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Abstract: Classifying single-trial electroencephalogram (EEG) based motor imagery (MI) tasks is extensively used
to control brain-computer interface (BCI) applications, as a communication bridge between humans and computers.
However, the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.
In this paper, we propose an improved common spatial pattern (B-CSP) method to extract features for alleviating
these adverse effects. First, for different subjects, the method of Bhattacharyya distance is used to select the
optimal frequency band of each electrode including strong event-related desynchronization (ERD) and event-related
synchronization (ERS) patterns; then the signals of the optimal frequency band are decomposed into spatial patterns,
and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.
The proposed method is applied to the public data set and experimental data set to extract features which are input
into a back propagation neural network (BPNN) classifier to classify single-trial MI EEG. Another two conventional
feature extraction methods, original common spatial pattern (CSP) and autoregressive (AR), are used for comparison.
An improved classification performance for both data sets (public data set: 91.25%±1.77% for left hand vs. foot and
84.50%±5.42% for left hand vs. right hand; experimental data set: 90.43%±4.26% for left hand vs. foot) verifies the
advantages of the B-CSP method over conventional methods. The results demonstrate that our proposed B-CSP
method can classify EEG-based MI tasks effectively, and this study provides practical and theoretical approaches to
BCI applications.
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1 Introduction

As a communication bridge between humans
and computers, brain-computer interface (BCI)
based on electroencephalogram (EEG) aims to de-
code brain activity into different control commands
directly (Lotte et al., 2007; Nicolas-Alonso and
Gomez-Gil, 2012; Zhang et al., 2013). The BCI
approach is a safe tool that enables seriously dis-
abled people with normal brain to control an exter-
nal device like an exoskeleton or neuro-prosthesis.
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During human-computer communication, these peo-
ple’s intentions are translated from their EEG signals
(Wolpaw et al., 2002; Moghimi et al., 2013; Salisbury
et al., 2016).

Motor imagery (MI) EEG, as a new commu-
nication approach, has been widely used in BCI
applications (Ang et al., 2010; Yang et al., 2015;
Kevric and Subasi, 2017). Imagining the movement
of different parts of limbs and body can lead to
changes of brain rhythms (mu- and beta-rhythm)
that can be measured at the corresponding scalp
(Neuper et al., 2006). For example, when imagin-
ing left hand or right hand movement, the power
decrease of mu- and beta-rhythm occurs in the con-
tralateral motor region at the scalp. This is called
an event-related desynchronization (ERD) pattern
(Pfurtscheller and Neuper, 1997; Pfurtscheller, 2001;
Graimann et al., 2002). The power increase of mu-
and beta-rhythm occurs in the ipsilateral motor re-
gion at the scalp. This is called an event-related
synchronization (ERS) pattern (Cassim et al., 2000;
Pfurtscheller and Neuper, 2006; Nam et al., 2011).
The MI of foot and tongue can produce similar pat-
terns in the corresponding regions. We can use these
physiological patterns caused by MI of different limbs
(left hand movement versus right hand movement
versus foot movement) to classify EEG and obtain
control signals of external applications (Pfurtscheller
et al., 1997; Gomarus et al., 2006).

EEG is a signal with a low signal-to-noise ratio
(SNR); i.e., the signals are surrounded by high noise
(Lemm et al., 2005). Therefore, how to define and ex-
tract appropriate features for effectively translating
and encoding MI EEG is a challenge to classify EEG-
based MI tasks. Feature extraction methods for
EEG have been widely discussed by previous studies,
including autoregressive (AR), wavelet coefficients
(WC), and average power (AP). An AR model is
used to describe certain time-varying processes like
MI EEG, and the AR parameters can be used as
the features for MI classification (Franaszczuk and
Bergey, 1999). Pfurtscheller et al. (1998) used an
adaptive AR model with a recursive-least-squares
(RLS) algorithm to estimate AR parameters for left
and right MI classification. Zhang et al. (2017) pro-
posed an EEG feature extraction method combined
with an AR model and wavelet packet decomposi-
tion to calculate AR parameters for five-mental-task
classification. Some previous studies used another

