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Abstract: In this paper, we deal with both velocity control and force control of a single-rod electro-hydraulic actuator subject to 
external disturbances and parameter uncertainties. In some implementations, both velocity control and force control are required. 
Impedance control and an extended disturbance observer are combined to solve this issue. Impedance control is applied to regulate 
the dynamic relationship between the velocity and output force of the actuator, which can help avoid impact and keep a proper 
contact force on the environment or workpieces. Parameters of impedance rules are regulated by a fuzzy algorithm. An extended 
disturbance observer is employed to account for external disturbances and parameter uncertainties to achieve an accurate velocity 
tracking. A detailed model of load force dynamics is presented for the development of the extended disturbance observer. The 
stability of the whole system is analyzed. Experimental results demonstrate that the proposed control strategy has not only a high 
velocity tracking performance, but also a good force adjustment performance, and that it should be widely applied in construction 
and assembly. 
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1  Introduction 
 

Electro-hydraulic actuators have been widely 
used in industrial applications and mobile construc-
tion vehicles due to their high power-to-mass ratio. 
High-accuracy velocity tracking is required in some 
cases, such as hydraulic elevators (Sha et al., 2002; 
Kim et al., 2005). Sometimes accurate force control is 
necessary, such as load simulators (Nam, 2001; 
Truong and Ahn, 2009). Both velocity control and 
force control are needed in some special applications, 

e.g., robot manipulators (Sirouspour and Salcudean, 
2001; Zhu and Piedboeuf, 2005) and tunnel boring 
machines (Yang et al., 2009), in which a dynamic 
balance between the actuator motion and contact 
force on the environment or workpieces needs to be 
maintained. 

Raibert and Craig (1981) developed the hybrid 
position and force control, which divides the control 
task into position control and force control, but ig-
nores dynamics between the actuator and environ-
ment. Impedance control proposed by Hogan (1985a, 
1985b, 1985c) solves this problem by regulating dy-
namic relationship between the end effector position 
and force as a second-order mass-damper-spring 
system. Impedance control has been widely used. 
Fateh (2010) developed a robust impedance control 
strategy to obtain the desired comfort in a vehicle 
subjected to road disturbances. Xu (2015) presented a 
robust impedance control method for high-speed 
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position and force regulation of a gripper driven by a 
piezo-electric stack actuator in microassembly. An 
adaptive impedance control was proposed by Li ZJ 
et al. (2017) for task- and robot-oriented controls, 
which helps optimize human-robot cooperative tasks. 

High-accuracy motion control is a great chal-
lenge for electro-hydraulic systems, due to the pa-
rameter uncertainties and uncertain nonlinearities. To 
obtain a good performance, many control algorithms 
have been applied. Feedback linearization (Mintsa et 
al., 2012) uses the pole placement; however, high 
performance cannot be guaranteed because of the 
existence of parameter uncertainties and uncertain 
nonlinearities. Adaptive control (AC) (Ahn et al., 
2014) could improve the control system dynamic 
performance and static precision. However, the dis-
advantages of AC are that parameters drift and even 
instability might occur, when encountering disturb-
ances or measurement noises. Unlike AC, sliding 
mode control (SMC) (Lin et al., 2013; Yu et al., 2017) 
has been applied to account for system uncertainties 
and external disturbances. However, chattering in the 
control signal is inherent in SMC, which could easily 
excite high frequency modes and degrade the system 
performance. To overcome the drawbacks of AC and 
SMC, a new strategy, the adaptive robust control 
(ARC) method, was proposed (Yao and Tomizuka, 
1997; Yao et al., 2000; Chen et al., 2013; Zhang et al., 
2016), which effectively integrates the advantages of 
AC and SMC. 

Disturbance compensation is another method 
used to obtain a good tracking performance. As is not 
always possible in practice to directly measure dis-
turbance, disturbance observers have been proposed 
to estimate and compensate for disturbances. A fric-
tion observer designed by Friedland and Park (1992) 
estimated friction and improved the position tracking 
performance. Chen (2004) developed a nonlinear 
disturbance observer for disturbances generated by an 
exogenous system, and global exponential stability 
was established under certain conditions. Pi and 
Wang (2010) proposed an observer-based cascade 
controller for a six-degree-of-freedom (6-DOF) hy-
draulic manipulator, the effectiveness of which was 
proved by experiments. A second-order high-pass 
observer designed by Kim et al. (2013) estimated and 
compensated for the disturbances in electro-hydraulic 
actuator position tracking. Simulations and  

experiments have demonstrated that the disturbances 
within bandwidth can be cancelled well. Guo et al. 
(2015) and Li SZ et al. (2017) used an extended dis-
turbance observer driven by both the state estimation 
error and the tracking error to estimate not only ex-
ternal disturbances, but also uncertain parameters. Its 
effectiveness has been validated by experiments. A 
disturbance observer based adaptive neural network 
control was proposed for a robotic system (Zhang et 
al., 2017), which compensated for the model uncer-
tainties, nonlinear dynamics, neural network ap-
proximation errors, and external disturbances. A 
multi-input multi-output (MIMO) extended state 
observer based integral sliding mode controller (Cui 
et al., 2017) was developed for an underwater robot. 
An accurate tracking was achieved through estimat-
ing unmeasured velocities, external disturbances, and 
the upper bound of the uncertainties. 

