update for-
mula is shown as

θt ← θt−1 − αm̂t/(
√

v̂t + ε), (5)

where m̂t is a bias-corrected first moment estimate,
v̂t is a bias-corrected second raw moment estimate,
α is the step size, ε is the correction parameter, and
θt is the parameter of the deep neural network. The
original Q(s, a) table will be replaced with a neu-
ral network fitting function whose update formula is
much more efficient.

3 Methodology

In this section, we will introduce the network
information gain into attack planning and a network
information gain based attack planning algorithm to
plan attack paths in a target network without prior
knowledge.

3.1 Network information gain

Penetration testing is a systematic engineering.
Actions taken by intruders maximize the informa-
tion entropy of a target network composed of two
parts: host information and network information en-
tropies. The host information entropy is made up of
four parts: (1) Operating system (OS) information
is used to describe the information about the oper-
ating system type, version, and language packages;
(2) Application information is used to describe the
information about the installed software; (3) Port
information is used to describe the services that a
target host has opened; (4) Protection mechanism

information is used to describe the activated protec-
tion mechanism information of the target host.

The detailed host information can be formal-
ized as vector [Pos,Papp,Pport,Ppro], where Pos il-
lustrates the operating system probability distribu-
tion, where each element represents the probability
of the corresponding operating system installed on
the host. The other three vectors are not exclusive,
which means that one specific computer can have
multiple elements (for example, one host could have
opened ports 80 and 22 and installed Firefox and IE
at the same time). Thus, it is necessary to normalize
these vectors.

Given a general vector, information entropy
(Liang and Shi, 2004) is adopted to represent the
exposure state of the victim computer, which is cal-
culated as

H(P) =−
M∑

k=1

|pk|∑

j=1

(pkj log pkj+(1−pkj) log(1−pkj))

−
|Pos|∑

i=1

pi log(pi), (6)

where Pos is the operating system vector and M is
the set of the other three vectors. From the for-
mula above, it is stated that the information entropy
is high at the very beginning as an intruder knows
nothing about the target host, and it decreases as
the intruder comes to know an increasing amount
of information about the victim computer by scan-
ning or exploiting actions. When the intruder takes
over the victim computer, there is no uncertainty in
the general vector, meaning that there is only 1 or
0 in the vector, and the information entropy H de-
creases to 0. Given the formula, it is easy to prove
that no matter what action is taken, the information
entropy after an action will be no greater than the
information entropy before the action, because the
penetration testing action can decrease uncertainty.
We prove the idea in Theorem 1.
Theorem 1 Assume that the exposure state
of the target computer can be represented as a
general vector P = [Pos,Papp,Pport,Ppro]. Let
P0 (P1) be the general computer vector before (af-
ter) action a. H(P0) (H(P1)) is the correspond-
ing information entropy. Then the information gain
ΔH = H(P0) − H(P1) ≥ 0 regarding action a is
always true.

Because the exposure state of the target

Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288 1281

computer P = [Pos,Papp,Pport,Ppro] is composed
of four parts and every two of them are indepen-
dent, if we can prove that for each vector in P

the above formula is satisfied, then it will be easy
for us to prove the theorem. Let P 0

os (P 1
os) be

the operating system vector before (after) action a.
For each element p in P 0

os which satisfies p ≥ 0.5

(p ≤ 0.5), the corresponding element after action
a in P 1

os will satisfy p′ ≥ p ≥ 0.5 (p′ ≤ p ≤ 0.5).
At the same time, because the network information

gain H(p) =
|p|∑

j=1

(pj log pj + (1 − pj) log(1 − pj)) is

monotonous, then H(pos) ≥ H(p′
os) holds. It is the

same for the other three parts. As the information
entropy is the sum of the four parts, the theorem
holds true.

To guide the agent to automatically take the
best action, we need to encourage those actions that
can successfully gain more information from the vic-
tim host, and punish those actions that do not con-
tribute to their further penetration. Given network
information entropy, we adopt network information
gain (Lee and Lee, 2006) as the signal for evaluating
actions taken by the agent, whose formula is shown
as

ΔH = H(Pbefore)−H(Pafter), (7)

where H(Pbefore) is network information entropy be-
fore action and H(Pafter) is network information en-
tropy after action. There will be three kinds of situ-
ations for calculating network information gain: (1)
The uncertainty of the victim computer decreases
but it is not eliminated after taking actions such as
OS detection and port scan, so the information gain
from the action is the difference between two proba-
bility distributions. (2) The victim computer is con-
trolled after action, such as a vulnerability exploit;
in this case, the information gain is the information
entropy of the state before action. (3) The action has
no influence on the state of the victim computer and
the probability distribution is the same after action,
so the information gain is 0.

