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Abstract: Music can trigger human emotion. This is a psychophysiological process. Therefore, using psychophys-
iological characteristics could be a way to understand individual music emotional experience. In this study, we
explore a new method of personal music emotion recognition based on human physiological characteristics. First,
we build up a database of features based on emotions related to music and a database based on physiological signals
derived from music listening including EDA, PPG, SKT, RSP, and PD variation information. Then linear regression,
ridge regression, support vector machines with three different kernels, decision trees, k-nearest neighbors, multi-layer
perceptron, and Nu support vector regression (NuSVR) are used to recognize music emotions via a data synthesis of
music features and human physiological features. NuSVR outperforms the other methods. The correlation coefficient
values are 0.7347 for arousal and 0.7902 for valence, while the mean squared errors are 0.023 23 for arousal and
0.014 85 for valence. Finally, we compare the different data sets and find that the data set with all the features
(music features and all physiological features) has the best performance in modeling. The correlation coefficient
values are 0.6499 for arousal and 0.7735 for valence, while the mean squared errors are 0.029 32 for arousal and
0.015 76 for valence. We provide an effective way to recognize personal music emotional experience, and the study
can be applied to personalized music recommendation.
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1 Introduction

Music is so expressive that it represents a good
carrier for human emotion. People often listen to
a song to adjust their own state to get rid of bad
feelings or motivate themselves (Mori and Iwanaga,
2017). As a matter of fact, feelings about the same
song vary from person to person. The evidence of
physiological variation stimulated by music is obvi-
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ous and empirical. Thus, it is favorable for utilization
in personal music emotion recognition. We aim to
use psychophysiological measures for emotion-based
music recognition, since human emotional states can
influence physiological changes, and, in turn, such
physiological features can be used to reflect human
emotions during the experience of listening to music
(Maia and Furtado, 2016). The relationship between
the physical state of the individual and the music
emotional experience has the opportunity to make
the computer aware of personal music preference for
effective music recommendation.

Many existing studies on the recognition of mu-
sic emotions focus mainly on the features and charac-
teristics of the music itself as a multimedia modality.
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However, the multimedia features may have limita-
tions or underestimate the recognition results since
they ignore human physiological variations induced
by listening to music. Fortunately, there are some ex-
isting studies and methods that provide significant
support for this research. Many researchers have
explored recognition of emotions through physiolog-
ical features (Picard et al., 2001; Rani et al., 2006;
de Witte et al., 2017), in which music (Kim and An-
dré, 2008), video (Agrafioti et al., 2012), image (Kat-
sis et al., 2011), and advertising (Li et al., 2017) were
commonly selected as the stimuli to induce human
emotions in the experiments. However, most of the
studies were carried out in the lab and the databases
were independent without cross-verification. Never-
theless, a breakthrough in application potential was
required for industrial platforms.

Thus, this study pursued the possibility of us-
ing human psychophysiological features as an index
for recognition of music. Instantaneous human psy-
chophysiological states can reveal the exquisite and
true feelings about a piece of music. Music features
including melfrequency cepstral coefficient (MFCC),
centroid, flux, and roll-off, and physiological fea-
tures including electrodermal activity (EDA), photo-
plethysmography (PPG), skin temperature (SKT),
respiration (RSP), and pupil diameter (PD) varia-
tion information were all collected to form a database
for emotion recognition modeling. A model compar-
ison was carried out for data synthesis of physiolog-
ical and music features with the aim of a better un-
derstanding of how an individual perceives emotions
when listening to music.