Fuzzy control (Tian et al., 2016; Wei et al., 2016) 
was a commonly used intelligent control method, 
which is not based on an accurate mathematical plant 
model. A unified control strategy of position and 
force was established by Shibata et al. (1996). Based 
on parameters of dynamic characteristics of the en-
vironment estimated by a linear disturbance observer, 
force control has been realized via impedance control 
with fuzzy logic. An adaptive impedance controller 
based on an evolutionary dynamic recurrent fuzzy 
neural network (EDRFNN) was developed (Xu et al., 
2011), which showed robustness and smoothness in 
simulations. Therefore, parameters of impedance 
rules can be regulated by fuzzy algorithms to achieve 
good performance under gross variations in envi-
ronmental stiffness (Chen et al., 2005; Fateh and 
Alavi, 2009). 

For hydraulic systems, the existing schemes 
emphasize only impedance control or high-accuracy 
position control; however, they could be improved 
through synthesizing two different strategies. There-
fore, a fuzzy impedance controller with an extended 
disturbance observer based nonlinear velocity con-
troller (FICEDOB) is proposed in this study, com-
bining fuzzy impedance control and extended dis-
turbance observer based nonlinear velocity control 
(EDOBC). FICEDOB can not only compensate for 
both external disturbances and parameter uncertain-
ties, but also regulate dynamic relationship between 
the output force and velocity. Asymptotic velocity 
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tracking performance can be achieved when the con-
tact force on the environment lies in the allowable 
range. An expected dynamic relationship between the 
output force and velocity is guaranteed, and the con-
tact force remains close to the allowable range. 

 
 

2  System modeling 
 

The schematic of the electro-hydraulic system is 
shown in Fig. 1. A drive cylinder attached to a mass 
load is controlled by a servo valve. A load cylinder, 
controlled by a servo valve, is used as the load. The 
goal is to make the mass load track the desired ve-
locity trajectory as closely as possible when the load 
force lies in the allowable range. However, if the load 
force is beyond the desired range, an adjustment ac-
cording to impedance rules needs to be made to keep 
an appropriate output force. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The drive cylinder, load cylinder, and mass load 

are fixed together (Fig. 1), and can be treated as a 
lumped mass load m. The dynamics of the lumped 
mass load can be described as 

 

p 1 1 2 2 1 p L fc ,mx P A P A b x F mg F d= − − − + − −     (1) 
 
where xp is the displacement of the load mass, P1 and 
P2 are pressures of the drive cylinder forward and 
return chambers respectively, A1 and A2 are the ram 

areas of the forward and return chambers respectively, 
g is gravitational acceleration, Ffc( px )=b3tanh(η px ) is 

the modeled Coulomb friction force, d is the lumped 
uncertain nonlinearities due to external disturbances, 
unmodeled friction forces, and other hard-to-model 
terms, and FL is the load force of the drive cylinder 
caused by the load cylinder, FL=b2sg( px ) 2

p ,x  where 

sg(·) will be defined later. The load cylinder is used 
here to imitate a load commonly found in practice, the 
load force of which is relevant to the drive velocity. 
Besides, b1 is the damping coefficient, b2 is the coef-
ficient of the load force, and b3 and η are coefficients 
of the modeled Coulomb friction force. 

Neglecting the external leakage, the pressure 
dynamics in drive cylinder chambers can be ex-
pressed as 

 
e

1 1 1 p t 1 2
01 1 p

( ) ,P Q A x C P P
V A x

β
 = − − − +



       (2) 

e
2 2 2 p t 1 2

02 2 p

( ) ,P Q A x C P P
V A x

β
 = − + + − −



    (3) 

 
where V01 and V02 are initial control volumes of the 
two drive cylinder chambers respectively, βe is the 
effective hydraulic fluid bulk modulus, Ct is the co-
efficient of the total internal leakage of the cylinder 
due to pressure, Q1 is the supply flow rate to the 
forward chamber, and Q2 is the return flow rate out of 
the return chamber. 

