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Abstract: In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to
systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be identified
in the first place. We investigate the iterative bias estimation process based on the expectation-maximization (EM)
algorithm, for cases where sufficiently large numbers of measurements are at hand. With the assistance of extended
Kalman filtering and smoothing, we derive two EM estimation processes to estimate the measurement bias which
is formulated as a random variable in one state-space model and a constant value in another. More importantly,
we theoretically derive the global convergence result of the EM-based measurement bias estimation and reveal the
link between the two proposed EM estimation processes in the respective state-space models. It is found that the
bias estimate in the second state-space model is more accurate and of less complexity. Furthermore, the EM-based
iterative estimation converges faster in the second state-space model than in the first one. As a byproduct, the target
trajectory can be simultaneously estimated with the measurement bias, after processing a batch of measurements.
These results are confirmed by our simulations.

Key words: Non-linear state-space model; Measurement bias; Extended Kalman filter; Extended Kalman
smoothing; Expectation-maximization (EM) algorithm
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1 Introduction

As an emerging type of wireless service, non-
stationary target positioning or tracking using the
measurements collected in an ad hoc sensor network
has drawn considerable attention over the past two
decades (Gustafsson and Gunnarsson, 2005; Sayed
et al., 2005). Recent research focuses on dealing
with the practical environments, i.e., non-line-of-
sight (NLOS) environments (Hammes and Zoubir,
2010), multi-path environments (Karunaratne et al.,
‡ Corresponding author
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2012), asynchronous sensors (Li et al., 2006), and
uncertain sensor positions (Savic et al., 2016).

In this study, we consider the case where the col-
lected measurements are biased. This can be caused
by systematic errors (spatial mis-registration), inac-
curate sensor calibration, environmental constraints
(NLOS propagation), or other sources. Among these
possibilities, it is the additive bias caused by the sys-
tematic errors, sometimes called the ‘system bias’ or
‘sensor bias’, assumed to be independent of the ran-
dom measurement error, which is our research in-
terest. In the case of localization of multiple targets
(Lin et al., 2004; Okello and Challa, 2004; Lian et al.,
2011), the treatment of measurement/sensor bias is
known as a problem of sensor registration, which is
studied together with multi-track fusion. However,
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in this study we focus only on the case of a single
non-maneuvering target to clearly convey our ideas
and present our contributions.

Target tracking using a sensor network is
achieved by fusing the complementary information
from various sensors. The measurement biases in-
herent in the sensors will enter into the fusion pro-
cess and lead to false tracks. Therefore, the effect of
those biases must be eliminated by means of estima-
tion and correction.

Estimation of measurement bias has been in-
vestigated for decades. In most cases, the bias is
assumed to be a constant value. In the standard
method, the target state and the measurement bi-
ases are separately estimated. For this, the mea-
surement biases are estimated using the least square
(LS) (Blackman and Popoli, 1999) and maximum
likelihood (ML) (Okello and Ristic, 2003) methods.
Alternatively, it is more appropriate to jointly esti-
mate the system biases and target state. Li ZH et al.
(2004) proposed that the expectation-maximization
(EM) algorithm is incorporated with the Kalman fil-
ter to give a simultaneous estimation of the target
state and the measurement bias in a state-space lin-
ear model. Furthermore, Huang and Leung (2010)
proposed that the interacting multiple model (IMM)
method is applied to resolve the different behav-
ioral aspects of a maneuvering target. The afore-
mentioned algorithms are off-line algorithms, which
usually require batch processing of large amounts of
data.

In terms of computational complexity, online al-
gorithms are preferred at the cost of estimation ac-
curacy. Li W et al. (2004) proposed that measure-
ment biases are augmented into the state vector of
a state-space model. After that, the biases are es-
timated with the target state using the unscented
Kalman filter. Bugallo et al. (2007) proposed that
the marginalized particle filter is used to estimate
the target state and measurement biases. The mea-
surement biases are treated as nuisance parameters
and are marginalized out. After the target state is
estimated using the particle filter, the measurement
biases are estimated using the Kalman filter. Zhou
et al. (2017) proposed a recursive joint estimation
algorithm by carefully coupling the target state and
the system biases. The algorithm is qualified to deal
with different types of state-space models and mea-
surement biases.

The algorithms discussed in the aforementioned
syudies assume that the bias is constant. In this
study, we consider a more complicated case; that is,
the bias is assumed to be a random variable (the
size of bias variance can be determined by the pre-
defined tolerance interval of the Cramer-Rao lower
bound), in which case an online algorithm (real-time
processing) cannot produce a satisfactory bias esti-
mate. As an alternative, in our treatment, an off-line
algorithm (batch processing) is used to estimate the
bias. Since the batch processing is based on large
measurement (or sample) size in the tracking sys-
tem, our treatment identifies the unknown system
parameter (measurement bias or sensor bias) and
estimates the target trajectory with a certain time
delay. The time delay is determined by the measure-
ment size used for batch processing. It indicates that
our treatment fails to track the target trajectory in
real time. Therefore, the bias estimation process in-
volved would be more suitable for an off-line scenario.
For example, our treatment can be used to identify
the characteristics of measurement bias in the cali-
bration step of a tracking system. After finishing the
calibration step and knowing the information about
the measurement bias, the tracking system is capable
of performing an online target localization.

In this study, the time-of-arrival (ToA) mea-
surement is used and a non-linear state-space model
is employed to formulate the tracking problem (Li
et al., 2017). To solve the tracking problem, non-
linear filtering techniques have to be applied, i.e.,
an extended Kalman filter (EKF), an unscented
Kalman filter, and a particle filter. In this study,
we employ the EKF due to its compact formulation.
To estimate the measurement bias, statistical esti-
mation algorithms are required, i.e., the LS and ML
algorithms. We employ the EM algorithm (Moon,
1996), which is a type of ML algorithm and can be
easily integrated with the EKF.

Note that we focus on the special circumstance
where the bias is a random variable, which differen-
tiates our work from others. Moreover, rather than
proposing novel bias estimation processes or new tar-
get tracking algorithms, our primary contribution is
analyzing the asymptotic performance of the EM-
based bias estimation processes. To the best of our
knowledge, we are not aware of any similar work in
this area.