2 Related work

Here we would like to provide some selected
reviews on emotion recognition with physiological
data and multimedia data from various aspects to
show the systematic research in this area. There
has been much evidence supporting the usefulness
of physiological signals in music emotion recogni-
tion (Krumhansl, 1997; Nyklíček et al., 1997; Mit-
terschiffthaler et al., 2007; Li et al., 2016). Different
feature data sets have been applied to perform music
emotion recognition, and they can be roughly cate-
gorized into two groups, the music audio features and
the physiological features induced by music. In re-
cent studies, many researchers have built up affective

physiological response databases to learn the emotive
expression pattern of physiological signals, includ-
ing electromyogram (EMG), electroencephalography
(EEG), electrocardiograph (ECG), PPG, eye track-
ing, and respiration data. In addition, audio features
extracted from music clips such as MFCC, flux, cen-
troid, spectrum, and roll-off can present music emo-
tions effectively. Based on the existing multimodal
feature data sets, machine learning approaches
have commonly been deployed in emotion pattern
exploration.

2.1 Music emotion recognition based on audio
data

By music emotion recognition based on audio
data, audio feature information is extracted from
music clips. Music emotion recognition has been
widely used in music emotion retrieval and rec-
ommendation. Lu et al. (2010) and Yang and
Chen (2011) compared various machine learning ap-
proaches for music emotion recognition and proved
that music features including MFCC, centroid, flux,
and roll-off are useful. Ayadi et al. (2011) compared
the classifiers of hidden Markov model (HMM),
Gaussian mixture model (GMM), artificial neural
network (ANN), and support vector machine (SVM)
in speech emotion recognition and considered that
the choice of features, the classification scheme, and
the preparation of an emotional speech database
were crucial for improving the results. It was be-
lieved that audio features could convey the emotional
content of a music clip, while features of the pitch, en-
ergy, timing, and spectrum were the commonly used
features within the studies. However, to achieve bet-
ter results, recognition based on physiological data
should also be considered.

2.2 Music emotion recognition based on phys-
iological data

By music emotion recognition based on physi-
ological data, rich feature information is extracted
from physiological signals that can reveal the emo-
tions induced by listening to music. In the past
decade, there have been a considerable number of
studies recognizing emotion by physiological fea-
tures. First, Picard et al. (2001) recorded the physi-
ological data from blood volume pulse (BVP), heart
rate (HR), RSP, EMG, and skin conductance (SC)
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of a subject who tried to experience eight affective
states, and achieved an emotion recognition rate of
81% by sequential floating forward search (SFFS)
and Fisher projection (FP). Kim and André (2008)
studied music emotion recognition and reached a
recognition rate of 95% for distinct positive and neg-
ative emotions using EMG, ECG, SC, and RSP. In
Wagner et al. (2005), emotion recognition of anger,
surprise, sadness, and pleasure with physiological
features from EMG, ECG, SC, and RSP led to a
result of 92.05% with a cross-validation method, in
which k-nearest neighbors (KNN), linear discrimi-
nant function, and multilayer perceptron were com-
pared for the optimal model. A number of physio-
logical features were proved relevant to valence and
an arousal emotion response. Specifically, EMG and
HR were shown to be more sensitive to valence and
SC was more related to arousal (Gerdes et al., 2014).
Chandler and Cornes (2012) also presented a report
on a physiological analysis solution for a unique indi-
vidual emotion state recognition, where EMG, gal-
vanic skin response (GSV), facial expressions, and
iris features were taken as effective features in emo-
tion measurement. Using the three-dimensional (3D)
Gabor feature with principal component analysis
(PCA) selection could obtain an emotion classifica-
tion recognition rate of 77.57% based on facial ex-
pression analysis (Yun and Guan, 2013).

It is worth mentioning that HR, GSR, and the
first derivative of GSR (FD-GSR) are the most influ-
ential physiological signals in the research of emotion
recognition based on physiological signals. Addi-
tionally, the pupillary response was addressed as an
important physiological feature applied in emotion
recognition. Ren et al. (2013) explored the affective
patterns of stress using pupil variation features to
achieve a good performance. The multi-data fusion
of ECG, GSR, RSP, and pupillary response has been
proved effective and superior to single physiological
data sets (Koelstra et al., 2012). Among all the re-
lated studies, EMG, ECG, SC, RSP, GSV, and pupil-
lary response were taken to be the strongest affective
physiological data according to the literature. In ad-
dition, Koelstra et al. (2012) combined the physio-
logical data (GSR, blood volume pressure, RSP, skin
temperature, EMG, electrooculogram (EOG), and
EEG) with multimedia content feature data (audio
features and visual features) to form a fusion data
set in emotion analysis, and the results showed that

multimodal data fusion generally outperformed all
of the single modalities.