ΔH=

⎧
⎨

⎩

H(Pbefore)−H(Pafter), Situation (1),
H(Pbefore), Situation (2),
0, Situation (3).

(8)

The reward r for an action of an agent will
be composed of two parts rgain and rcost, satisfy-
ing r = rgain + rcost. rgain is information gain, which
conveys information to judge an action. Compared

with the original constant reward, rgain is much more
flexible and will guide our agent to choose a better
action so as to achieve much more cumulative re-
ward. rcost is action cost. There are two reasons
for setting this term: one is to limit the number of
actions to avoid an endless loop, and the other is to
guide the agent to find the attack paths that are as
good as possible. rcost is calculated based on the
common vulnerability scoring system (CVSS) and
the formula is shown as

rcost = sigmoid(Scorecvss · Scoreperiod), (9)

Scoreperiod =

⎧
⎪⎪⎨

⎪⎪⎩

70, t ≤ 60,

90, 60 < t ≤ 730,

50, 730 < t ≤ 1825,

30, t > 1825,

(10)

where Scorecvss is the CVSS value, Scoreperiod repre-
sents action timeliness, and t is the disclosure time
of vulnerability.

Network information entropy concerns mainly
connectivity among computers and a scan opera-
tion is usually adopted to test computer connectiv-
ity. Thus, we adopt a scan operation whenever there
are no useful actions for an agent to take, and the
total information gain will increase when there are
available computers that an agent can penetrate.

3.2 Network information gain based auto-
mated attack planning algorithm

Penetration testing can be seen as a typical
Markov decision process (MDP) whose trajectory is
shown as follows:

{S0, A0, R1, S1, A1, R2, . . . ,

Si, Ai, Ri+1, . . . , Sn, An, Rn+1},
(11)

where Si represents the victim state, Ai represents
the action taken by the agent given state Si, and
Ri+1 represents the reward for action Ai under
state Si. n denotes the end of the episode. Pen-
etration testing aims at compromising target hosts
within a limited period of time, which can be for-
malized as Eq. (1), where Rt is the same as ΔH ,
representing the network information gain at time
t, and γ is a discount factor within (0, 1). S rep-
resents the combination of the operating system,
opened services, ports, protection mechanisms, and
whether the computer has been compromised, for
example, M0-win2000-p445-SMB-compromised and

1282 Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288

M1-win2003-p80-HTTP-uncompromised. Because
different policies lead to different cumulative re-
wards, the goal of MDP is to find the best policy
π that maximizes cumulative rewards Gt, which is
shown as

max E[Gt|π]. (12)

Given the objective function, a Q-learning algo-
rithm is adopted to find the best policy. The policy is
a mapping function which maps a state to an action,
and the mapping function can be represented as a
tabular form, where each row stands for a host state
and each column stands for an action. The value
stands for the contribution value of adopting a cor-
responding action under a specific state to reach the
final goal. According to the Bellman equation, the
update formula of Q(s, a) for one specific computer
is shown as

Q∗(s, a)=Es′∼S[ΔH−rcost+γmax
a′

Q(s′,a′)|s,a]. (13)

To update the parameters of a deep neural net-
work to fit Q(s, a), the Adam algorithm is adopted,
and the update formula is shown as

θt ← θt−1 − αm̂t/(
√

v̂t + ε), (14)

where m̂t and v̂t are calculated as

m̂t ← (β1 ·mt−1+(1−β1)∇θQt(θt−1))/(1−βt
1), (15)

v̂t ← (β1 ·vt−1+(1−β2)∇θQt(θt−1)
2)/(1−βt

2), (16)

where α is the step size, ε is the correction parameter,
and β1 and β2 are the exponential decay rates for
moment estimates.