Measurement bias is formulated as a random
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variable in one state-space model and a determined
value in another in our treatment. To estimate the
bias, we derive two different EM estimation pro-
cesses after linearizing the two non-linear state-space
models that involve the first-order Taylor expansion.
The most important contribution is our study of the
asymptotic performance of bias estimation. Assum-
ing a reasonable initial starting point and a suffi-
ciently large measurement size, we theoretically de-
rive the global convergence result of the EM-based
measurement bias estimation using the underlying
principle of the EM algorithm. Moreover, we study
the properties of the two applied state-space models
and reveal the link between them.

2 Expectation-maximization-based
bias estimation

2.1 Problem formulation

We assume a case where a number of sensors
are used to localize a moving radio-active target.
The target is moving with the Gauss-Markov ran-
dom force model in a two-dimensional (2D) plane.
It is assumed that ToA measurement can be col-
lected (Gustafsson and Gunnarsson, 2005). Then
the tracking problem can be formulated using the
following state-space model at time step k (Li and
Jilkov, 2003; Gustafsson and Gunnarsson, 2005):{

xk = Fxk−1 +Guk−1,

ȳk = h(xk) +wk,
(1)

where xk = [x1,k, x2,k, ẋ1,k, ẋ2,k]
T is the state vec-

tor of the target, containing its instantaneous posi-
tion (x1,k, x2,k) and speed (ẋ1,k, ẋ2,k), and ȳk is the
measurement vector collected from M sensors. In
Eq. (1), the transition matrices F and G are defined
as

F =

[
I2 Δt · I2
02 I2

]
, G =

[
Δt2/2 · I2
Δt · I2

]
, (2)

where I2 denotes an identity matrix of size 2, 02

denotes a null matrix of dimension 2 × 2, and Δt

is the sampling interval. In Eq. (1), h(·) is the
non-linear function mapping the state to the mea-
surement. If the ToA measurement is collected,
h (xk) = [h1, h2, . . . , hM ]T with

hi =
1

c

√
(x1,k − s1,i)

2
+ (x2,k − s2,i)

2
, (3)

where i = 1, 2, . . . ,M . (s1,i, s2,i) denotes the posi-
tion of the ith sensor, and c denotes the propagation
velocity of the signal. Assuming that the random
force vector uk = [u1,k, u2,k]

T ∼ N (0,Q) and the
measurement noise vector wk ∼ N (0,R). uk and
wk are mutually independent. Q is known a priori
(Gustafsson and Gunnarsson, 2005), whereas R is
unknown. For simplicity, assuming

R = diag(β1, β2, . . . , βM ), (4)

where diag(·) denotes a square diagonal matrix with
the elements in parentheses on the main diagonal.
Based on the model in Eq. (1), we can estimate the
state xk using the collected measurement ȳk, i.e.,
the EKF.

Since the collected measurements are assumed
to be biased in our study, the measurement equation
in Eq. (1) is re-formulated as

yk = h(xk) + bk +wk, (5)

where bk denotes the measurement bias vector of
length M , and yk denotes the biased measurement
compared to the bias-free measurement ȳk in Eq. (1).
The state xk, bias bk, and noise wk are mutually
independent. Therefore, the aim is to identify bk
and estimate xk simultaneously. In this study, the
EM algorithm is employed to identify bk with the
assistance of extended Kalman filtering and smooth-
ing. Considering the practical situations and simpli-
fying the latter theoretical analysis, we make three
assumptions as follows:

1. The measurement bias is assumed to be
Gaussian distributed, and Σb in N (μb,Σb) can be
expressed as

Σb = diag(α1, α2, . . . , αM ). (6)

Assume that the biases of different sensors mu-
tually follow independent stationary processes. How-
ever, the variances of different sensor biases are quite
similar. Both μb and Σb are unknown.

2. The variance of the measurement bias is
smaller than that of the measurement noise, that
is, αi < βi, i = 1, 2, . . . ,M (Huang and Leung, 2010;
Lian et al., 2011). Meanwhile, the bias variance αi

has a certain amount of uncertainties, and thus the
batch processing (smoothing) is needed to accurately
estimate it. This is the special case on which we
focus.
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3. The EM-based estimation process converges
to the global maximum in our study; that is, the
measurement size is large enough and a reasonable
initial starting point is also guaranteed. This is the
starting point for our asymptotic analysis of the EM
performance in terms of estimating the measurement
bias, or simply, the fundamental condition of Lemma
1 is discussed in Section 2.2.

Under these assumptions, we attempt to study
the EM-based bias estimation process in terms of two
distinct state-space models. Note that a violation of
the above assumptions will lead to an unexpected
estimation error and make the performance analysis
unavailable. The bias is treated as a random variable
in model 1 and a constant value in model 2. The
details are given in the following subsections.

2.2 Model 1

In this study, the most common way to deal with
measurement bias is to augment the bias vector as a
part of the state and write the state-space model as

xk = Fxk−1 +Guk−1, (7)

bk = bk−1 + vk−1, (8)

yk = h(xk) + bk +wk, (9)

which is referred to here as model 1. It is known
that the bias model in Eq. (8), which is used to
track non-stationary bias with time-varying covari-
ance, does not exactly match Assumption 1 in Sec-
tion 2.1. Nevertheless, the bias model in Eq. (8) can
track the stationary bias with Assumption 1. Note
that the occurrence of model mismatch can be fre-
quently seen in estimating unknown parameters of
the state-space model (Särkkä, 2013). The conse-
quence of the model mismatch in this study will be
discussed in Section 3.

The bias evolution noise is defined as vk ∼
N (0,Ω) with

Ω = Σb = diag(α1, α2, . . . , αM ), (10)

where Σb is defined in Eq. (6). In the model in
Eqs. (7)–(9), the augmented state vector is zk =

[xT
k bTk ]

T. Defining

F̃ =

[
F 04×M

0M×4 IM

]
, rk−1 =

[
Guk−1

vk−1

]
, (11)

we can rewrite Eqs. (7)–(9) as

zk = F̃ zk−1 + rk−1, (12)

yk = h̃(zk) +wk, (13)

where h̃(zk) = h(xk) + bk.
Note that the covariance matrix R in Eq. (4) of

the measurement noise vector wk is also unknown.
Then the work is to simultaneously estimate zk, Ω,
and R . In Bayesian inference, zk is treated as a hid-
den variable, and Ω and R are treated as unknown
parameters of the model. Then, the unknown pa-
rameter θ turns out to be the diagonal elements of
Ω and R, and it can be expressed as

θ = [α1, α2, . . . , αM , β1, β2, . . . , βM ]T. (14)