2.3 Music emotion recognition based on
audio-physiology data fusion

The affective computing research community
has witnessed a boom in emotion recognition pattern
learning from multimedia data and human physio-
logical data. Regression and classification learning
techniques have been widely used in emotion intel-
ligence learning. Examples include Yang and Chen
(2011) who used LibSVM to achieve R2 of 58.3% for
arousal and 28.1% for valence based on a regression
approach; then they conducted a study and veri-
fied the effectiveness of using music emotion in video
highlight extraction. A logistic regression method
was motivated by the perspective of likelihood com-
puting. Among all the regression methods, margin-
based algorithms, like LibSVM, have attracted con-
siderable attention because of their flexibility. SVM
has achieved competitive performance in handling
complex and high-dimensional data in affective mul-
timedia data and physiological data computing. Wen
et al. (2014) conducted a comprehensive review of
various classification and regression methods applied
in emotion recognition. Among all the existing stud-
ies, classification methods have more commonly been
used than regression methods when emotions were
usually considered as categories.

In a sense, the fusion data structure of phys-
iological features and music features could enrich
the emotion identification evidence in the literature
overview. Hence, we will collect audio data and phys-
iological data and perform music emotion recognition
using different machine learning methods to verify
the results.

3 Experiment

3.1 Music stimuli

The affective stimuli material database used for
this work consisted of 420 music clips from an instru-
ment music library (Xing et al., 2015). A period of
10 s of a key melody was extracted from each song
to create the music stimuli. Each clip was in .wav
format with a 16-kHz sampling rate, ensuring music
information integrity for feature extraction. The col-
lection of 420 music clips was divided into 21 groups;
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each group consisted of 20 music clips for the emo-
tion labeling experiment, and each group contained
five happy music clips (high arousal and high valence,
e.g., songs of celebration), five soothing music clips
(low arousal and high valence, e.g., songs of a river),
five sad music clips (low arousal and low valence, e.g.,
songs of tragedies), five music clips of tense emotion
(high arousal and low valence, e.g., songs of a storm),
to make a balanced stimuli material set covering all
the four quadrants of the valence-arousal space for
the listening sessions. Since it would be more flexible
and capable of extending the set emotions as a two-
dimensional (2D) vector rather than as an indepen-
dent emotion class, the valence-arousal dimensional
model was used in this experiment for its advantage
for precise emotion annotation.

3.2 Physiological state measurement and mu-
sic emotion labeling experiment

The experiment was arranged in two sessions:
a music listening session and an emotion labeling
session. Fig. 1 presents the physiological signals
recorded in a music listening session, and Fig. 2
shows the multimodal sensors placed on the volun-
teer in the experiment. To examine the feasibility of
relating physiological measures to participants’ lis-
tening experiences, the experiments were conducted

in two laboratory rooms with controlled illumination
and temperature. One room was for the participants
who performed the experiment, and the other room
was for the experimenter who recorded the physio-
logical signals.

Each participant was asked to read the instruc-
tions for the task flow and required procedure. Once
the participants were clear on the experimental pro-
cess, he/she was led to the laboratory room. After
all bio-sensors were placed and their signals checked,
the participants were trained to perform a practice
trial to familiarize themselves with the system. The
detailed process is shown in the following steps:

1. Twenty-one volunteers (aged 20–36 years)
were invited to participate in the experiment, and
they had no specific music training.