The control flow of the drive cylinder chambers 
Q1 and Q2 can be described as 

 

1 q v g v s 1 g v 1 t( ) ( ) ,Q k x s x P P s x P P = − + − −    (4) 

2 q v g v 2 t g v s 2( ) ( ) ,Q k x s x P P s x P P = − + − −   (5) 

 
where kq is the flow gain coefficient of the servo 
valves, xv is the spool displacement of the servo 
valves, Ps is the supply pressure of the pump, and Pt is 
the tank pressure. sg(·) is defined as 
 

g

1,     if  0,
( )

0,    if  0.
s

⋅ ≥
⋅ =  ⋅ <

                       (6) 

 
The dynamics of servo valves can be neglected, 

Fig. 1  Schematic of the electro-hydraulic system (P: high 
pressure oil; T: oil tank) 

Mass

xp
Q1

Q2

P1

P2

Drive 
cylinder

PL

Load 
cylinder

Servo 
valve

Servo 
valve

Ps

TP



Li et al. / Front Inform Technol Electron Eng   2019 20(9):1221-1233 1224 

because high-response servo valves are used here. 
Therefore, it is assumed that the control voltage  
applied to the servo valves is proportional to the spool 
position, that is, xv=kxu, where kx is a positive con-
stant and u is the control input voltage. For simplicity, 
define kqx=kqkx. 

Combining Eqs. (1)–(6) and defining x=[x1, x2, 
x3, x4]T=[xp, p ,x  P1, P2]T as the state variable, the 

dynamics of the electro-hydraulic actuator in the state 
space can be expressed as 

 

1 2 ,=x x                                 (7) 

( )2 1 3 2 4 1 2 L fc
1 ,x A x A x b x F mg F d
m

= − − − + − −    (8) 

3 1 1 1 2 t 3 4 qx 1 3( ) ( ) ( , ) ,x h x A x C x x k ug x u = − − − +    (9) 

4 2 1 2 2 t 3 4 qx 2 4( ) ( ) ( , ) ,x h x A x C x x k ug x u = + − −   (10) 

where 

e
1

01 1 1

( ) ,h x
V A x

β
=

+
                      (11) 

e
2

02 2 1

( ) ,h x
V A x

β
=

−
                     (12) 

1 3 g s 3 g 3 t( , ) ( ) ( ) ,g x u s u P x s u x P= − + − −    (13) 

2 4 g 4 t g s 4( , ) ( ) ( ) .g x u s u x P s u P x= − + − −    (14) 

 
A new state variable is introduced as 3x =x3−αx4, 

where α=A2/A1 represents the piston area ratio. Thus, 
the system of Eqs. (7)–(10) can be handled well using 
the backstepping technique. So, the dynamics of the 
whole system can be expressed as 

 
1 2 ,=x x                                 (15) 

2
2 1 3 1 2 2 g 2 2

3
2
2 2

1 ( )

tan h( ) ,

x A x b x b s x x mg
m

b x dx h

= − − +

− − 



    (16) 

( )3 1 2 2 t 3 4 qx 3 ,x f x f C x x k f u= − − − +         (17) 

where 

1 1 1 1 1 2 1 2( ) ( ) ( ) ,α= +f x h x A h x A             (18) 

2 1 1 1 2 1( ) ( ) ( ),α= +f x h x h x                     (19) 

3 1 3 4 1 1 1 3 2 1 2 4( , , , ) ( ) ( , ) ( ) ( , ).f x x x u h x g u x h x g u xα= +    
(20) 

Before describing the controller design, we 
make the following assumption: 
Assumption 1    The desired velocity trajectory dx  
and the derivatives dx  are bounded. P1 and P2 are 
bounded by Ps and Pt, respectively; that is, 0≤Pt<P1< 
Ps, 0≤Pt<P2<Ps. 
 
 
3  Fuzzy impedance control 
 

The load force FL should be maintained in a 
certain allowable range to protect the environment or 
workpieces. As working conditions are always 
time-variant in practice, fuzzy impedance control is 
adopted to obtain a prescribed dynamic behavior 
between velocity control and force control. The im-
pedance rule is defined as a first-order system: 

 

c x c x F ,m e b e e+ =                         (21) 
 
where mc is the desired mass and bc is the desired 
damping coefficient. eF=FL−FLd is the force discrep-
ancy between the actual load force FL and the desired 
load force FLd, x d 1e x x= −    is the output velocity 
discrepancy, and xe  is its derivative. 

Because of the variation in the velocity com-
mand and the load force requirement, it is necessary 
to define a number of impedance rules to regulate the 
dynamic behavior between velocity and load force. 
Thus, a fuzzy algorithm is employed to regulate im-
pedance rules. 