The estimation procedure can be conducted us-
ing an EM algorithm. The EM algorithm is a two-
step iterative algorithm (Moon, 1996; Tzikas et al.,
2008): E-step, in which Q(θ, θold) is computed, and
M-step, in which θnew = argmaxθ Q(θ, θold) is com-
puted. θ denotes the model parameter to be esti-
mated, e.g., Ω. Q(θ, θold) is defined as

Q=

∫
logp(z1:L,y1:L;θ)p(z1:L|y1:L;θ

old)dz1:L, (15)

where log p(z1:L,y1:L; θ) is the complete data
log-likelihood function, given in Eq. (16) with
omission of some irrelevant constant terms, and
p(z1:L|y1:L; θ

old) denotes the joint posterior distri-
bution of the states given the parameter θold. As-
sume that the initial state z0 is a determined value.
In a rigorous Bayesian method, z0 should be treated
as a random vector. In this study, z0 is treated
as a determined value so as not to complicate the
mathematical formulation and derivation in the se-
quel. Note that L is the number of observed mea-
surements, which is assumed to be sufficiently large
in this study.

log p(z1:L,y1:L; θ)

=

L∑
k=1

log p(zk|zk−1, θ) +

L∑
k=1

log p(yk|zk, θ)

=

L∑
k=1

log p(xk|xk−1, θ) +

L∑
k=1

log p(bk|bk−1, θ)

+

L∑
k=1

log p(yk|zk, θ)
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=− L

2
log|GQGT|

− 1

2

L∑
k=1

(xk − Fxk−1)
T
(GQGT)−1(xk−Fxk−1)

−L

2
log|Ω|− 1

2

L∑
k=1

(bk−bk−1)
T
Ω−1 (bk−bk−1)

−L

2
log|R|− 1

2

L∑
k=1

(
yk−h̃(zk)

)T

R−1
(
yk−h̃(zk)

)
.

(16)

By simply inspecting the measurement model in
Eq. (9), we can find that simultaneously estimating
the variance of the measurement bias bk and noise
wk, i.e., βi and αi, seems to be an ill-posed problem;
in other words, ambiguity could exist in estimating
their variance. In the following, we will elaborate
on the EM-based procedure of estimating the un-
knowns αi and βi. After that, we present the trend
in evolution of the estimates α(n)

i and β
(n)
i w.r.t. the

increasing EM iteration number n. Interestingly, we
will find that the estimates α(n)

i and β
(n)
i do not ap-

proach their respective true values as n increases.

For a linear Gaussian state-space model,
the Gaussian distribution p(z1:L|y1:L; θ

old) (or
its mean and variance) is computed by the
Kalman smoother, e.g., the Rauch-Tung-Striebel
(RTS) smoother, whereas the log-likelihood func-
tion log p(z1:L,y1:L; θ) is formulated by logarithm
of the product of linear Gaussian components
(Eq. (3)) (Shumway and Stoffer, 1982). Subse-
quently, Q(θ, θold) in Eq. (15) is calculated via some
matrix calculus steps.

For model 1 in Eqs. (12) and (13), the non-linear
measurement model in Eq. (13) should be linearized
before calculating Q(θ, θold). We do not use a par-
ticle filter to cope with the non-linear state-space
model due to the following two reasons: (1) The lin-
earization of the non-linear state-space model using
the EKF is well established in academia and industry
due to its simplicity and satisfactory performance in
most tracking problems, although it does introduce
some errors. Moreover, the error in our study is not
significant as shown in simulation. (2) The EKF re-
sults in a compact closed-form solution of Q(θ, θold)

in Eq. (17), which helps us analyze the estimation
performance in Appendix C.

The linearization is twofold: (1) The mean
and variance of the distribution p(z1:L|y1:L; θ

old)

are computed using the extended version of the
Kalman filter and smoother, namely, the EKF and
extended RTS smoother (see Appendix A); (2) The
log-likelihood function log p(z1:L,y1:L; θ), or more
precisely, the part related to the measurement distri-
bution

∑L
k=1 log p(yk|zk, θ) in Eq. (16), is approxi-

mated by logarithm of the product of linear Gaussian
components using the first-order Taylor expansion of
h̃(zk) (Eq. (B6) in Appendix B).

In Appendix B, we derive the simplified formu-
lation for the function Q(θ, θold) by neglecting the
terms that do not depend on θ:

Q(θ, θold) ≈
− L

2
log|Ω| − 1

2
tr
(
Ω−1

(
A−B −BT +C

))
− 1

2
tr

{
R−1

L∑
k=1

[ (
yk − h̃(zs

k)
)(

yk − h̃(zs
k)
)T

+ J̃kP
s
k J̃

T
k

]}
− L

2
log|R|+ constant,

(17)
with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
1

L

L∑
k=1

[
P s

k−1 + bsk−1(b
s
k−1)

T
]
,

B =
1

L

L∑
k=1

[
P s

k,k−1 + bsk(b
s
k−1)

T
]
,

C =
1

L

L∑
k=1

[
P s

k + bsk(b
s
k)

T
]
,

(18)

where P s
k , P s

k,k−1, and zs
k (containing bsk) are the

output of the extended RTS smoother, given in
Eq. (A4) in Appendix A as well as J̃k given in
Eq. (B4) in Appendix B. Note that the terms P s

k ,
P s

k,k−1, and zs
k are calculated using θold. By max-

imizing Q(θ, θold) in Eq. (17) w.r.t. Ω and R, we
obtain the estimates at the nth EM iteration:

Ω(n) = A−B −BT +C, (19)

R(n) =
1

L

L∑
k=1

[(
yk − h̃(zs

k)
)(

yk − h̃(zs
k)
)T

+ J̃kP
s
k J̃

T
k

]
. (20)

Since Ω(n) and R(n) are diagonal matrices as follows:{
Ω(n) = diag(α

(n)
1 , α

(n)
2 , . . . , α

(n)
M ),

R(n) = diag(β
(n)
1 , β

(n)
2 , . . . , β

(n)
M ),

(21)
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we obtain

α
(n)
i = [A]ii − 2[B]ii + [C]ii, (22)

with

[A]ii =
1

L

L∑
k=1

{
[P s

k−1](4+i)(4+i) + ([bsk−1]i)
2
}
,

[B]ii=
1

L

L∑
k=1

{
[P s

k,k−1](4+i)(4+i)+[bsk]i[b
s
k−1]i

}
,

[C]ii =
1

L

L∑
k=1

{
[P s

k ](4+i)(4+i) + ([bsk]i)
2
}
, (23)

and

β
(n)
i =

1

L

L∑
k=1

{[
yk−h̃(zs

k)
]2
i
+
[
J̃kP

s
k J̃

T
k

]
ii

}
, (24)

where [·]ii denotes the ith diagonal element of a ma-
trix and [·]i denotes the ith element of a vector,
i = 1, 2, . . . ,M .