2. The volunteer was situated in a separate room
with a constant lighting setting, seated in front of a
21-inch screen, and an ordinary view of scenery was
displayed on the screen during the experiment.

3. The volunteer wore the EDA, PPG, SKT, and
RSP multi-channel sensors, and calibration was com-
pleted on a TOBII X2-30 to obtain the PD variation.

4. Listening session: Each volunteer listened to
three groups of 60 music clips, and each group in-
cluded 20 music clips, with a 20-s break between
each clip.

Fig. 1 Multi-channel physiological signals collected in the music listening experiment
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5. Emotion labeling session: The volunteer was
asked to do the emotion labeling work on the clips
immediately on a scale of 0 to 1 for both arousal and
valence dimensions according to his/her listening ex-
perience after the listening session.

To ensure high quality annotations, we devel-
oped a web interface where the volunteer could dy-
namically annotate the songs on valence and arousal
dimensions separately. The self assessment manikin
(SAM) questionnaire (Bradley and Lang, 1994) used
for the annotations is shown in Fig. 3. The entire
experiment lasted about 50 min.

Fig. 2 Multimodal sensors placed on the volunteer in
the experiment

Fig. 3 Screenshot of the web interface for subjective
emotion assessment

4 Feature extraction and emotion
recognition

4.1 Music feature extraction

We extracted 64 dimensions of music features
from each music clip using Marsyas, which is an ef-

fective tool (Tzanetakis and Cook, 2000) commonly
used in music information analysis, including 52 di-
mensions of the MFCC feature, 4 dimensions of the
spectral centroid feature, 4 dimensions of the spec-
tral roll-off feature, and 4 dimensions of the spectral
flux feature (Table 1).

Table 1 Features extracted from music information

Music feature category Number

Melfrequency cepstral coefficient 52
Centroid feature 4
Roll-off feature 4
Flux feature 4

4.2 Physiological feature analysis

4.2.1 Physiological signal processing

There are four steps in physiological signal pro-
cessing: (1) signal noise reduction by moving the
average filter and wavelet transform; (2) signal seg-
mentation, where each signal data record was divided
into 60 segments with a period of 10 s corresponding
to each music clip’s listening experience; (3) signal
decomposition by six levels of Db5 wavelet trans-
form; (4) obtaining the statistical values of the de-
noised PD variation signals. The signal sequences for
EDA, PPG, SKT, RSP, and PD were collected in the
experiment by ErgoLab version 2.0 software, which
was compatible with the multi-channel physiology
instrument and Tobii X2-30.

In signal decomposition, first, the denoised orig-
inal signal would be filtered into high-pass and low-
pass signals, separately. Then the corresponding co-
efficients of the detailed coefficients from high-pass
signals and approximation coefficients from low-pass
signals would be obtained as the signal features.
Each level of decomposition would produce different
coefficients. The mechanism of decomposition was a
sampling rate reduction by half in each level so that
the coefficients’ values would have distinctive differ-
ences between levels 1 and 6, while levels 1–6 would
have a gradual variation without much value differ-
entiation. Thus, in this experiment, only coefficients
of level 1 and level 6 decomposition signals were se-
lected to represent the signal information. The de-
composition mechanism is shown in Fig. 4, where
H1(i) is the high-pass filter to obtain the detailed
signal Di and H0(i) is the low-pass filter to obtain
the approximation decomposed signal Ai.
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4.2.2 Physiological feature extraction

Due to the good performance of the discrete
wavelet transform (DWT) in discrete physiological
signal analysis (Ren et al., 2013; Zhang et al., 2016;
Wang et al., 2018), we applied a Db5 wavelet with six
levels of decomposition to analyze the signal, using
the Matlab wavelet toolbox to extract the wavelet
features of the physiological signals (Cheng and Liu,
2008; Zhu, 2010). The discrete wavelet transform
equation is defined as

DWTψx(m,n) =
∫ ∞

−∞
x(t)ψm,n(t)dt, (1)

where ψm,n(t) = 2m/2ψ(2mt− n) is the dilated and
translated version of the mother wavelet ψ(t).