A Mamdani type of fuzzy inference engine and 
the center of gravity defuzzification methods are 
chosen to calculate the fuzzy controller. Seven 
membership functions, namely LS, CS, S, M, B, CB, 
and LB, are used for the input variables Vc and |dFc/dt| 
in a range of 0–1 (Fig. 2). Seven membership func-
tions, namely NB, NM, NS, ZO, PS, PM, and PB, are 
used for the input variable dFc in a range of −1–1 
(Fig. 3). Seven membership functions, namely LS, 
CS, S, M, B, CB, and LB, are used for the output 
variable M in a range of 0–1 (Fig. 4). As for the output 
variable B, eight membership functions, namely LS, 
CS, S, SS, SB, B, CB, and LB, are used in a range of 
0–1 (Fig. 5). Scaling functions should be used to 
regulate variables within the desired range, expressed 
as 
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max min
c c

max min

1 1 ,
2 2

v vV v
v v

+ = + − −  
     (22) 

c

L Lmax min

L Lmax minL

d 1 1
d 2 d d d d

d d d dd         ,
d 2

F
t F t F t

F t F tF
t

= +
−

 + 
⋅ −  
 

  (23) 

c L L maxd d d ,F F F=                            (24) 

c c max c min c min( ) ,m m m M m= − +     (25) 

c c max c min c min( ) ,b b b B b= − +           (26) 
 
where c dv x=   is the velocity command, vmax and vmin 
are its maximum and minimum respectively, 
|dFL/dt|max and |dFL/dt|min are the maximum and 
minimum absolute values of the derivative of FL re-
spectively, and dFL max is the maximum of the dis-
crepancy between the actual load force and the 
nominal load force. The nominal load force is the 
force generated by the load cylinder when it moves at 
a desired velocity with a normal load. In practice, the 
nominal load force can be measured in advance. mc max 
and mc min are the maximum and minimum of the 
desired mass respectively, and bc max and bc min are the 
maximum and minimum of the desired damping co-
efficients respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
The fuzzy rules are listed in Tables 1 and 2. The 

input variables are the velocity command Vc, the load 
force discrepancy dFc, and the absolute value of its 
derivative |dFc/dt|. The output variables are the de-
sired mass M and the desired damping coefficient B of 
the impedance rules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 1  Fuzzy rules of the desired mass M 

|dFc/dt| 
M 

Vc=LS CS S M B CB LB 
LS LB LB CB CB B B M 
CS LB CB CB B B M S 
S CB CB B B M S S 
M CB B B M S S CS 
B B B M S S CS CS 

CB B M S S CS CS LS 
LB M S S CS CS LS LS 

 
Table 2  Fuzzy rules of the desired damping coefficient B 

dFc 
B 

Vc=LS CS S M B CB LB 
NB B SB SS S CS LS LS 
NM CB B SB SS S CS LS 
NS LB CB B SB SS S CS 
ZO LB LB CB B SB SS S 
PS LB CB B SB SS S CS 
PM CB B SB SS S CS LS 
PB B SB SS S CS LS LS 

 

Fig. 2  Membership functions for the inputs Vc and 
|dFc/dt| 
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Fig. 3  Membership functions for the input dFc 
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Fig. 4  Membership functions for the output M 
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Fig. 5  Membership functions for the output B 
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Taking fuzzy impedance control into considera-
tion, the desired velocity trajectory becomes 

s d xx x e= −    and the derivative becomes 

s d x ,x x e= −   where xe  and xe  are the computations 
of Eq. (21), which are different from xe  and x .e  
Assumption 2    According to Assumption 1, assume 
that the first-order impedance strategy and the con-
cerned load system, i.e., s sand x x   respectively, are 
bounded. 
 
4  Extended disturbance observer based 
nonlinear velocity controller 

4.1  Extended disturbance observer 

The electro-hydraulic system is subjected to the 
external disturbances and parameter uncertainties, 
which will diminish control precision. An extended 
disturbance observer is proposed, driven by not only 
the control error but also the estimation error of state 
x2. In practice, x2 can be measured with sensors. The 
dynamics estimation of x2 is 

 
2

2p 1 3 1 2 2 g 2 2

3 2 1 2p

1 ˆ ˆˆ ( )

ˆ ˆ                tan h( ) ,

x A x b x b s x x mg
m

b x d w xh

= − − +

− − + 





       (27) 

 
where 2p 1 2 3

ˆ ˆ ˆˆ , , , ,x b b b  and d̂  are estimations of x2, b1, 

b2, b3, and d respectively, and w1 is a positive constant. 
The estimation errors are defined as 2p 2 2pˆ ,x x x= −  

1 1 1̂,b b b= −  2 2 2̂ ,b b b= −  3 3 3̂ ,b b b= −  ˆ.d d d= −  
Thus, the dynamics of 2px  is 