In summary, we can conduct the EM algorithm
of estimating θ in Eq. (14) in our study via the fol-
lowing iterations:

1. Assume some initial values θ(0) and set n = 0.
Do E-step (calculating zs

k, P
s
k , and P s

k+1,k using θ(n)

in Eq. (A4)) and M-step (updating the parameter
θ(n+1) in Eqs. (22)–(24)).

2. Set n = n + 1 and repeat the E-step and
M-step until the estimate θ(n) is stable.

In Eq. (9), bk and wk are assumed to be Gaus-
sian distributed and mutually independent. Then,
bk + wk could be considered to be an entire noise
quantity with Gaussian distribution, whose variance
matrix has the diagonal components αi + βi, i =

1, 2, . . . ,M . Therefore, the accurate estimates for
the noise variances of bk and wk must fulfill the fol-
lowing constraint:

α
(n)
i + β

(n)
i ≈ αi + βi, i = 1, 2, . . . ,M, (25)

where αi and βi are the true variances of the ith

sensor’s measurement bias and noise, respectively,
which are defined in Eqs. (4) and (10). The equality
in Eq. (25) is the most important constraint that the
estimation process of θ has to consider.

Suppose that there is a good initial starting
point for θ(0), namely, α

(0)
i and β

(0)
i in our study,

which ensures the EM convergence to the global
maximum. In practice, it could be possible to know

the upper bound of the variance of the measurement
bias. Thus, we set the initial values α

(0)
i and β

(0)
i

higher than their true values. It is obvious that
α
(n)
i + β

(n)
i is supposed to approach the true value

αi + βi as the EM iteration repeats, according to
the constraint in Eq. (25). Under Assumptions 1–3
in Section 2.1, the behavior of two estimates α

(n)
i

and β
(n)
i w.r.t. the EM iteration number is given in

Lemma 1:
Lemma 1 After doing enough EM iterations from
the initial starting point, generally, the EM estima-
tion decreases α(n)

i and increases β(n)
i simultaneously

as the iteration number n increases. Finally, the con-
vergence of the EM algorithm is obtained with

{
α
(n)
i → 0,

β
(n)
i → αi + βi, as n → ∞,

(26)

which means that the variance of the measurement
bias merges into the variance of the measurement
noise. The bias estimate is degenerated to a nearly
constant value. The proof is given in Appendix C.

Note that it is necessary to re-estimate βi (i.e.,
R), i = 1, 2, . . . ,M , even when it is known. One
might argue that it is suboptimal to estimate the
known quantity βi. However, according to the re-
sult in Lemma 1, the interaction between the two
estimates α(n)

i and β
(n)
i shows that the estimate β

(n)
i

is definitely not approaching its true value as n in-
creases. If βi is manually set to its true value during
the EM iteration, it is observed from simulations that
α
(n)
i is reduced to some value smaller than its true

σ2
b,i, but not zero, after the EM iteration stops. As

a result, the constraint in Eq. (25) is not maintained
and the convergence result in Eq. (26) fails to be ful-
filled. The EM-based estimation procedure in model
1 gives an inaccurate estimate of the bias and state.
Therefore, it is indispensable to estimate βi and αi

simultaneously in model 1, to capture their mutual
influence.

Following the convergence of the EM algorithm
in model 1, we can treat the bias vector as a con-
stant vector and further derive the second state-
space model.

2.3 Model 2

If the measurement bias vector is treated as a
constant vector, the model in Eqs. (7)–(9) is changed
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to the following:{
xk = Fxk−1 +Guk−1,

yk = h(xk) + b+ νk,
(27)

which is referred to as model 2. The notation can be
expressed as

b = [b1, b2, . . . , bM ]T, (28)

denoting the constant measurement bias. The inte-
grated measurement noise νk follows the distribution
N (0, R̆) with

R̆ = diag(γ1, γ2, . . . , γM ). (29)

In model 2, the model parameter θ contains b

and R̆, and can be defined as

θ = [b1, b2, . . . , bM , γ1, γ2, . . . , γM ]. (30)

Similar to model 1, we can derive the function
Q(θ, θold) for model 2 by neglecting the terms inde-
pendent of θ, and it can be expressed as

Q(θ, θold)

=

∫ L∑
k=1

log p(yk|xk, θ) · p(x1:L|y1:L; θ
old) dx1:L

+ constant

≈− L

2
log|R̆| − 1

2
tr

{
R̆−1

L∑
k=1

[(
yk − h(xs

k)− b(n)
)

(
yk − h(xs

k)− b(n)
)T

+ JkP
s
kJ

T
k

]}
+ constant,

(31)
with Jk = ∂h(xk)/∂xk|xk=xs

k
, differing from J̃k in

Eq. (B4) in model 1. The joint probability den-
sity function (PDF) p(x1:L|y1:L; θ

old) is given in
Eq. (D3). xs

k and P s
k are the outputs of the extended

RTS smoother, given in Eq. (D2) in Appendix D.
By maximizing Q(θ, θold) in Eq. (31) w.r.t. θ

and R̆, we obtain the estimate θ(n) at the nth EM
iteration as follows:⎧⎪⎨

⎪⎩
b(n) =

[
b
(n)
1 , b

(n)
2 , · · · , b(n)M

]T
,

R̆(n) = diag
(
γ
(n)
1 , γ

(n)
2 , · · · , γ(n)

M

)
,

(32)

with⎧⎨
⎩
b
(n)
i = 1

L

∑L
k=1 [yk − h(xs

k)]i ,

γ
(n)
i = 1

L

∑L
k=1

{[
yk − h(xs

k)− b(n)
]2
i

+
[
JkP

s
kJ

T
k

]
ii

}
,

(33)

where i = 1, 2, . . . ,M . [·]i denotes the ith element of
a vector, and [·]ii denotes the ith diagonal element of
a matrix. It is clear that{

b
(n)
i → [μb]i,

γ
(n)
i → αi + βi, as n → ∞,

(34)

providing that the condition for EM convergence to
the global maximum is fulfilled.