The method mentioned above aims at discover-
ing an effective exploitation action in a specific host,
and it cannot be generalized to a network scenario.
To extend a specific host to a network scenario, an
observed computer set Φ is created to save the de-
tected computers. When Φ is empty or actions cho-
sen by an agent have no influence on the information
gain, there will be a scan action to discover new avail-
able computers. When there are multiple actions
that will influence the information gain, we choose
the action that contributes the most to the cumula-
tive reward according to policy π. Calculating the
state transition probability is hard in a manual set-
ting, so the Monte Carlo method is used to estimate
the state transition probability during the training
stage. At the very beginning of the training stage, a

large number of random action sequences are chosen
to retrieve the available knowledge hidden in pene-
tration testing. The discount factor γ is set to 0.9 to
place a greater weight on the long-term reward. The
algorithm for automated attack planning is summa-
rized in Algorithm 1.

Algorithm 1 Network information gain based auto-
mated attack planning
Require: S,A, γ, α, Φ,Q(θ),m0, v0, β, ε

Ensure: π∗

1: Initialize θ,m0, v0 arbitrarily
2: If ¬Φ and action a contributes to H

3: Repeat (for each episode):
4: Initialize s

5: Repeat (for each step of episode):
6: Choose action a from s using current

policy derived from Q(s, a)

7: Take action a, observe s′, and
calculate reward r = H(s)−H(s′)

8: mt ← β1ṁt−1 + (1− β1)∇̇θQt−1(θ)

9: vt ← β2v̇t−1 + (1− β2)∇̇θQt−1(θ)
2

10: m̂t ← mt/(1− βt)

11: v̂t ← vt/(1− βt)

12: θt ← θt−1 − αm̂t/(
√
v̂t + ε)

13: Qt(s, a)← Qt−1(s, a) + α(r −Qt−1(s, a)

+γmax
a′ Qt−1(s

′, a′))

14: s← s′

15: Until s is end
16: Else
17: Take scan action and update Φ,

and continue update Q(s, a)

18: End if

4 Experiment

The effectiveness of NIG-AP is tested on a ma-
chine running an Intel Core i7 CPU at 2.5 GHz with
16 GB RAM. The experiment network scenario is
constructed based on full virtualization technology
according to typical enterprise networks operating
in the real world, where the operating systems and
applications run in the same way as on physical
machines.

To collect the required scenario data, Nessus
(Beale et al., 2004) is used to scan each subnet of
the enterprise network to gather information about
the host Internet protocol, opened services, oper-
ating system, and vulnerability information. Even
though the various vulnerabilities detected by Nessus

Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288 1283

can be falsely detected or are unimportant for fur-
ther penetration, it is still reproduced in the exper-
imental scenario. There are two reasons for doing
so: the first is that reproducing a network scenario
vividly is important for verifying the effectiveness
of the attack planning algorithm, and the second is
that avoiding useless vulnerability exploitation is a
metric in evaluating an automated attack planning
algorithm. All of the scanned hosts will be repro-
duced in the experimental scenario, and there are
also some random hosts assigned to the demilitarized
zone (DMZ) area and intranet area to evaluate the
scalability of attack planning algorithms. We com-
pare our proposed algorithm with POMDP and the
forward search planner, and the goal is to recognize
effective attack paths.

4.1 Network scenario

As shown in Fig. 3, the experiment network
structure is composed of two parts, the DMZ area
and an intranet area, and connected by a firewall
and a router. The firewall rules allow the internet
host to visit the DMZ host and the intranet host to
visit the DMZ host, but the rules do not allow the
internet host to visit the intranet host.

Given the network structure shown above, the
basic idea of penetration testing consists of three
steps: (1) The hacker breaks into the DMZ area
via SQL injection, obtaining sensitive information
about the router password; (2) The hacker controls
the router given the sensitive information attained in
the previous step; (3) The hacker discovers the vul-
nerabilities of the intranet hosts, and exploits them
to take control of the target computer.