feature extraction method called common spatial
pattern (CSP) for MI EEG classification (Müller-
Gerking et al., 1999; Ramoser et al., 2000; Robin-
son et al., 2013). The original CSP method can
find spatial filters that maximize differences in vari-
ance between two classes in a high-dimensional space
(Lemm et al., 2005). Some of these studies using im-
proved CSP methods have achieved a better classifi-
cation performance (Qaraqe et al., 2015; Gaur et al.,
2018). Kumar et al. (2016) applied Fisher discrimi-
nant analysis (FDA) for the CSP features and fed
FDA scores to a classifier for MI EEG classifica-
tion, resulting in an average reduction of 1.07% in
the classification error rate. Afterwards, they pro-
posed a discriminative filter band selection method
combined with CSP and mutual information (Ku-
mar et al., 2017a) and a single band CSP framework
using the concept of tangent space mapping (TSM)
(Kumar et al., 2017b) to further enhance the per-
formance of CSP. Yuksel and Olmez (2015) devel-
oped an improved CSP framework called the spatial
filter network (SFN), which calculates optimal spa-
tial filters using a neural network approach and ob-
tained an increased MI EEG classification accuracy
in comparison with conventional CSP methods. Wu
et al. (2015) proposed a probabilistic CSP method
as a generic EEG spatio-temporal modeling frame-
work that subsumes the CSP and regularized CSP
algorithms, and this method was successfully applied
to single-trial classifications of three MI EEG data
sets. However, most of these methods are used to ex-
tract features from the specific and fixed frequency
bands. Because of the individual differences of EEG
signals, for different people, the ERD/ERS patterns
will occur in different frequency bands; even for each
electrode, the optimal frequency bands are different.
Individual differences and low SNR are two factors
that may affect the classification results negatively,
leading to an unsatisfactory classification accuracy
of below 85% in most previous studies.

The goal of this study is to propose an improved
common spatial pattern (B-CSP) method to extract
features for alleviating these adverse effects. First,
for different subjects, the method of Bhattacharyya
distance is used to select the optimal frequency band
of each electrode including strong ERD and ERS
patterns; then the signals of the optimal frequency
band are decomposed into spatial patterns, and the
features that can describe the maximum differences
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of two classes of MI are extracted from the EEG
data. The proposed method is applied in the public
data set and experimental data set to extract fea-
tures, which are input into a back propagation neu-
ral network (BPNN) classifier to classify single-trial
MI EEG. Another two conventional feature extrac-
tion methods (original CSP and AR) are used for
comparison.

2 Materials and methods

2.1 Public data set

Data set 1 of BCI Competition IV was the public
data set in this study (Tangermann et al., 2012). The
data were recorded from seven subjects. Five (ds1b,
ds1c, ds1d, ds1e, and ds1g) performed left hand MI
and right hand MI; two (ds1a and ds1f) performed
left hand MI and foot MI. For each subject, we se-
lected data in the first two runs, resulting in a total
of 200 trials (100 trials for each class of MI). For
details of the data set and experimental procedure,
please refer to Tangermann et al. (2012).

2.2 Experimental data set

2.2.1 Subjects

Three healthy subjects (two males and one fe-
male, aged 27–30 years) were employed in this study.
All were right handed by the Edinburgh Handedness
Inventory (Oldfield, 1971). None had been informed
of the experimental hypothesis.

2.2.2 Data acquisition

The EEG signals of 28 active electrodes (10-10
system, as shown in Fig. 1) attached on an EEG
cap were collected using a Biosemi ActiveTwo EEG
system (64-channel, DC amplifier, 24-bit resolution).
In this system, the common mode sense (CMS) elec-
trode and driven right leg (DRL) electrode replace
the ground electrode. The reference electrode was
located on the left mastoid. In our experiment, the
sample rate of EEG was 1000 Hz, the notch filter
was 50 Hz, the low-pass filter was 100 Hz, and the
high-pass filter was 0.5 Hz. Before attaching the
electrodes, medical alcohol and conductive gel were
used for cleaning the skin and reducing electrode re-
sistance, respectively.