If we recall the measurement in Eq. (5), we can
find the difference of treating the measurement bias
bk and measurement noise wk between models 1 and
2. Model 1 considers bk and wk as two independent
random variables, whereas model 2 regards bk as a
constant and wk a random variable.

We deduce that the convergence speed is sup-
posed to be smaller in model 1 than in model 2 due
to the fact that the number of unknown parameters
to be estimated in model 1 is much larger than that
in model 2. Specifically, to identify the bias of L

measurements, model 1 needs M ·L unknowns while
model 2 needs only M unknowns. These two mod-
els are the same in identifying wk. It is found that
the two models approximately have the same conver-
gence results by comparing Eqs. (26) and (34). The
bias estimate in model 2 is a constant value while the
bias estimates at all time steps in model 1 are nearly
equal. That is to say, a great deal of time is needed
for the estimates of the random variable bk in model
1 to be degenerated to a constant value. This result
will be proven in Section 3.

Moreover, we can find that the Kalman filter in
model 1 has a higher dimension than that in model
2. Since the state in model 1 contains the bias vector
of length M in addition to the target position and
velocity, the dimension is M + 4 in model 1 while 4
in model 2. Model 1 has a higher computational cost
than model 2.

3 Simulations

For simulations, we consider an ad hoc sensor
network with four stationary sensors. Fig. 1 shows
the simulation scenario. The four sensors are located
at [−90, −25], [500, 50], [25, 500], and [450, 500] m.
Following a Gauss-Markov random force model,
the target starts from [−50, 50] m with a driv-
ing noise covariance matrix Q = 0.25I2. The
initial velocity is [v1, v2] where

√
v21 + v22 = 5

and v1 is uniformly selected from the interval
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[0, 5]. A trajectory example is given in Fig. 1.
The sensors record the data sent from the tar-
get with a sampling interval of Δt = 0.1 s.
The measurement noise covariance matrix is set as
R = 100I4. Note that, in practice, the measurement
noise of different sensors depends on the signal-to-
noise ratio (SNR) (Hernandez et al., 2006; Stinco
et al., 2013) and the diagonal elements of R can
differ from each other. Thus, for simplicity, we as-
sume that the sensors have the same SNR. The arti-
ficial bias added to the measurements has a mean of
μb = [35, 40, 40, 35]T and a variance of Σb = 25I4.
Thus, αi = 25 and βi = 100 for i = 1, 2, . . . ,M .
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Fig. 1 Sensor locations and target trajectory in the
simulation setup

The initial state and covariance matrix
for Kalman filtering are given as x0 =

[x1,0, x2,0, 0, 0]
T and P0 = diag(100, 100, 10, 10),

respectively. For each Monte Carlo simulation,
[x1,0, x2,0]

T is randomly drawn from the distribu-
tion N ([−50, 50]T, 100I2). The initial bias vec-
tor and variance matrix for Kalman filtering are
given as μb0 = [45, 45, 45, 45]T and Σb0 = 100I4,
respectively, both larger than their true values.
The initial values of parameters to be estimated
are set as α(0) = [100, 100, 100, 100], β(0) =

[200, 200, 200, 200], and γ(0) = [300, 300, 300, 300].
Note that the above initial settings are supposed
to ensure the global convergence of the EM estima-
tion. They can be obtained from prior knowledge of
the tracking system and some well-known estimation
methods (e.g., least squares).

To ease notation, we define the estimate vectors
as ⎧⎪⎪⎨

⎪⎪⎩
α(n) = [α

(n)
1 , α

(n)
2 , . . . , α

(n)
M ],

β(n) = [β
(n)
1 , β

(n)
2 , . . . , β

(n)
M ],

γ(n) = [γ
(n)
1 , γ

(n)
2 , . . . , γ

(n)
M ],

(35)

with their limit values given in Eqs. (26) and
(34). In our simulations, the limit value of α(n)

is [0, 0, 0, 0]. The limit values of β(n) and γ(n) are
both [125, 125, 125, 125], which equals the sum of bias
variance (i.e., 25) and measurement noise variance
(i.e., 100). In model 1, the EM estimation process
gives the estimates α(n), β(n), bsk, and xs

k, whereas
in model 2, it gives the estimates γ(n), b(n), and
xs
k. The EM iteration stops once the Euclidean dis-

tance between the variance estimates of the mea-
surements in two consecutive iterations is smaller
than a pre-defined threshold 0.01; that is to say, for
model 1,

∣∣β(n) − β(n−1)
∣∣ < 0.01, and for model 2,∣∣γ(n) − γ(n−1)

∣∣ < 0.01. The allowed maximum iter-
ation number is set as 1000.

To demonstrate the behavior of the EM esti-
mates α(n), β(n), and γ(n) w.r.t. the iteration num-
ber n, let α

(n)
− , β(n)

− , and γ
(n)
− denote the means of

the estimate vector elements:⎧⎪⎪⎨
⎪⎪⎩
α
(n)
− = 1

M

∑M
i=1 α

(n)
i ,

β
(n)
− = 1

M

∑M
i=1 β

(n)
i ,

γ
(n)
− = 1

M

∑M
i=1 γ

(n)
i .

(36)

Fig. 2 clearly shows the trends of α(n)
− and β

(n)
−

w.r.t. the iteration number n, and Fig. 3 shows the
trend of γ(n)

− w.r.t. the iteration number n, based
on the result of one Monte Carlo running when the
sample size is L = 1000. In this Monte Carlo run-
ning, the EM iteration stops at the 599th iteration
in model 1 and the 13th iteration in model 2. Sim-
ply speaking, as n increases, α

(n)
− gets close to 0,

while β
(n)
− and γ

(n)
− approach their limit values of

125. This coincides with the convergence results in
Eqs. (26) and (34).

Figs. 4–8 show the estimation results of both
models w.r.t. the sample size L, based on a simula-
tion of 500 Monte Carlo runnings. We calculated
the root mean square error (RMSE) for the esti-
mates. Fig. 4 shows that the estimate in model 2
reaches convergence much faster than that in model
1. Model 1 has a stable estimate after an average of
538 iterations, whereas model 2 has a stable estimate
after an average of 14 iterations. Fig 5 shows that
the RMSE of estimate vector α(n) (Eq. (35)) is kept
at a low level since its limit value is 0. In Fig. 6, we
see that the RMSE of estimate vectors β(n) and γ(n)

(Eq. (35)) decreases as L increases. Fig. 7 shows
the RMSE of the bias mean μ

(n)
b ; that is to say,
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μ
(n)
b = 1