4.2 Action space

Actions are retrieved from the open source pen-
etration test framework “Metasploit” (Holik et al.,
2014), which includes mainly two types of action,
information gathering and vulnerability exploit.
First, log into Metasploit remotely using the man-
ager interface. Second, read the whole database and
extract the essential information. Third, construct
the uniform resource locator (URL) based on the re-
trieved information to crawl the customer premise
equipment (CPE) information. Finally, store that
information in the database. The information gath-
ering actions contain mainly port scan and OS scan
operations, while the vulnerability exploit actions
comprise concrete vulnerability exploitations such as

Kali
192.168.50.174

192.168.50.174/24

Web server

Email server Ubuntu 1204

Ubuntu 1204

Ubuntu 1604

Ubuntu server

Ubuntu 1404

Windows server 2008 R2 CentOS

Windows7 Professional EN SP1

Windows7 Ultimate EN SP2

WindowsXP CN SP1

10.0.5.1/24

10.0.4.10/24 10.0.3.20/24

10.0.4.1/24 10.0.3.1/24

10.0.0.1/24

10.0.0.20/24

10.0.1.1/24

10.0.1.10/24

10.0.2.1/24 10.0.2.2/24

WindowsXP CN

Fig. 3 Experimental scenario

1284 Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288

an SQL injection vulnerability exploitation against
Joomla. As shown in Fig. 4, each action is composed
of three parts: parameters, predicates, and effects,
where the parameters represent the variables used in
the PDDL description, predicates represent the pre-
conditions of executing an action, and effects repre-
sent the outcomes after executing this action. There
are in total 1798 actions extracted from Metasploit
by using “msfrpcd.”

4.3 Experimental results

POMDP is implemented based on the APPL
toolkit (Kurniawati et al., 2008), forward search
is implemented based on fast forward (FF)
(Baulcombe, 1999), and NIG-AP is implemented
based on mdptoolbox (Chadès et al., 2014).

The experimental results are separated into
two parts: the first compares POMDP with NIG-
AP in terms of convergence, and the second com-
pares POMDP with the forward search planner
and NIG-AP in terms of effectiveness. NIG-AP is
used in the experiments with various optimization
algorithms, including the Q-learning optimization al-
gorithm (NIG-AP(Q)), the relative value iteration
optimization algorithm (NIG-AP(RVI)), the value
iteration algorithm (NIG-AP(VI)), the policy iter-
ation algorithm (NIG-AP(PI)), the modified pol-
icy iteration algorithm (NIG-AP(PIM)), and the
value iteration Gerchberg-Saxton (GS) algorithm
(NIG-AP(VIGS)).

As shown in Fig. 5, it is easy to find that
our NIG-AP planner has a good performance in
convergence. Though POMDP performs better at

Information gathering action

(: action
Os_scan
: parameters (?srcIP?dstIP)
: precondition (and
(connectivity ? srcIP ? dstIP)
(compromised ? srcIP))
: effect (and (osType > dstIP)(increase (total – cost)5)))

Vulnerability exploitation action

(: action
Joomla_Content_History_SQLi_Remote_Code_Execution
: parameters (?srcIP?dstIP)
: precondition (and
(connectivity ? srcIP ? dstIP)
(compromised ? srcIP))
(isunix ? dstIP)
(or (isjoomla213 ? dstIP))
:effect(and(compromised ? dstIP)(increase(total – cost)75)))

Fig. 4 Action example

the beginning when compared with NIG-AP, they
share a similar performance after the 3rd iteration,
which means that they possess similar attack path
planning precision. The error threshold is reached
after four iterations, which means NIG-AP performs
as well as POMDP in planning attack paths.

Apart from precision performance, it can be
seen from Fig. 6 that NIG-AP(VI), NIG-AP(RVI),
and NIG-AP(PIM) share similar training time along
with the increasing size of the host number, and
these algorithms perform better than NIG-AP(Q)
and NIG-AP(VIGS). Nevertheless, the training time
is still acceptable, and for 14 states, the training
time is limited to within 0.5 s, and NIG-AP(RVI),
NIG-AP(VI), NIG-AP(PI), and NIG-AP(PIM) are
limited to within 0.02 s.

As for POMDP, we illustrate the time consump-
tion performance in Table 1, from which we can see
that NIG-AP consumes less planning time, while
POMDP consumes much time in planning attack
paths. When the host number reaches three, the
APPL toolkit cannot solve the problem. This illus-
trates that the effectiveness of POMDP is very low,
and it is hard for POMDP to be generalized to large
network scenarios; however, NIG-AP can effectively
find attack paths in large network scenarios.