2.2.3 Experimental procedure

The experimental procedure for the experimen-
tal data set was similar to that for the public data
set. After the EEG electrodes were attached and all
signals were normal, subjects sat before a computer
screen, and put two arms on the table naturally. In
the experiment, they should avoid head and body
movement, eye blinks or swallowing, especially dur-
ing the MI task (the visual cue onset). Each subject
was asked to imagine two classes of movement (left
hand and foot) in five runs in total. One MI was
performed in one trial. In each run, 94 trials (47 left
hand MI and 47 foot MI) were performed, and this
made up a data set of a total of 470 trials for each
subject. The time sequence of one trial is as shown
in Fig. 2. A single trial lasted 8 s. The screen was
blank during the first 2 s, and then a fixation cross
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Fig. 1 Electroencephalogram (EEG) electrode loca-
tion, including 28 active electrodes, common mode
sense (CMS) and driven right leg (DRL) electrodes,
and a reference electrode

EEG Foot
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12 s8 s4 s2 s0 s
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Fig. 2 Time sequence of one trial of the experimental
data set. A single trial lasted 8 s. The screen was
blank during the first 2 s, and then a fixation cross
(“+”) appeared in the center of the screen for 2 s, to
remind subjects of the start of MI. During seconds
4–8, a random visual cue, i.e., left arrow “←” or down
arrow “↓,” floated on the cross to instruct the corre-
sponding MI task. After the cue appeared, subjects
were required to perform the cued MI task until the
screen was blank. A 4-s break between two trials was
given for relaxation
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(“+”) appeared in the center of the screen for 2 s,
to remind subjects of the start of MI. During sec-
onds 4–8, a random visual cue, i.e., left arrow “←”
or down arrow “↓,” floated on the cross to instruct
the corresponding MI task. After the cue appeared,
subjects were required to perform the cued MI task
until the screen was blank. A 4-s break between two
trials was given for relaxation. There was a longer
break of 10 min between two runs.

2.3 Data preprocessing

The important movement classification informa-
tion exists mainly in the 8–30 Hz frequency band
(alpha and beta) of EEG data (Pfurtscheller et al.,
1997). For public and experimental data sets, the
raw EEG signal was filtered in this frequency band.
The time course graph of ERD/ERS and head to-
pographies were created to analyze the different
ERD/ERS patterns of each class of MI (left hand
movement, right hand movement, and foot move-
ment). The EEG signals of each trial during the
time period of 4 s before and 4 s after cue appear-
ance were extracted to draw the time course graph of
ERD/ERS. In the time course graph, the extracted
EEG signals of three channels (C3, Cz, and C4) from
all trials of each subject were calculated by a super-
posed average method (Pfurtscheller and da Silva,
1999); i.e., the EEG signals of each channel were
averaged across all trials. ERD and ERS can be de-
scribed as the power decrease percentage and power
increase percentage of a target period to a reference
period (seconds 1–2 in our study) respectively, ac-
cording to

ERD/ERS=
EEGtarget − EEGreference

EEGreference
×100%, (1)

where EEGtarget is the target period’s EEG power
and EEGreference is the reference period’s EEG
power. To visually observe the ERD and ERS from
the time course graph, the EEG data of the time pe-
riod that presented the strongest ERD/ERS were se-
lected for feature extraction and classification. Then
the head topographies of this time period were plot-
ted for further analysis. For the public and experi-
mental data sets, each time period (t) was segmented
by 50-ms time windows. Each input sample was a
matrix (M) of N × T , where N (N = 28) is the

number of channels and T

(
T =

t× 1000 Hz

50 ms

)
is

the number of time points.

2.4 B-CSP method for feature extraction

The CSP method can find spatial filters that
maximize differences in variance between two classes
in a high-dimensional space, and this is effectively
applied in the binary classification problem (Lemm
et al., 2005). The original CSP method extracts fea-
tures from the specific and fixed frequency bands of
EEG signals. However, when different people per-
form the MI, the ERD/ERS patterns will happen in
different frequency bands. Empirical selection can-
not obtain the optimal frequency band of each per-
son. Furthermore, for the same person, the optimal
frequency bands of each electrode are different.

To alleviate the adverse effect of individual dif-
ferences, we propose an improved CSP (B-CSP)
method for feature extraction. The steps of the B-
CSP method are shown in Fig. 3. First, for different
subjects, the optimal frequency band of each elec-
trode including strong ERD/ERS patterns was se-
lected. The method of Bhattacharyya distance was
used; then the signals of the optimal frequency band
were decomposed into spatial patterns, and the fea-
tures that could describe the maximum differences of
two classes of MI were extracted from the EEG data.
The details of this proposed method are as follows:

Step 1: According to the different MI, all input
matrices are divided into two classes, i.e., CL1 and
CL2. For all matrices of each class, EEG signals of
each channel are filtered in k frequency bands and
then averaged, where k = 6 and the frequency bands
are 8–12, 12–16, 16–20, 20–24, 24–28, and 28–30 Hz.