L

∑L
k=1 b

s
k in model 1, and μ

(n)
b = b(n) in

model 2. Model 2 estimates μ
(n)
b more accurately

than model 1. This results in a more accurate es-
timation of the target positions in model 2 than in
model 1 (Fig. 8).
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Although these two models have a similar esti-
mation error for β(n) and γ(n), model 1 has a larger
estimation error for the bias mean μ

(n)
b than model

2. This is caused by the fact that the bias model
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Fig. 5 Root mean square error (RMSE) of α(n) w.r.t.
the sample size L
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Fig. 6 Root mean square error (RMSE) of β(n) and
γ(n) w.r.t. the sample size L

in Eq. (8) of model 1, which tracks non-stationary
bias with time-varying covariance, does not exactly
match the stationary bias with Assumption 1. The
estimation error from the model mismatch becomes
larger, as the bias variance gets larger. However, the
model mismatch would still be acceptable when the
bias variance is sufficiently small, which is the reason
that the bias model in Eq. (8) is employed in tracking
the stationary bias with Assumption 1 (Lian et al.,
2011; Särkkä, 2013). Nevertheless, the bias in our
case has a larger variance than the one in previous
work, which leads to the non-negligible effect of the
model mismatch. This is the most important reason
for the bias estimation process in model 1 having a
relatively poor performance.

It is seen that model 2 reaches convergence
faster compared to model 1, while the two models
use the same number of measurements in the esti-
mation process. However, model 1 has many more
parameters to be estimated than model 2. This is
an important reason for model 1 showing an unsatis-
factory performance, not only in convergence speed
but also in estimation accuracy. When the available
measurement size increases, the estimation accuracy
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Fig. 8 Root mean square error (RMSE) of estimated
target positions w.r.t. the sample size L

of model 1 can be correspondingly improved. The
same is valid for model 2. Since model 1 has to esti-
mate more unknown parameters than model 2 does,
model 1 will need more measurements than model 2
to achieve the same estimation accuracy.

In Fig. 9, the standard deviations of β(n) and
γ(n) are compared with the square root of the
Cramer Rao lower bound (CRLB), which was pro-
posed by Matisko and Havlena (2012). A tighter
CRLB for the proposed bias estimators for our study
is expected to be derived in the future, by taking the
following three points into account: (1) The pro-
posed estimators are essentially the maximum likeli-
hood estimators based on our assumptions; (2) The
iterative interaction among the estimates in model 1
exists; (3) The bounds for both bias estimates and
noise variance estimates could resort to the hybrid
CRLB proposed by Fortunati et al. (2011).

All the simulations require a large number of
measurements available for smoothing. Different
setups for target tracking demand different measure-
ment sizes. More measurements are necessary in
some harsh cases, e.g., complicated target trajecto-
ries and initial parameter settings not close to the
true ones. If the measurement number or smoothing
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Fig. 9 Standard deviations (STD) of β(n) and γ(n)

w.r.t. the sample size L

window length is small, the above results might not
be valid. This is due to the fact that the EM algo-
rithm in our study needs the support of large data
size to achieve a good performance and a further
global convergence.

Recall that our work aims to study the perfor-
mance of bias estimation using the EM algorithm
in two well-known state-space models under certain
circumstances. Our simulations are primarily con-
ducted to validate the derived convergence results for
the EM estimation in both models. Our main contri-
bution is a performance analysis of the two proposed
EM-based estimation processes. Therefore, a perfor-
mance comparison of our algorithms and the existing
online algorithms for target tracking and parameter
estimation is beyond the scope of this study.

4 Conclusions

We have investigated the EM algorithm for esti-
mating the Gaussian measurement bias in two state-
space models in the context of target tracking given a
bias that is a random variable and a sufficiently large
number of measurements. First, we have derived dif-
ferent EM estimation processes for two non-linear
state-space models. Both models are linearized via
the first-order Taylor expansion, based on extended
Kalman filtering and smoothing. The measurement
bias and the target state are iteratively estimated.
Second, as the most important part of our work,
we have analytically derived the global convergence
result of the EM-based bias estimation process in
model 1 and thoroughly studied the difference be-
tween two models. It is shown that model 2 performs
better than model 1 in terms of bias estimation. In
addition, model 2 has a simpler structure and a faster
convergence speed.
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Appendix A: Extended Kalman fil-
ter and extended Rauch-Tung-Striebel
(RTS) smoother for model 1

The compact form of the EKF and the
fixed-interval extended Rauch-Tung-Striebel (RTS)
smoother for model 1 is presented. The detailed
derivation can be referred to Haykin (2001) and
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Särkkä (2013). If the partial derivative of h(xk)

w.r.t. xk is given as

Hk =
∂h(xk)

∂xk
|xk=x−

k
, (A1)

and we define⎧⎪⎪⎨
⎪⎪⎩
Q̃ =

[
GQGT 04×M

0M×4 Ω

]
,

H̃k =
[
Hk IM

]
,

(A2)

then the prediction and update equations of the EKF
can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z−
k = F̃ zf

k−1,

P−
k = F̃ Pk−1F̃

T + Q̃,

Kk = P−
k H̃T

k [H̃kP
−
k H̃T

k +R]−1,

zf
k = z−

k +Kk[yk − h̃(z−
k )],

Pk = (I −KkH̃k)P
−
k ,

(A3)

where z−
k and P−

k are a priori estimates of the state
and its covariance matrix, respectively (Haykin,
2001). Using the Kalman gain Kk, a posteriori esti-
mates zf

k and Pk are updated.
Note that at the (n+1)th EM iteration, Ω andR

in Eq. (A3) should be replaced by the EM estimates
Ω(n) and R(n) in Eq. (21), respectively.

Furthermore, following the above EKF equa-
tions, the backward recursion equations for the fixed-
interval extended RTS smoother are obtained as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mk = PkF̃
T
[
P−

k+1

]−1
,

zs
k = zf

k +Mk

[
zs
k+1 − z−

k+1

]
,

P s
k = Pk +Mk

[
P s

k+1 − P−
k+1

]
MT

k ,

P s
k+1,k = P s

k+1M
T
k ,

(A4)

where Mk is the smoother gain. zs
k and P s

k are
posteriori smoothed estimates of the state and the
covariance, respectively. P s

k+1,k denotes the cross-
covariance matrix of zs

k+1 and zs
k. Note that

Eq. (12.42) in Särkkä (2013) is used to construct
the expression for P s

k+1,k, instead of Eq. (A11) in
Shumway and Stoffer (1982).