To compare the effectiveness of the planners, the

POMDP
NIG-AP(RVI)
NIG-AP(PI)
NIG-AP(Q)
NIG-AP(PIM)
NIG-AP(VIGS)

Iteration number

Er
ro

r r
at

io

0.3

0.2

0.1

0
20 4 6 8 10 12 14

Fig. 5 Iteration performance

State index
20

0.5

0.4

0.3

0.2

0.1

0
4 6 8 10 12 14

Ti
m

e
(s

)

NIG-AP(RVI) NIG-AP(VI) NIG-AP(PI)
NIG-AP(Q) NIG-AP(PIM)NIG-AP(VIGS)

Fig. 6 Time performance

Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288 1285

effectiveness metric is defined as

e =
Ncorrect

Nstate
, (17)

where Nstate is the host state number while Ncorrect is
the number of correct actions considering the specific
state shown in the output policy file. All of the gath-
ered vulnerability information is reproduced in the
scenario, but only some contribute to further pene-
tration according to artificial analysis. An effective
attack planning algorithm can recognize those use-
less vulnerabilities, find valid attack paths as soon as
possible, and generate less network traffic. We record
an effectiveness metric on a large complex network
scenario, after restricting the number of available
vulnerability exploits to 10. The experimental re-
sults are shown in Table 2, from which we can see

Table 1 Training time of different planners for four
state numbers

Planner
Training time (s)

1 2 3 4

NIG-AP(VI) 0.0121 0.0007 0.0006 0.0007
NIG-AP(RVI) 0.0004 0.0005 0.0006 0.0008
NIG-AP(Q) 0.3312 0.3157 0.2982 0.3401
NIG-AP(PI) 0.0025 0.0044 0.001 0.0106
NIG-AP(PIM) 0.0005 0.0006 0.0007 0.0007
NIG-AP(VIGS) 0.0028 0.0066 0.0089 0.0153
POMDP 5.62 27.43 − −
NIG-AP: network information gain based automated at-
tack planning; NIG-AP(VI): NIG-AP with value itera-
tion; NIG-AP(RVI): NIG-AP with relative value itera-
tion; NIG-AP(Q): NIG-AP with Q-learning; NIG-AP(PI):
NIG-AP with policy iteration; NIG-AP(PIM): NIG-AP
with modified policy iteration; NIG-AP(VIGS): NIG-AP
with value iteration Gerchberg-Saxton; POMDP: partially
observable Markov decision process

that NIG-AP outperforms POMDP and FF in terms
of effectiveness. The lowest effectiveness with NIG-
AP is about 0.36, which is far beyond that of FF,
whose effectiveness ratio is about 0.1.

Fig. 7 shows the effectiveness ratio of differ-
ent algorithms. The effectiveness of NIG-AP out-
performs that of FF and POMDP along with the
increasing size of the state number. FF is a
deterministic planner that iterates all possible at-
tack paths in order, so the effectiveness ratio of FF
is constant, and the effectiveness of FF is completely
determined by the order of exploitation actions in the
database. POMDP shows great performance at the
very beginning, but it is hard for POMDP to solve
a large state scenario, so there is no effectiveness
ratio after the 2nd state because of the solution com-
plexity problem. Compared with POMDP, NIG-AP
converges faster, which makes NIG-AP more general-
ized in large complex network scenarios. FF plans at-
tack paths by combining all possible actions that sat-
isfy the preconditions, and the solution space is very
large. POMDP and NIG-AP reduce the space using

State index
0 3 6 9 12 15 18

Ef
fe

ct
iv

en
es

s
ra

tio

1.0

0.8

0.6

0.4

0.2

0

NIG-AP(RVI)
NIG-AP(VI)
NIG-AP(PI)

NIG-AP(Q)
NIG-AP(PIM)
NIG-AP(VIGS)POMDP

FF

Fig. 7 Performance of discovering correct action

Table 2 Attack action discovery effectiveness of different planners

Planner
Attack action discovery effectiveness

2 3 4 5 6 7 8 9 10 11 12 13 14 15

NIG-AP(Q) 1 0.5 0.375 0.2 0.333 0.071 0.125 0.056 0.2 0.091 0.042 0.077 0.107 0.1
NIG-AP(VI) 0.75 0.5 0.625 0.5 0.583 0.5 0.625 0.556 0.55 0.545 0.5 0.5 0.5 0.467
NIG-AP(PI) 1 0.5 0.5 0.6 0.667 0.643 0.5 0.556 0.6 0.545 0.417 0.538 0.5 0.467
NIG-AP(VIGS) 1 0.833 0.625 0.6 0.583 0.5 0.5 0.611 0.55 0.545 0.5 0.423 0.429 0.467
NIG-AP(PIM) 0.75 0.667 0.75 0.5 0.75 0.643 0.5 0.611 0.55 0.5 0.417 0.538 0.571 0.433
NIG-AP(RVI) 0.75 0.5 0.625 0.7 0.583 0.571 0.625 0.611 0.55 0.5 0.5 0.538 0.536 0.567
POMDP 1 0.75 − − − − − − − − − − − −
FF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