After DWT processing, we used statistical
methods to analyze the original signal, the detailed
signals for levels 1 and 6 (DET1 and DET6), the
approximation signals for levels 1 and 6 (APP1 and
APP6), and the coefficients of DET1, DET6, and
APP1. The statistical features were obtained as
the values of max, min, mean, range, std, median,
MedAD, and MeanAD of the original signals and de-
composed signals. Wavelet energy was also extracted
as an important feature to form the database. Fi-
nally, a total of 438 features from the extracted EDA,
PPG, SKT, RSP, and PD variation signals were col-
lected to form the physiological feature data set.

Signal

High-pass

Low-pass

H1(i)

H1(i)
H1(i)

H0(i)

H0(i)
H0(i)

2

2
2

2
2

2

D1

D2

DiA1

A2

Ai

Fig. 4 Wavelet decomposition mechanism. High-pass:
high-pass decomposition filter; low-pass: low-pass de-
composition filter; ↓ 2: downsampling operation. A1,
A2, and Ai are the approximation coefficients of the
original signal at levels 1, 2, . . ., i, respectively. D1,
D2, and Di are the detailed coefficients at levels 1, 2,
. . ., i, respectively

The physiological feature information is presented in
Table 2.

4.3 Emotion recognition algorithms

In this study, we used Scikit-learn (Pedregosa
et al., 2011), a free machine learning library for
Python, to build the regression model. To verify
the efficiency and robustness of the algorithms we
chose, a 10×10 cross-validation was applied to build
the model.

Scikit-learn provides several popular regression
algorithms. We implemented nine of them, including
linear regression (LR), ridge regression (RR), sup-
port vector machines with three different kernels, de-
cision trees, k-nearest neighbors (KNN), multi-layer
perceptron (MLP), and Nu support vector regression
(NuSVR). A brief description of each method is as
follows:

1. LR fits a linear model with coefficients
w = (w1, w2, . . . , wp)

T to minimize the residual sum
of squares between the observed responses in the
dataset and the responses predicted by the linear
approximation:

min
w

||Xw − y||22. (2)

2. RR addresses the problems of ordinary least
squares by imposing a penalty on the size of coeffi-
cients. The ridge coefficients minimize a penalized
residual sum of squares:

min
w

||Xw − y||22 + α||w||22. (3)

Here, α is complexity parameter that controls the
amount of shrinkage and ||w||2 is the �2-norm of the
parameter vector.

3. Support vector regression is a method ex-
tended from support vector classification to solve
regression problems. Various kernel functions (lin-
ear: 〈x,x′〉; polynomial: (γ〈x,x′〉 + r)d; RBF:
exp(−γ‖x − x′‖2); etc.) can be specified and the

Table 2 Features extracted from physiological signals

Feature Description Number

Wavelet statistic Values of max, min, mean, range, std, median, MedAD, and MeanAD of the original
signal and decomposed signals, including APP (levels 1 and 6), DET (levels 1 and 6),
APP coefficients (levels 1 and 6), and DET coefficients (levels 1 and 6)

432

Wavelet energy Wavelet energy of APP signals (levels 1 and 6) and DET signals (levels 1 and 6) 6

APP: approximation signals; DET: detailed signals
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free parameters are penalty factor C and relaxation
factor epsilon.

4. NuSVR is a variant of SVR which uses a pa-
rameter ν, an upper bound on the fraction of training
errors, and a lower bound of the fraction of support
vectors, to control the number of support vectors.

5. Decision trees is a non-parametric supervised
learning method used for classification and regres-
sion. The goal is to create a model that predicts the
value of a target variable by learning simple decision
rules inferred from the data features.