 
2

2p 1 2 2 g 2 2 3 2 1 2p
1 s ( ) tan h( ) .x b x b x x b x d w x
m

h = − + + + + 
   

   

(28) 
 

Adaption laws are chosen as 
 

1 11 2 2p b1
1ˆ ,b k x x
m

χ= − +

                         (29) 

2
2 12 g 2 2 2p b2

1ˆ ( ) ,b k s x x x
m

χ= − +

              (30) 

3 13 2 2p b3
1ˆ tan h( ) ,b k x x
m

h χ= − +

           (31) 

14 2p d
1ˆ ,d k x
m

χ= − +

                             (32) 

 
where k11, k12, k13, and k14 are positive constants, and 
χb1, χb2, χb3, and χd are extra corrector terms, which 
will be designed later, to ensure the stability of the 
nonlinear velocity control system based on an ex-
tended disturbance observer. 

Define the Lyapunov function as 
 

2 1 2 1 2 1 2 1 2
1 2p 11 1 12 2 13 3 14

1 1 1 1 1 .
2 2 2 2 2

V x k b k b k b k d− − − −= + + + +   

  (33) 

 
Based on Eqs. (28)–(32), the time derivative of 

V1 is 
 

2 1 1 1 1
1 1 2p 11 1 b1 12 2 b2 13 3 b3 14 d

1 .V w x k b k b k b k d
m

χ χ χ χ− − − −= − − − − −   


   

(34) 
Remark 1    The dynamics of b1, b2, b3, and d are 
ignored and treated as constant. However, it can be 
proved by experiments that the proposed controller is 
reliable in practice with the time-variant parameters 
b1, b2, b3, and disturbance d. 

4.2  Nonlinear velocity controller 

The velocity controller is designed based on a 
recursive backstepping procedure, consisting of a 
velocity tracking outer loop and a pressure control 
inner loop. 

1. Step 1 
Define the velocity tracking error as 

2 2 s .x x x= −   Then a sliding surface s can be defined 
as 

 

2 2d ,λ= + ∫ s x x t                          (35) 

 
where λ is a positive constant. Since making 2x  small 
or converge to zero is equivalent to making s  small 
or converge to zero, the rest of the design will focus 
on making s  as small as possible. According to As-
sumption 2, differentiating Eq. (35) and noting 
Eqs. (15)–(17) yield 
 

2
1 3 1 2 2 g 2 2

3 2 s 2 s
2
2

1 ( )

      tan h( ) ( ).

s A x b x b s x x mg

x
m

b x d x x xh λ

= − − +
− − − + −



 

 (36) 
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A virtual control input 3α  for 3x  is designed as 
 

( )

2
3 1 2 2 g 2 2 3 2

1

s 2 s 1

1 ˆ ˆ ˆ( ) tan h( )

ˆ             ( ) ,

b x b s x x mg b x
A

d m x x x c s

a h

λ

= + − +

+ + − − −  

 (37) 

 
where c1 is a positive constant. 

Let 3 3 3z x α= −  denote the inner pressure con-
trol loop error. The dynamics of s can be expressed as 

 
21

1 3 1 2 2 g 2 2

3 2

1 1 ( )

1 1        tan h( ) .

As c s z b x b s x x
m m m

b x d
m m

h

= − + − −

− −

 



 

     (38) 

Define the following Lyapunov function: 

1 2
2 1 2

1 ,
2

−= +V V k s                           (39) 

 
where k2 is a positive constant. Taking Eqs. (34) and 
(38) into consideration, the time derivative of V2 is 
given by 
 

2 1 1 1
2 1 2p 11 1 b1 12 2 b2 13 3 b3

1 1 1
14 d 2 1 3 1 2

2
2 g 2 2 3 2

1

1       

1 1 1       ( ) tan h( ) .

V w x k b k b k b
m

Ak d k s c s z b x
m m

b s x x b x d
m m m

ccc 

c

h

− − −

− −

= − − − −

− + − + −
− − − 

  


 

  

 (40) 

 
According to Eq. (40), the extra corrector terms 

χb1, χb2, χb3, and χd are designed as 
 

1
b1 11 2 2

1 ,k k x s
m

χ −= −                            (41) 

1 2
b2 12 2 g 2 2

1 ( ) ,k k s x x s
m

χ −= −                 (42) 

1
b3 13 2 2

1 tan h( ) ,k k x s
m

χ h−= −              (43) 

1
d 14 2

1 .k k s
m

χ −= −                               (44) 

Combining Eqs. (40)–(44) yields 

2 1 2 1 1
2 1 2p 1 2 2 3

1 .AV w x c k s k z s
m m

− −= − − +

           (45) 