It is known that the joint PDF p(z1:L|y1:L; θ
old)

can be given as

p(z1:L|y1:L; θ
old)

=

L∏
k=1

p(zk|yk; θ
old) ∼

L∏
k=1

N (zs
k,P

s
k ),

(A5)

which is the product of Gaussian distributions with
the mean zs

k and covariance P s
k given in Eq. (A4).

Since zk = [xT
k bTk ]

T, and bk is independent of xk,
the joint PDF p(b1:L|y1:L; θ

old) can be readily de-
rived by decomposing the PDF p(z1:L|y1:L; θ

old).

Appendix B: Derivation of Eq. (15) for
model 1

According to the definition in Eq. (15),
Q(θ, θold) is calculated based on log p(z1:L,y1:L; θ)

given in Eq. (16) as well as p(z1:L|y1:L; θ
old) derived

in Appendix A. To ease the formulation of Q(θ, θold)

in our study, we neglect the terms independent of θ
defined in Eq. (14). Based on Eqs. (15) and (16), we
can have

Q(θ, θold) =∫ L∑
k=1

log p(bk|bk−1, θ) · p(b1:L|y1:L; θ
old) db1:L

+

∫ L∑
k=1

log p(yk|zk, θ) · p(z1:L|y1:L; θ
old) dz1:L

+ constant,
(B1)

where
∑L

k=1logp(bk|bk−1,θ) and
∑L

k=1logp(yk|zk,θ)
are given in Eq. (16).

In model 1, the bias model in Eq. (8) is linear.
The first term on the right-hand side of Eq. (B1)
can be simply calculated following the second line of
Eq. (8) in Shumway and Stoffer (1982), that is,

∫ L∑
k=1

log p(bk|bk−1, θ) · p(b1:L|y1:L; θ
old) db1:L

=− 1

2
tr
{
Ω−1

[
A−B −BT +C

] }− L

2
log|Ω|,

(B2)

where A, B, and C are given in Eq. (18).
In model 1, the measurement model in

Eq. (13) is non-linear. We have to approximate
log p(yk|zk, θ) by the logarithm of a linear Gaussian
distribution. This can be done via the first-order
Taylor expansion of h̃(zk). Expanding h̃(zk) in a
Taylor series at zs

k and omitting the terms of second
order and higher orders, we have

h̃(zk) ≈ h̃(zs
k) + J̃k(zk − zs

k). (B3)
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With the Jacobian distribution, we have
⎧⎨
⎩J̃k =

[
Jk IM

]
,

Jk = ∂h(xk)
∂xk

|xk=xs
k
.

(B4)

Defining

ỹk = yk − h̃(zs
k) + J̃kz

s
k, (B5)

and substituting Eq. (B3) into the joint logarithmic
distribution of the measurements, we obtain

L∑
k=1

log p(yk|zk, θ)

=− L

2
log|R|

− 1

2

L∑
k=1

(
yk − h̃(zk)

)T

R−1
(
yk − h̃(zk)

)

≈− L

2
log|R|

− 1

2

L∑
k=1

(
ỹk − J̃kzk

)T

R−1
(
ỹk − J̃kzk

)
,

(B6)
which is the logarithm of the product of linear Gaus-
sian components. Using the third and fourth lines
of Eq. (8) in Shumway and Stoffer (1982), we obtain
the second term on the right-hand side of Eq. (B1),
that is,

∫ L∑
k=1

log p(yk|zk, θ) · p(z1:L|y1:L; θ
old) dz1:L

≈− L

2
log|R| − 1

2
tr

{
R−1

L∑
k=1

[ (
ỹk − J̃kz

s
k

)
(
ỹk − J̃kz

s
k

)T

s+ J̃kP
s
k J̃

T
k

]}

=− L

2
log|R| − 1

2
tr

{
R−1

L∑
k=1

[ (
yk − h̃(zs

k)
)

(
yk − h̃(zs

k)
)T

+ J̃kP
s
k J̃

T
k

]}
,

(B7)
where the second equation results from inserting ỹk

(Eq. (B5)). Based on Eqs. (B1), (B2), and (B7), we
derive Q(θ, θold) in Eq. (17).

Note that the Jacobian J̃k in Eq. (B4) differs
from H̃k in Eq. (A2). The former is calculated at the
values xk = xs

k, whereas the latter is at xk = x−
k .

Appendix C: Proof of Lemma 1

Before proving Lemma 1, we must point out
that the EM estimates α

(n)
i and β

(n)
i do not regu-

larly evolve at the beginning iterations (i.e., small
n) as the routine mentioned in this lemma. Instead,
they strongly rely on the initial values α(0)

i and β
(0)
i .

In our study, the initial values α
(0)
i and β

(0)
i are

larger than the true values αi and βi, respectively.
At the beginning EM iterations, estimates α

(n)
i and

β
(n)
i both rapidly decrease to the level of their true

values; that is to say, at the nth
r iteration, we have{

α
(nr)
i ≈ αi,

β
(nr)
i ≈ βi, i = 1, 2, . . . ,M.

(C1)

We call the EM estimation stage with an iter-
ation number n < nr the ‘starting stage’, and the
stage where n > nr the ‘regular stage’. Because the
EM estimates α

(n)
i and β

(n)
i regularly behave when

n > nr, the regular stage is discussed below.
The proof starts from the underlying principle

of the EM algorithm. As we know, the mecha-
nism of the EM algorithm can be summarized as
follows (Moon, 1996; Tzikas et al., 2008): at the nth

EM iteration, an estimate θ(n) is calculated, and
thus Q(θ(n), θ(n−1)) is not smaller than the coun-
terpart Q(θ(n−1), θ(n−2)) of the previous iteration;
as Q(θ(n), θ(n−1)) increases with the iteration num-
ber n, the likelihood function p(y1:L; θ

(n)) increases.
After sufficient iterations, the EM estimate θ(n) con-
verges to a maximum likelihood estimate. Thus, we
can obtain

Q(n) ≥ Q(n−1), (C2)

where Q(n) denotes Q(θ(n), θ(n−1)) at the nth itera-
tion. The subsequent task is to decompose Eq. (C2)
into the terms related to the parameter estimates
α
(n)
i and β

(n)
i .