6. k-nearest neighbors is to find a predefined
number of training samples closest in distance to
the new point, and predict the label from these.
Neighbor-based regression can be used in cases where
the data labels are continuous rather than discrete.
The label assigned to a query point is computed
based on the mean of the labels of its nearest
neighbors.

7. Multi-layer perceptron is a supervised learn-
ing algorithm that learns a mapping f(·) : Ri → R

o

by training on a dataset, where i is the number of
dimensions for input and o the number of dimensions
for output. Using one nonlinear layer or more than
one nonlinear layer, called hidden layer(s), it can
learn a nonlinear function approximator for either
classification or regression.

5 Results and discussion

5.1 Emotion recognition based on different
methods

In the emotion recognition experiment, the
valence-arousal (V-A) scoring results and physiologi-
cal and music features formed the database. To learn
an emotion vector regression rule, a training data set
sample is typically given. This is produced by the
experiment with a balanced distribution in the V-A
dimension. Here, the features generated from the
signal processing of the physiology and music data
constructed the input feature vectors, and the V-A
labeling values formed the output label. The data set
has 1260 samples, in which a 10×10 cross-validation
was used to obtain the average performance result.

The emotion of one physiological signal se-
quence was defined by the combination of the recog-
nition of the valence and arousal values. Set θe to
represent the emotion vectors for each signal, Vv

the valence vectors, and Va the arousal vectors, and
then θe could be obtained by the optimal recognition
model based on the physiological variation feature
vectors:

θe = [Vv,Va]. (4)

We implemented the database in the ensemble
learning methods of LR, RR, support vector ma-
chines with three different kernels, MLP, and NuSVR
to train the classifier to find the best model. In
review of the commonly used methods for affective
data analysis, LR, RR, SVR (linear kernel), SVR
(RBF kernel), SVR (poly kernel), decision trees,
KNN, MLP, and NuSVR were listed as powerful
regression tools and had enjoyed success in exist-
ing studies on physiological features, and thus these
methods were proposed for comparison for the opti-
mal model.

Five steps were taken to achieve the modeling
results:

Step 1: We made a collection of 1260 instances
of physiological signals.

Step 2: We used Matlab to extract 438 dimen-
sions of physiological features from each signal.

Step 3: The emotion label values, 64 music fea-
tures, and 438 physiological features were combined
to form the emotion database, and a 10×10 cross-
validation was applied to run the results.

Step 4: The ANOVA method was applied in
feature selection to find the most relevant features
with p<0.001. As a result, 228 relevant arousal fea-
tures were selected from 502 features and 226 rele-
vant valence features were selected from all of the 502
originally extracted features. The most relevant fea-
tures are listed in detail in Tables 3 and 4 for valence
and arousal, respectively. Then the principal com-
ponent analysis (PCA) method was applied to the
relevant feature sets. Thus, a 39-principal-feature
combination was formed for arousal recognition and
a 40-principal-feature combination was generated for
valence recognition by PCA.

Step 5: In the experiment, we compared
LR, RR, SVR (linear kernel), SVR (RBF kernel),
SVR (poly kernel), decision trees, KNN, MLP, and
NuSVR with the most relevant feature data set to
find the optimal model, separately.

The comparisons of these machine learning ap-
proaches are presented in Table 5. Note that all ap-
proaches used the default parameter value provided
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Table 3 Valence-relevant features from ANOVA analysis (p < 0.001)

Signal Feature content description Number

EDA DET level 1, DET level 1 Coe, APP level 6 Coe: mean, max, min, MedAD, range 6
PPG Original signal, APP levels 1 and 6, APP levels 1 and 6 Coe, DET levels 1 and 6, DET levels 1

and 6 Coe: mean, max, min, range, std, median, MedAD, MeanAD
57

RSP DET level 6 Coe: max, min, range, std, MedAD, MeanAD 6
SKT Original signal, APP levels 1 and 6, APP levels 1 and 6 Coe, DET levels 1 and 6, DET levels 1

and 6 Coe: energy, mean, max, min, range, std, median, MedAD, MeanAD
54

PD Original signal, APP levels 1 and 6, APP levels 1 and 6 Coe, DET level 1, DET level 1 Coe: energy,
mean, max, range, std, median, MedAD, MeanAD