Step 2: For EEG signals of each frequency band
of each channel, the Bhattacharyya distance is used
to measure the separability between two classes of
MI. A larger value of the Bhattacharyya distance in
one frequency band means that the EEG data of this
frequency band can result in a better classification
performance (Bai et al., 2007). The Bhattacharyya
distance (DB) and Bhattacharyya coefficient (BC)
can be calculated by

DB(CL1
m
n ,CL2mn ) = − ln[BC(CL1mn ,CL2mn )], (2)

BC(CL1mn ,CL2mn ) =
∑
x≤T

√
CL1mn (x)CL2mn (x), (3)

where CL1mn (x) and CL2mn (x) are EEG signals of
the mth frequency band of the nth channel of the
mth time point of two classes MI, n ≤ N , m ≤ k.
The frequency band with the largest Bhattacharyya
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Fig. 3 Improved common spatial pattern (B-CSP) method for feature extraction

distance is the optimal frequency band of this
channel.

Step 3: The EEG signals of each channel of the
raw input matrixM are filtered in the corresponding
optimal frequency, generating a new input matrix
MDB of N×T . The two classes’ covariance matrices
are given as

Cov =
MDBM

T
DB

tr(MDBM
T
DB

)
, (4)

where tr(·) represents the sum of M ’s diagonal val-
ues. To remove the trial-to-trial variations, a nor-
malization operation should be carried out. The av-
eraged normalized covariance matrices of two classes
are CovCL1 and CovCL2, which can be built by av-
eraging all input matrices of each class. Then the
composite covariance matrix is calculated by

CovR = CovCL1 +CovCL2, (5)

which can be factored into its eigenvectors by

CovR = ERλRE
T
R , (6)

where ER is the eigenvector matrix and λR is the
eigenvalue matrix. The whitening matrix can be
constructed by

W =
√
λ−1
R ET

R , (7)

and according to the whitening transformation,
CovCL1 and CovCL2 are transformed to

{
SCL1 = WCovCL1W

T,

SCL2 = WCovCL2W
T,

(8)

where the sum of the corresponding eigenvalues of
SCL1 and SCL2 equals 1. SCL1 and SCL2 are decom-
posed by the shared eigenvector U :{

SCL1 = UλCL1U
T,

SCL2 = UλCL2U
T,

(9)

where λCL1 + λCL2 = I with I the identity matrix.
Because the sum of two corresponding eigenvalues
is constant, the eigenvalue for SCL1 in eigenvector
U is the largest when the eigenvalue for SCL2 in
eigenvector U is the smallest. The projection matrix
PT = UTW multiplied by input matrix MDB forms
the decomposed signal matrix:

Z = PTMDB . (10)

The columns of (PT)−1 are the common spa-
tial patterns and can be seen as time-invariant EEG
source distribution vectors.

Step 4: The variances of the first and lastm rows
of Z are used as the features for classification, con-
taining most of the discriminative information be-
tween the two classes (Müller-Gerking et al., 1999).
The feature vector for input matrix i is

F k
i = log

⎛
⎜⎜⎝ var(Zk

i )
2m∑
k=1

var(Zk
i )

⎞
⎟⎟⎠ , (11)

where var(Zk
i ) is the variance of the kth row of the

ith input matrix, and k = 1, 2, . . . , 2m.

2.5 Classification

In this study, we used a back propagation neural
network (BPNN) as the classifier, since it can learn
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any nonlinear function and has been widely applied
in EEG classification (Subasi, 2005). The inputs of
a BPNN were the features extracted by the B-CSP
method, and the output of a BPNN was one of three
classes (left hand MI, right hand MI, and foot MI).
In the model training step, the classification model
of each subject was trained using his/her own EEG
data. For the public data set and experimental data
set, we randomly selected 80% data as the training
set to train the models, and the remaining 20% data
were used as the testing set to evaluate the models.
Furthermore, the data of the training set were ran-
domly divided into 10 folds (nine folds were used for
training and one for validation) for 10-fold cross val-
idation, to fine-tune the parameters and select the
optimal model.