NIG-AP: network information gain based automated attack planning; NIG-AP(VI): NIG-AP with value iteration; NIG-
AP(RVI): NIG-AP with relative value iteration; NIG-AP(Q): NIG-AP with Q-learning; NIG-AP(PI): NIG-AP with
policy iteration; NIG-AP(PIM): NIG-AP with modified policy iteration; NIG-AP(VIGS): NIG-AP with value iteration
Gerchberg-Saxton; POMDP: partially observable Markov decision process; FF: fast forward

1286 Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288

uncertainty information from the training data. As
a classical planner, FF can find only one path be-
cause it cannot deal with uncertainty from a net-
work scenario. To iterate all possible attack paths,
FF changes the reward according to feedback from
the scenario. We call it path iteration in the classi-
cal planning domain, and it is clear that FF is not
suitable for real penetration testing scenarios, but
POMDP and NIG-AP can find the greatest number
of possible attack paths based on the uncertainty in-
formation. However, POMDP can be applied only
to small network scenarios. Moreover, Fig. 7 shows
that not all optimization algorithms contribute to
NIG-AP. NIG-AP(Q) is not as good as the other
NIG-AP algorithms, and the effectiveness ratio de-
creases to 0 when there are 16 states. However, our
proposed NIG-AP(VI), NIG-AP(RVI), NIG-AP(PI),
NIG-AP(PIM), and NIG-AP(VIGS) still show good
performance, and it is more applicable to realistic
penetration testing scenarios.

Furthermore, we explore the relationship be-
tween the total penetration testing time (including
payload search time, penetration time, and shell es-
tablishment time) and the number of subnetworks.
The host number within each subnetwork is re-
stricted to two, and only the policy iteration opti-
mization algorithm is applied to NIG-AP. We gradu-
ally increase the number of subnetworks to record the
total penetration testing time. Because POMDP is
not suitable for realistic penetration testing, only FF
and NIG-AP are compared. The results are shown
in Fig. 8, from which we can see that the total time
exponentially increases with respect to the number
of subnetworks. When the number of subnetworks
is less than eight, the total time is still acceptable;
otherwise, the total time increases so rapidly that
the penetration task cannot be completed in a given
time. It is the path-combinational explosion that
results in such a phenomenon. Supposing that the
number of subnetworks is |A| and the available pen-
etration action is limited to |O|, the complexity is
|O||A||A|!, which explains the exponentially increas-
ing phenomenon. However, our NIG-AP algorithm
can effectively eliminate invalid attack paths accord-
ing to the training action sequences, so the total
penetration time is less than that of the method in
which all possible attack paths are iterated.

Network traffic plays an important role in eval-
uating attack plans, such that the less attack traffic

255.2

FF
NIG-AP
Exponential fitting

352.3

807.6

2793.9

Number of subnetworks
0 1 2 3 4 5 6 7 8 9

To
ta

l p
en

et
ra

tio
n

te
st

in
g

tim
e

(×
10

3
s)

0

1

2

3

4

10

Fig. 8 Relationship between the total penetration
testing time and the number of subnetworks

there is, the more efficient the plan will be. We col-
lect attack traffic in the router through a TcpDump
and visualize the traffic based on Wireshark. The
traffic statistics for FF and NIG-AP are shown in
Fig. 9, from which we can see that FF generates huge
network traffic during the whole penetration process,
while there is less traffic in our proposed planning
algorithm. Furthermore, the traffic fluctuates much
more with FF when compared with NIG-AP. The
average packet speed generated by FF is 260 pack-
ets/s, but 190 packets/s by our proposed algorithm.
Thus, not only the packet speed, but also the num-
ber of error packets generated by our algorithm are
smaller compared with FF. The error packet means
that the agent fills the packets with the wrong pa-
rameters. This demonstrates that our algorithm can
choose the proper action to conduct effective pene-
tration testing compared with FF.