40

Music Spectral centroid, spectral flux, MFCC, Spectral roll-off 63

APP: approximation signals; DET: detailed signals; Coe: coefficients

Table 4 Arousal-relevant features from ANOVA analysis (p < 0.001)

Signal Feature content description Number

EDA DET levels 1 and 6 Coe: mean, max, min, median, range 5
PPG Original signal, APP levels 1 and 6, APP levels 1 and 6 Coe, DET levels 1 and 6, DET levels 1

and 6 Coe: mean, max, min, range, std, median, MedAD, MeanAD
59

RSP DET level 6 Coe: max, min, range, std, MedAD, MeanAD 6
SKT Original signal, APP levels 1 and 6, APP levels 1 and 6 Coe, DET levels 1 and 6, DET levels 1

and 6 Coe: energy, mean, max, min, range, std, median, MedAD, MeanAD
65

PD Original signal, APP levels 1 and 6, APP levels 1 and 6 Coe: energy, mean, max, range, std,
median, MedAD, MeanAD

29

Music Spectral centroid, spectral flux, MFCC, spectral roll-off 64

APP: approximation signals; DET: detailed signals; Coe: coefficients

Table 5 Comparison of different algorithms for emotion recognition results

Algorithm
Arousal Valence

MSE CC MSE CC

Decision tree 0.047 78 0.2395 0.037 27 0.2335
SVR (linear kernel) 0.046 49 0.4371 0.027 29 0.5762
Linear regression 0.043 59 0.4465 0.026 75 0.5812
Ridge regression 0.043 34 0.4474 0.026 74 0.5813
MLP 0.055 73 0.5471 0.035 51 0.6103
SVR (poly kernel) 0.030 99 0.6426 0.025 93 0.6574
k-nearest neighbors 0.027 22 0.6774 0.019 10 0.7179
SVR (RBF kernel) 0.026 76 0.7031 0.017 67 0.7605
NuSVR 0.023 23 0.7347 0.014 85 0.7902

by the Scikit-learn function; that is, α = 1.0 for RR,
C = 1.0 and epsilon = 0.1 for SVR, ν = 0.5 and the
RBF kernel for NuSVR, and k = 5 for KNN. As for
MLP, there is one hidden layer with 100 neurons;
the activation function is relu, the solver for weight
optimization is lbfgs, and the learning rate is 0.001.

According to the results, NuSVR apparently
outperformed the others, in which the correlation
coefficient (CC) value was 0.7347 for arousal, 0.7902
for valence, while the mean squared error (MSE) was
0.023 23 for arousal and 0.014 85 for valence. To com-
pare the different combinations of all the data fusion,

we implemented NuSVR to calculate the recognition
results.

To further tune ν and C, we set ν from 0.1 to 1.0
with step size 0.1, and calculated the 10×10 cross-
validation MSE for arousal and valence, separately.
The results are plotted in Fig. 5. Similarly, C was
ranged from 0.5 to 5.0 with step size 0.5, and the
results are plotted in Fig. 6. In Fig. 5, when ν > 0.4,
the MSE curve tends to be stable. In Fig. 6, when
C = 1.0, NuSVR achieved the lowest MSE for both
arousal and valence. Considering model complexity
and generalization ability, it is not recommended to
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choose large ν and C. Thus, we chose NuSVR with
ν = 0.5 and C = 1.0 as our regression model.