Another two conventional feature extraction
methods, original CSP and AR, were employed to
train the BPNN classification models for compari-
son with the B-CSP method. For the original CSP
method, the raw EEG signals of each trial were fil-
tered in the 8–30 Hz frequency band to form an in-
put matrix (M) of N × T . These input matrices
were used to extract features using the original CSP
method, with the same steps as steps 3 and 4 of
the B-CSP method. Six spatial filters with a band-
width of 4 Hz covering the frequency band from 8
to 30 Hz were adopted for the original CSP method.
Then these features were input into the BPNN for
MI classification. For the AR method, an adap-
tive AR model was built following the procedure of
Pfurtscheller et al. (1998). The EEG signal Yd can
be described by the following model:

Yd = a1,dYd−1+a2,dYd−2+ ...+ap,dYd−p+Xd, (12)

where d (d ≤ T ) is the time point, a1,d, a2,d, ..., ap,d
are AR parameters which can vary with time, p is
the order of the AR model, and Xd is a white noise
process. The RLS algorithm was used to estimate
the AR parameters. An AR model with an order
of p = 6 was used. This resulted in a feature vector
with a dimension of 28×6 for each time point of each
trial. Then these feature vectors were input into the
BPNN for MI classification.

Given the testing results, we applied the receiver
operating characteristic (ROC) curve and accuracy
to evaluate the classification models, and applied
precision, recall, and F -score to evaluate each MI’s
classification performance.

3 Results and discussion

3.1 ERD/ERS analysis

For each MI of two data sets, the 8–12 Hz EEG
signals of each trial during the time period of 4 s be-
fore and 4 s after cue appearance were extracted to
draw the time course graph of ERD/ERS (Fig. 4).
In the time course graphs, second 4 means the cue
occurrence. For the public data set, during the left
hand MI and right hand MI, a strong ERD can be
seen in a time period of 3 s after cue appearance (sec-
onds 4–7) over the contralateral side at the scalp, and
a weak ERS was observed over the ipsilateral side at
the scalp and around the Cz electrode. In addition,
a strong post-movement ERS was found in the end
of one MI trial (seconds 7–8) over the contralateral
side at the scalp. During the foot MI, a strong ERD
can be seen around the Cz electrode, and a strong
ERS can be seen over the bilateral sides at the scalp
(around the C3 and C4 electrodes). The experimen-
tal data set had similar results in the time course
graphs to the public data set. There is an ERD phe-
nomenon (i.e., a power decrease) in the hand area
at the scalp and an ERS phenomenon (i.e., a power
increase) in the foot area at the scalp when perform-
ing hand MI, and there is an opposite pattern when
performing foot MI. Furthermore, the head topogra-
phies of the time period of seconds 4–7 were plotted
beside the time course graphs. In the head topogra-
phies, the blue color represents an ERD phenomenon
and the red color represents an ERS phenomenon

3.2 Classification results

According to Fig. 4, the time period of 3 s after
the cue appearance (seconds 4–7) that presented the
strongest ERD/ERS was selected for feature extrac-
tion and classification. During the feature extrac-
tion step, we first used the Bhattacharyya distance
to select the optimal frequency band of each chan-
nel of each subject. Fig. 5 shows the Bhattacharyya
distance values of different frequency bands of each
channel from subject 2, experimental data set, as a
representative example. The yellow color stands for a
larger value, while the blue color stands for a smaller
value. An optimal frequency band of one channel can
be selected from a frequency band with the largest
Bhattacharyya distance value, which means that the
EEG data of this frequency band have the highest
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Fig. 4 ERD/ERS analysis including time course graphs and head topographies. For each MI of two data sets,
the 8–12 Hz EEG signals of each trial during the time period of 4 s before and 4 s after cue appearance were
extracted to draw the time course graph of ERD/ERS. In the time course graph, the extracted EEG signals of
three channels (C3, Cz, and C4) from all trials of each subject were calculated using the superposed average
method. ERD and ERS are displayed as the power decrease percentage and power increase percentage of
a target period to a reference period. The head topographies of the time period of seconds 4–7 are plotted
beside the time course graphs. In the head topographies, the blue color represents an ERD phenomenon (a
power decrease) and the red color represents an ERS phenomenon (a power increase). References to color
refer to the online version of this figure

            5           10          15          20          25       
Channel index

Fr
eq

ue
nc

y 
ba

nd
 (H

z)

8

16

24

30

0

3

Fig. 5 Bhattacharyya distance values of different fre-
quency bands of each channel from subject 2, ex-
perimental data set. The yellow color stands for a
larger value, while the blue color stands for a smaller
value. An optimal frequency band of one channel can
be selected from a frequency band with the largest
Bhattacharyya distance value, which means that the
EEG data of this frequency band have the highest
separability between two classes of MI in this chan-
nel. References to color refer to the online version of
this figure

separability between two classes of MI in this chan-
nel. Then the EEG signals of each channel of the

raw input matrix were filtered in the corresponding
optimal frequency band, generating a new input ma-
trix. The feature vector was extracted from the new
input matrix using the CSP algorithm.