Pa
ck

et
 s

pe
ed

 (p
ac

ke
ts

/s
)

Pa
ck

et
 s

pe
ed

 (p
ac

ke
ts

/s
)

0
0 800 1600 2400 3200

500

1000

1500

0

90

180

270
Time (s)

0 35 70

Instant packets Error packets

105 140 175 210
Time (s)

(a)

(b)

Fig. 9 Network traffic comparison: (a) FF; (b) NIG-
AP

Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288 1287

5 Conclusions and future work

In this study, we proposed a network informa-
tion gain based automated attack planning (NIG-
AP) algorithm to automatically conduct penetra-
tion. First, we analyzed the state-of-the-art attack
planning algorithms, including the attack tree, at-
tack graph, classical planning, and POMDP. Sec-
ond, we devised an attack planning algorithm based
on reinforcement learning to automatically discover
attack paths without prior knowledge of the scenario
network. Finally, a comparison experiment was con-
ducted and the results demonstrated that our pro-
posed algorithm can automatically discover attack
paths without prior information. We hope that our
research can drive the industrial applications and in-
spire other researchers as well.

A further step in this study would be incorpo-
rating temporal information about the vulnerabili-
ties into the planning algorithm. The timeliness of a
vulnerability influences much of its application. For
example, 0-day vulnerability is much more useful in
penetration tests than those vulnerabilities discov-
ered some time ago. When training the agent, the
update algorithm should pay much more attention to
those effective and aging vulnerabilities. One possi-
ble method of dealing with this problem is to set the
reward function relating to time, so that the training
algorithm is predisposed to recent training examples.
Another method is to rank the vulnerabilities ac-
cording to a time-stamp, so that new exploits would
always be considered first.

The other research direction we are currently
pursuing is using transfer learning to generate the
attack scheme. Because there are various kinds of
network scenarios, we cannot iterate every scenario
to train our agent. One possible way to solve this
problem is adopting transfer learning in implement-
ing knowledge transfer to apply our agent to un-
known network scenarios. Since penetration testing
knowledge is similar in various scenarios, transfer
learning shows us the way to train an agent with
fewer scenario examples, and remains effective.

Compliance with ethics guidelines
Tian-yang ZHOU, Yi-chao ZANG, Jun-hu ZHU,

and Qing-xian WANG declare that they have no con-
flict of interest.

References
Alexander Pretschner AS, 2017. Automated Attack Plan-

ning Using a Partially Observable Model for Penetra-
tion Testing of Industrial Control Systems. MS Thesis,
Technische Universität München, München, Germany.

Backes M, Hoffmann J, Künnemann R, et al., 2017. Simu-
lated penetration testing and mitigation analysis.
https://arxiv.org/abs/1705.05088v1

Baulcombe DC, 1999. Fast forward genetics based on virus-
induced gene silencing. Curr Opin Plant Biol, 2(2):109-
113. https://doi.org/10.1016/S1369-5266(99)80022-3

Beale J, Meer H, van der Walt C, et al., 2004. Nessus
Network Auditing: Jay Beale Open Source Security
Series. Elsevier, Amsterdam, the Netherlands.

Chadès I, Chapron G, Cros MJ, et al., 2014. MDPtoolbox:
a multi-platform toolbox to solve stochastic dynamic
programming problems. Ecography, 37(9):916-920.
https://doi.org/10.1111/ecog.00888

Core Security, 2019. Core Impact Penetration System.
https://www.secureauth.com/products/penetration-
testing/core-impact [Accessed on Feb. 23, 2019].

Fox M, Long D, 2003. PDDL2.1: an extension to PDDL for
expressing temporal planning domains. J Artif Intell
Res, 20:61-124. https://doi.org/10.1613/jair.1129

Futoransky A, Notarfrancesco L, Richarte G, et al., 2010.
Building computer network attacks.
https://arxiv.org/abs/1006.1916

Holik F, Horalek J, Marik O, et al., 2014. Effective pene-
tration testing with metasploit framework and method-
ologies. IEEE 15th Int Symp on Computational Intel-
ligence and Informatics, p.237-242.
https://doi.org/10.1109/CINTI.2014.7028682

Khan S, Parkinson S, 2017. Towards automated vulnerability
assessment. 27th Int Conf on Automated Planning and
Scheduling, p.33-40.