2. Step 2 
The time derivative of 3z  is given by 
 

3 1 2 2 t 3 4 qx 3 3( ) .z f x f C x x k f u α= − − − + −      (46) 
 

Thus, an actual control input u should be syn-
thesized to guarantee that 3x  tracks the virtual control 
input 3α  with a certain transient performance. Simi-
lar to step 1, u is designed as 
 

1 1
1 2 2 t 3 4 3 2 3 2 3

qx 3

1 ( ) ,Au f x f C x x c z k k s
k f m

α − = + − + − −  
  

(47) 
where c2 and k3 are positive constants. 
Remark 2    Although Eq. (47) includes the control 
input u on both sides, u on the right side is only in the 
term sg(·) of f3. As f3 and kqx are always larger than 
zero, u  is determined by only 1 2 2 t 3 4( )f x f C x x+ − +  

1
3 2 3 2 3 1 .c z k k A s mα −− −  

Hence, the control input u  can be modified as 
 

b

qx 3 1 3 4 b

,
( , , , )

uu
k f x x x u

=                (48) 

1 1
b 1 2 2 t 3 4 3 2 3 2 3( ) .Au f x f C x x c z k k s

m
α −= + − + − −  (49) 

 
 
5  Stability analysis of the whole system 
 

The whole cascade system consists of a fuzzy 
impedance controller and an extended disturbance 
based nonlinear velocity controller (Fig. 6). Parame-
ters of the impedance rules are determined by a fuzzy 
algorithm. The impedance system defined as Eq. (21) 
is a time-variant first-order system with positive co-
efficients, while the input eF is limited by the specific 
load system. So, the defined first-order system is 
always stable, and the time-variant parameters change 
only the settling time and output value. 

Define a sliding function as 
 

I c x c x F.s m e b e e= + −                      (50) 
 
The sliding function of Eq. (50) produces the 

desired impedance behavior of Eq. (21), if sI vanishes 



Li et al. / Front Inform Technol Electron Eng   2019 20(9):1221-1233 1228 

 
 
 
 
 
 
 
 
 
 

 
 
(Xu, 2015). Then Eq. (50) yields 

 
I c d 1 c d 1 F

c x 2 c x 2 F

c 2 c 2

( ) ( )

   ( ) ( )

   ( ).

s m x x b x x e

m e x b e x e

m x b x

= − + − −

= − + − −

= − +

   


 

 



 

         (51) 

 
The stability of EDOBC can be proved by sub-

stituting Eq. (47) into Eq. (46). 3z  can be expressed 
as 

 
1 1

3 2 3 2 3 .−= − −

Az c z k k s
m

                      (52) 

Define the following Lyapunov function: 

1 2
3 2 3 3

1 .
2

−= +V V k z                            (53) 

 
Taking Eqs. (45), (52), and (53) into considera-

tion, the time derivative of V3 is given by 
 

2 1 2 1 2
3 1 2p 1 2 2 3 3

1 0.V w x c k s c k z
m

− −= − − − ≤

        (54) 

 
Therefore, the stability of EDOBC is proved. 2x  

will converge to zero in finite time. Generally, the 
response of EDOBC is designed to be much faster 
than the fuzzy impedance controller, to keep the 
contact force varying smoothly and avoiding impacts. 

sx  can be treated as zero when dx  is zero and the load 

varies slowly. So, 2 2 sx x x= −

    can be assumed to be 
small enough to make sI converge to zero. Therefore, 
the desired impedance behavior can be achieved un-
der certain conditions. 

 
 
 
 
 
 
 
 
 
 

 
 
6  Experimental results 
 

Experiments were conducted to verify the per-
formance of the proposed FICEDOB. A drive cylin-
der with an 80-mm bore and a 50-mm rod was con-
trolled by a servo valve manufactured by Bosch 
(4WRREH6VB40L-1X/G24K0/B5M). The load 
cylinder had a 70-mm bore and a 50-mm rod con-
trolled by another servo valve of the same type. The 
bandwidth of the servo valves was greater than 80 Hz 
with a 100% control signal. Four pressure sensors 
were installed, which were all made by Bosch 
Rexroth (HM20-1X400-C-K35) with an accuracy of 
2×105 Pa. A position sensor made by SPM was used 
to measure the displacement of the drive cylinder. The 
velocity was obtained by differentiating the position 
signal. All these signals were fed back to, or output 
from a data acquisition card (National Instruments 
PCI-6229). The control algorithm was implemented 
in the Matlab Simulink Realtime environment with a 
control rate of 1 kHz. 