By partially substituting Eqs. (19) and (20) into
Eq. (17), we obtain

Q(n) =− L

2
log |Ω(n)| − ML

2

− L

2
log |R(n)| − ML

2
+ constant

=− L

2
log |Ω(n)R(n)|+ constant,

(C3)

and furthermore,

Q(n) = −L

2

M∑
i=1

logα
(n)
i β

(n)
i + constant, (C4)
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where α
(n)
i and β

(n)
i are given in Eqs. (22) and (24),

respectively. In Assumption 1 in Section 2.1, the
bias variances σ2

b,i (i = 1, 2, . . . ,M) do not signif-
icantly differ from each other, which precludes one
bias element from having dominating variance and
ensures that all M variance estimates evolve at a
similar pace. Hence, Eq. (C2) can be expressed as

α
(n)
i β

(n)
i ≤ α

(n−1)
i β

(n−1)
i , i = 1, 2, . . . ,M. (C5)

To check the inequality in Eq. (C5), we denote
by Δα

(n)
i and Δβ

(n)
i the incremental or decremental

portions of the estimates between two consecutive
EM iterations, respectively. Then we can obtain

α
(n)
i β

(n)
i =

(
α
(n−1)
i +Δα

(n−1)
i

)(
β
(n−1)
i +Δβ

(n−1)
i

)
= α

(n−1)
i β

(n−1)
i + α

(n−1)
i Δβ

(n−1)
i (C6)

+ β
(n−1)
i Δα

(n−1)
i +Δα

(n−1)
i Δβ

(n−1)
i .

It is known that Δα
(n)
i and Δβ

(n)
i are relatively

small, that is to say,

|Δα
(n)
i | � α

(n)
i , |Δβ

(n)
i | � β

(n)
i , (C7)

especially after a sufficiently large number of itera-
tions. Thus, we could drop the 4th term in Eq. (C6),
and have

α
(n)
i β

(n)
i ≈ α

(n−1)
i β

(n−1)
i

+ α
(n−1)
i Δβ

(n−1)
i + β

(n−1)
i Δα

(n−1)
i .

(C8)
Comparing Eqs. (C5) and (C8), we find that the
sum of the last two terms in Eq. (C8) should be non-
positive, that is,

α
(n−1)
i Δβ

(n−1)
i + β

(n−1)
i Δα

(n−1)
i ≤ 0. (C9)

Now, we have decomposed the inequality in
Eq. (C2) into the one in Eq. (C9), which is re-
lated only to the EM estimates α

(n−1)
i and β

(n−1)
i ,

as well as their related terms. Since both α
(n−1)
i

and β
(n−1)
i are positive, it is clear that the equality

in Eq. (C9) holds for Δα
(n−1)
i = Δβ

(n−1)
i = 0 in im-

pling that the EM estimates α(n)
i and β

(n)
i are stable

and that the convergence is achieved. Furthermore,
the inequality in Eq. (C9) is valid as long as at least
one of Δα

(n−1)
i and Δβ

(n−1)
i is negative.

The regular stage starts from Eq. (C1). Due to
βi > αi (Assumption 2 in Section 2.1), we derive

β(nr) > α(nr). (C10)

To meet the constraint in Eq. (25), for each n >

nr, α
(n)
i + β

(n)
i should be close to αi + βi, that is,

α
(n−1)
i + β

(n−1)
i

≈ α
(n)
i + β

(n)
i

=
(
α
(n−1)
i +Δα

(n−1)
i

)
+
(
β
(n−1)
i +Δβ

(n−1)
i

)
≈ αi + βi,

(C11)
from which we could obtain

Δα
(n−1)
i ≈ −Δβ

(n−1)
i . (C12)

In other words, the increment or decrement of α(n−1)
i

and β
(n−1)
i compensate for each other. Based on the

relationship in Eq. (C12), we obtain two directions
in which the EM estimates α

(n)
i and β

(n)
i iteratively

evolve:

1. Δα
(n−1)
i < 0 and Δβ

(n−1)
i > 0, which means

that α(n)
i decreases and β

(n)
i increases as n increases.

Due to Eq. (C10), β
(n−1)
i > α

(n−1)
i holds for each

n. Considering the relationship in Eq. (C12), we can
readily find that the inequality in Eq. (C9) holds.
This means that the EM estimation could iteratively
go in this direction.

2. Δα
(n−1)
i > 0 and Δβ

(n−1)
i < 0, which means

that α(n)
i increases and β

(n)
i decreases as n increases.

By taking Eqs. (C7), (C10), and (C12) into account,
we can find that Eq. (C9) fails at the (nr + 1)th

iteration. This means that it is impossible for the
EM estimation to iteratively go in this direction.

Based on the statements above, we con-
clude that the inequality in Eq. (C9) holds when
Δα

(n−1)
i < 0 and Δβ

(n−1)
i > 0, which means that

α
(n)
i deceases and β

(n)
i increases compared to their

counterparts at the previous iterations. Recall that
α
(n)
i denotes the variance estimate. Thus, the limit

of α
(n)
i is zero for a sufficiently large n. Corre-

spondingly, β
(n)
i approaches αi + βi as n increases

(Eq. (C11)). Therefore, we have the convergence
result in Eq. (26).
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Appendix D: Extended Kalman fil-
ter and extended Rauch-Tung-Striebel
(RTS) smoother for model 2

The EKF for model 2 is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x−
k = Fxf

k−1,

P−
k = FPk−1F

T +GQGT,

Kk = P−
k HT

k [HkP
−
k HT

k + R̆]−1,

xf
k = x−

k +Kk[yk − hk(x
−
k )− b],

Pk = (I −KkHk)P
−
k ,

(D1)

with Hk given in Eq. (A1).
Note that at the (n+1)th EM iteration, b and R̆

in Eq. (D1) should be replaced by the EM estimates
b(n) and R̆(n) in Eq. (32), respectively.

The fixed-interval extended RTS smoother for
model 2 is given as

⎧⎪⎪⎨
⎪⎪⎩

Mk = PkF
T
[
P−

k+1

]−1
,

xs
k = xf

k +Mk

[
xs
k+1 − x−

k+1

]
,

P s
k = Pk +Mk

[
P s

k+1 − P−
k+1

]
MT

k .

(D2)

The joint PDF p(x1:L|y1:L; θ
old) can be given as

p(x1:L|y1:L; θ
old)

=

L∏
k=1

p(xk|yk; θ
old) ∼

L∏
k=1

N (xs
k,P

s
k ),

(D3)

which is the product of Gaussian distributions with
mean xs

k and covariance P s
k given in Eq. (D2).
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