Kingma DP, Ba J, 2014. Adam: a method for stochastic
optimization. https://arxiv.org/abs/1412.6980

Kurniawati H, Hsu D, Lee WS, 2008. SARSOP: efficient
point-based POMDP planning by approximating opti-
mally reachable belief spaces. In: Brock O, Trinkle J,
Ramos F (Eds.), Robotics: Science and Systems IV.
MIT Press, Massachusetts, USA, Chapter 10.

Lee C, Lee GG, 2006. Information gain and divergence-
based feature selection for machine learning-based text
categorization. Inform Process Manag, 42(1):155-165.
https://doi.org/10.1016/j.ipm.2004.08.006

Liang JY, Shi ZZ, 2004. The information entropy, rough
entropy and knowledge granulation in rough set theory.
Int J Uncert Fuzzy Knowl Syst, 12(1):37-46.
https://doi.org/10.1142/S0218488504002631

Mnih V, Kavukcuoglu K, Silver D, et al., 2013. Playing Atari
with deep reinforcement learning.
https://arxiv.org/abs/1312.5602

Mnih V, Kavukcuoglu K, Silver D, et al., 2015. Human-level
control through deep reinforcement learning. Nature,
518(7540):529-533.
https://doi.org/10.1038/nature14236

Obes JL, Sarraute C, Richarte G, 2013. Attack planning in
the real world. https://arxiv.org/abs/1306.4044

Roberts M, Howe A, Ray I, et al., 2011. Personalized vul-
nerability analysis through automated planning. Proc
Int Joint Conf on Artificial Intelligence, p.50-57.

1288 Zhou et al. / Front Inform Technol Electron Eng 2019 20(9):1277-1288

Samant N, 2011. Automated Penetration Testing. MS
Thesis, San Jose State University, California, USA.

Sarraute C, Richarte G, Lucángeli Obes J, 2011. An algo-
rithm to find optimal attack paths in nondeterministic
scenarios. 4th ACM Workshop on Security and Artifi-
cial Intelligence, p.71-80.
https://doi.org/10.1145/2046684.2046695

Sarraute C, Buffet O, Hoffmann J, 2012. POMDPs make
better hackers: accounting for uncertainty in penetra-
tion testing. 26th AAAI Conf on Artificial Intelligence,
p.1816-1824 .

Sarraute C, Buffet O, Hoffmann J, 2013. Penetration testing
== POMDP solving?
https://arxiv.org/abs/1306.4714

Schneier B, 1999. Attack trees. Dr Dobb’s J, 24(12):21-29.
Sheyner O, Haines J, Jha S, et al., 2002. Automated gen-

eration and analysis of attack graphs. IEEE Symp on
Security and Privacy, p.273-284.
https://doi.org/10.1109/SECPRI.2002.1004377

Shmaryahu D, Shani G, Hoffmann J, et al., 2017. Partially
observable contingent planning for penetration testing.
1st Int Workshop on Artificial Intelligence in Security,
p.33-40.

Stefinko Y, Piskuzub A, 2017. Theory of modern penetration
testing expert system. Inform Process Syst, 148(2):129-
133. https://doi.org/10.30748/soi.2017.148.25

Steinmetz M, 2016. Critical constrained planning and an
application to network penetration testing. 26th Int
Conf on Automated Planning and Scheduling, p.141-
144.

Sutton RS, Barto AG, 1998. Reinforcement Learning: an
Introduction. MIT Press, Cambridge, London.

Szepesvári C, 2010. Algorithms for Reinforcement Learning.
Morgan & Claypool Publishers, San Rafael, Argentina.

Zhuang YT, Wu F, Chen C, et al., 2017. Challenges and
opportunities: from big data to knowledge in AI 2.0.
Front Inform Technol Electron Eng, 18(1):3-14.
https://doi.org/10.1631/FITEE.1601883

	Introduction
	Preliminaries
	Penetration testing
	Deep reinforcement learning

	Methodology
	Network information gain
	Network information gain based automated attack planning algorithm

	Experiment
	Network scenario
	Action space
	Experimental results

	Conclusions and future work