5.2 Emotion recognition based on multimodal
data fusion

We also explored the recognition results of dif-
ferent data fusion sets to see which kinds of modal-
ities contribute most. We implemented NuSVR to
calculate the different combinations of all the data
fusions. We studied each single modality and multi-
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valence with different C

modality to provide advice for future application de-
velopment. The single modality and multi-modality
recognition results are shown in Tables 6 and 7, re-
spectively. In all the data fusion comparisons, the
data set with all the features had the best perfor-
mance in modeling. The best single modality was
the SKT data set with a model correlation coeffi-
cient (CC) value of 0.491 for arousal, 0.539 for va-
lence, and mean squared error (MSE) value of 0.0452
for arousal and 0.0342 for valence.

When it came to the data fusion modeling exper-
iment, the best three physiological modalities were
formed using PPG, SKT, and PD with a CC of 0.553
for arousal and 0.616 for valence, with an MSE of
0.0351 for arousal and 0.0246 for valence. This had
surpassed the best result of a single modality. The
results indicated that EDA and respiration achieved
a relatively low recognition performance in the ex-
periment. However, the performance could not be
improved by ignoring these two modalities. The best
performance was achieved by the data fusion of all
the modalities, in which the CC value was 0.6499
for arousal and 0.7735 for valence, while the MSE
was 0.0293 for arousal and 0.0157 for valence. Ap-
parently, data fusion is a promising method and a
more extensive range of multimodal data should be
grouped for significant recognition of affective states
in future studies. In addition, a deeper exploration of

Table 6 Comparison results of single-modality emo-
tion recognition

Feature
Arousal Valence

MSE CC MSE CC

RSP 0.0509 0.202 0.0407 0.205
EDA 0.0468 0.275 0.0368 0.271
PD 0.0421 0.413 0.0367 0.303

Music 0.0437 0.425 0.0373 0.420
PPG 0.0479 0.333 0.0337 0.425
SKT 0.0452 0.491 0.0342 0.539

Table 7 Comparison results of multi-modality emotion recognition

Modality fusion Feature
Arousal Valence

MSE CC MSE CC

All physiological signals EDA, PPG, R, SKT, PD 0.0363 0.540 0.0256 0.611
Best three physiological signals PPG, SKT, PD 0.0351 0.553 0.0246 0.616
Best three physiological signals PPG, SKT, PD, Music 0.0312 0.623 0.0201 0.721

& musical features
All physiological signals EDA, PPG, R, SKT, PD, Music 0.0293 0.6499 0.0157 0.7735

& musical features
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feature mining from the signals and multimedia in-
formation could be an opportunity for improvement.

6 Conclusions and future work

We considered emotional state recognition
based on music considering how emotion was imple-
mented within the human physiological system and
how emotion was expressed in features expressing
music information. Physiological variations and mu-
sical stimuli could be linked by emotional properties.
We strived to explore the linking patterns between
physiological variations and musical features and es-
tablish a firm foundation for a novel approach in var-
ious emotion-driven and intelligent interaction plat-
forms. We discussed a database built upon an emo-
tion experiment procedure, signal processing meth-
ods, selection of feature variables, and the choice of
learning algorithms for affective computational is-
sues. The results provided a promising way to make
the computer aware of personal music preference for
effective music recommendation.

The contributions of this study included the fol-
lowing: (1) A physiological feature database and
a music emotion feature database were built; (2)
On the basis of these two databases, we compared
LR, RR, SVR (linear kernel), SVR (RBF kernel),
SVR (poly kernel), decision trees, k-nearest neigh-
bors (KNN), MLP, and NuSVR to reveal the emo-
tion patterns in different data fusions, which thus
helped achieve the best performance by NuSVR; (3)
In all the data fusion comparisons, the data set with
all the features (music features and all physiological
features) had the best performance in modeling.

In the future, we would like to expand the
database to improve the recognition rate. In addi-
tion, with the development of wearable computing
and mobile computing devices, we will propose
an application using physiological and music data
fusion to recommend music automatically based
on personal preference. It would offer new music
recommendation experiences.
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