The performance of EDOBC without impedance 
control was verified first. Parameters of the electro- 
hydraulic system and controllers are listed in Tables 3 
and 4, respectively. The desired velocity trajectory 

was d
π 3π0.02sin 0.03 m/s,
5 2

x t = + + 
 

  and the 

command of the servo valves controlling the load 
cylinder was uL=−2 V. Figs. 7 and 8 show that the 
tracking errors are small. The control input u  of 
EDOBC is shown in Fig. 9, and estimations of the 
parameters 1 2 3

ˆ ˆ ˆ ˆ,  ,  ,  and  b b b d  in Fig. 10. EDOBC had 
a good velocity tracking performance since the ex-
tended disturbance observer could compensate for 
external disturbances and parameter uncertainties 

Fig. 6  Block diagram of the whole system 
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during the tracking process. The initial estimations of 
parameters were defined based on parameter identi-
fication when d 0.02 m/s.x =  The parameter estima-
tions in Fig. 10 are consistent with the positive cor-
relations between the cylinder velocity and the load 
force in analytic prediction. However, there is no 
guarantee that the estimated parameters are equal to 
their true values. This is because the parameter adap-
tion law is driven by both the control error and the 
estimation error of state x2, and the persistent excita-
tion condition (Slotine and Li, 1991) may not be sat-
isfied. However, high-performance velocity tracking 
and state observation can still be achieved through 
accurate force compensation, which is a combination 
of 2

1 2 2 g 2 2 3 2
ˆ ˆ ˆ ˆ, ( ) , tan h( ), and .b x b s x x b x dh  Once 

the control error and the state estimation error con-
verge to zero, the estimated parameters become stable, 
but may not be equal to their true values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Next, FICEDOB was tested when the velocity 
commands were constant, set as 0.02 and 0.04 m/s. 
Parameters of the fuzzy impedance rules are listed in 

Table 3  Parameters of the electro-hydraulic system 

Symbol Value Unit 
m 175 kg 
A1 5.0265×10−3 m2 
A2 3.0631×10−3 m2 
η  100 s/m 
g 9.8 m/s2 
Ps 2.100×107 Pa 
Pt 0 Pa 
Ct 0 m3/(s·Pa) 

kqx 3.5635×10−3 ( )3m s V Pa⋅ ⋅  

 

Table 4  Parameters of the extended disturbance observer 
based nonlinear velocity control 

Symbol Value Unit Symbol Value Unit 

11k  1×105  λ  50  

12k  8×1013  1c  1×104  

13k  1×105  2c  60  

14k  1×108  1̂(0)b  1×105 kg·s 

2k  0.5  2̂ (0)b  4×106 kg/m 

3k  1×105  3̂ (0)b  1200 N 

1w  3×105  ˆ(0)d  0 N 

 Fig. 10  Parameter estimations of the extended disturb-
ance observer based nonlinear velocity control: (a) esti-
mation of 1̂;b  (b) estimation of ˆ

2;b  (c) estimation of ˆ
3;b  

(d) estimation of d̂  
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Fig. 7  Velocity tracking of the extended disturbance ob-
server based nonlinear velocity control 
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Fig. 8  Tracking errors of the extended disturbance ob-
server based nonlinear velocity control 
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Fig. 9  Control input of the extended disturbance observer 
server based nonlinear velocity control 
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Table 5. Two controllers, EDOBC and FICEDOB, 
were compared to verify the effect of impedance 
control. A sudden step-like change was applied to the 
servo valves that controlled the load cylinder. Due to 
limitations of EDOBC, the estimated parameters 
could not converge to their true values. Therefore, in 
practice, the load force was measured through a 
pressure sensor. 

 
 
 
 
 
 
 
 
 
The velocity command was set as 0.02 m/s, and 

the load command changed from −1 V to −0.7 V and 
back to −1 V (step-like) (Fig. 11a). Fig. 11b shows the 
adjusted velocity command which helps achieve a 
desired impedance behavior when a change of load 
command occurs. Because of the fuzzy impedance 
control, a smooth and small velocity command was 
generated in FICEDOB. The load force on the load 
cylinder was kept within a close range (Fig. 11d). 
Tracking errors related to the unadjusted or adjusted 
velocity command are shown in Fig. 11c. Both 
FICEDOB and EDOBC achieved good tracking per-
formance, while FICEDOB showed great robustness 
in dealing with load impacts by velocity adjustment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the experiments, fuzzy impedance control was 
activated if the discrepancy of the load force reached 
10% beyond the nominal value. The experimental 
results showed that a balance of velocity control and 
force control could be easily achieved by tuning the 
relative values of the target impedance parameters. 
The fuzzy impedance parameter B was chosen 
smaller when the discrepancy of load force or velocity 
command became larger. A small load force error 
could be obtained if a small B or a small discrepancy 
which activated impedance was chosen, simultane-
ously leading to a large velocity error. However, acute 
oscillation could be excited when B or the discrep-
ancy was too small (Xu, 2015). Hence, a fuzzy algo-
rithm was adopted to determine the best target im-
pedance parameters for specific applications. 

To further test the effectiveness of the fuzzy 
impedance control strategy, different load commands 
and velocity commands were applied. No matter 
whether the load command became larger or smaller, 
FICEDOB showed both good force control ability 
and good velocity tracking performance. The test 
results are shown in Figs. 12–14. The velocity com-
mands were set as 0.02 m/s in Fig. 12 and 0.04 m/s in 
Figs. 13 and 14. Similarly, a smoothly adjusted ve-
locity command was produced when the load force 
reached the accepted range. The load force was kept 
in a narrower range with FICEDOB than with 
EDOBC. All experimental results indicated that 
FICEDOB can be employed in electro-hydraulic ac-
tuators to obtain a high-velocity tracking performance 
along with force regulation on the environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Parameters of the fuzzy impedance rules 

Symbol Value Unit Symbol Value Unit 
vmax 0.05 m/s mc max 1000 N·s2/m 
vmin 0 m/s mc min 100 N·s2/m 

|dFL/dt|max 1×105 N/s bc max 4×106 N·s/m 
|dFL/dt|min 0 N/s bc min 8×105 N·s/m 

dFL max 7 6970 N    
 

Fig. 11  Tracking results with a 0.02-m/s velocity com-
mand and −1→−0.7→−1 V load command: (a) load 
command; (b) adjusted velocity command; (c) velocity 
tracking error; (d) load force 
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Fig. 12  Tracking results with a 0.02-m/s velocity com-
mand and −1→−2→−1 V load command: (a) load com-
mand; (b) adjusted velocity command; (c) velocity track-
ing error; (d) load force 
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The primary advantage of fuzzy impedance 
control is that it can regulate the dynamic relationship 
between velocity and force. Because the load force is 
caused by fluid flowing through an orifice, a stable 
load force will be established until the flow becomes 
stable. Therefore, the regulation of dynamics between 
velocity and force is not apparent in experiments; 
however, force adjustment performance is quite good. 

To clearly demonstrate the force control ability 
of FICEDOB, velocity commands, stably adjusted 
velocity commands, and stable load forces are listed 
in Table 6. Fuzzy impedance control can regulate the 
load force within a narrow range, which can protect 
the environment. 

It is obvious that velocity control and force 
control are coupled in the impedance control strategy 
(Xu, 2015). A desired velocity trajectory cannot be 
tracked arbitrarily without considering the force re-
quirement in contact tasks. This limitation demands a 
compromise between velocity control and force con-
trol, which can be realized by a designed impedance 
scheme. In some applications, velocity control is 
considered the paramount goal, while the contact 
force is allowed to vary within some ranges. Using the 
proposed FICEDOB, it can be achieved by focusing 
more on velocity control than force control to obtain a 
better control performance. 

 
 

7  Conclusions 
 

In this study, an impedance control strategy has 
been combined with an extended disturbance ob-
server based nonlinear velocity controller to deal with 
not only velocity control but also force control of an 
electro-hydraulic actuator. The proposed controller 
has combined the advantages of an impedance con-
troller and an extended disturbance observer based 
nonlinear velocity controller. External disturbances 
and parameter uncertainties can be compensated for 
through EDOBC, while the regulation of velocity and 
force can be obtained via an impedance scheme. The 
parameters of the impedance controller have been 
adjusted by a fuzzy algorithm to achieve good per-
formance. The fuzzy impedance controller has regu-
lated the velocity command, which is the control 
target of EDOBC. Then accurate velocity control has 
been guaranteed by EDOBC. The stability of the 
whole cascade system has been analyzed. In experi-
ments, high velocity tracking performance and force 
adjustment performance have been achieved, along 
with the successful cancelation of parameter uncer-
tainties and disturbances, which verified the effec-
tiveness of the proposed control strategy. Because the 
extended disturbance observer is driven by both the 
state estimation error and the tracking error once the 
errors converge to zero, the estimated parameters and 
disturbances are stable but may not trend towards 
their true values. In future work, we will consider the 
accurate estimation of load force rather than meas-
uring it with a pressure sensor, such as using an in-
direct adaptive robust controller. 

Fig. 13  Tracking results with a 0.04-m/s velocity com-
mand and −1.6→−2.2→−1.6 V load command: (a) load 
command; (b) adjusted velocity command; (c) velocity 
tracking error; (d) load force 
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Fig. 14  Tracking results with a 0.04-m/s velocity com-
mand and −3.5→−2.2→−3.5 V load command: (a) load 
command; (b) adjusted velocity command; (c) velocity 
tracking error; (d) load force 
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