For both public and experimental data sets, the
classification model of each subject was trained using
his/her own EEG feature data. Another two con-
ventional feature extraction methods, original CSP
and AR, were employed to train the BPNN classi-
fication models for comparison. Fig. 6 shows the
confusion matrix results of the three feature extrac-
tion methods using the same testing sets of the two
data sets. The values of each element of the con-
fusion matrix mean the average value (upper num-
ber) and standard deviation (lower number) over all
subjects. The color element represents the correct
classification percentage, and the white element rep-
resents the wrong classification percentage. For each
subject, the accuracies of three methods for testing
sets of the two data sets can be seen in Table 1.
To draw the ROC curves, left hand movement is
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Fig. 6 Confusion matrix results of three feature extraction methods using the same two testing sets of data.
The values of each element of the confusion matrix mean the average value (upper number) and standard
deviation (lower number) over all subjects. The color element represents the correct classification percentage,
and the white element represents the wrong classification percentage. References to color refer to the online
version of this figure

defined as the positive class, and foot movement
is defined as the negative class. The ROC curves
of three feature extraction methods using testing
sets of ds1a (public data set) and subject 2 (exper-
imental data set) are shown in Fig. 7. According
to Fig. 6 and Table 1, for two subjects perform-
ing left hand and foot MI of the public data set,
the average accuracy using B-CSP (91.25%±1.77%)

is 3.75% and 6.25% higher than those using origi-
nal CSP (87.50%±3.54%) and AR (85.00%±3.54%)
respectively; for five subjects performing left hand
and right hand MI of the public data set, the aver-
age accuracy using B-CSP (84.50%±5.42%) is 4.50%
and 7.50% higher than those using original CSP
(80.00%±5.30%) and AR (77.00%±6.22%) respec-
tively; for three subjects performing left hand and
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Table 1 Accuracies of three feature extraction methods using the same testing sets of two data sets (all
subjects)

Data set Subject
Accuracy (%)

B-CSP Original CSP AR

Public data set
(left hand vs. right hand)

ds1b 82.50 80.00 67.50
ds1c 92.50 75.00 82.50
ds1d 80.00 82.50 75.00
ds1e 80.00 75.00 82.50
ds1g 87.50 87.50 77.50

Average 84.50±5.42 80.00±5.30 77.00±6.22

Public data set
(left hand vs. foot)

ds1a 90.00 90.00 82.50
ds1f 92.50 85.00 87.50

Average 91.25±1.77 87.50±3.54 85.00±3.54

Experimental data set
(left hand vs. foot)

Subject 1 94.68 84.04 86.17
Subject 2 86.17 88.30 80.85
Subject 3 90.43 86.17 92.55
Average 90.43±4.26 86.17±2.13 86.52±5.86

Fig. 7 Receiver operating characteristic (ROC) curves of three feature extraction methods using testing sets
of ds1a (public data set) (a) and subject 2 (experimental data set) (b)

foot MI of the experimental data set, the average
accuracy using B-CSP (90.43%±4.26%) is 4.26%
and 3.91% higher than those using original CSP
(86.17%±2.13%) and AR (86.52%±5.86%) respec-
tively. In addition, an area under curve (AUC) using
the B-CSP method larger than that using the other
two methods is shown in Fig. 7. These similar re-
sults in two data sets demonstrate that the classifi-
cation model trained by the B-CSP feature extrac-
tion method with a BPNN has better classification
performance.

For both public and experimental data sets,
the precision, recall, and F -score values of each
class of MI using the three methods can be seen in

Table 2. The larger precision, recall, and F -score
values mean better performance of the classification
model B-CSP. A 3 (B-CSP, original CSP, and AR)×2
(left hand MI and foot/right hand MI) analysis of
variance (ANOVA) was applied in this study to eval-
uate the interaction of “feature extraction method” ×
“MI,” and to evaluate the main effects of the “fea-
ture extraction method” and “MI class.” A 95%
confidence interval is given for all statistics. The
statistical results of ANOVA show that the inter-
action between the feature extraction method and
MI is not significant (p > 0.05); the feature ex-
traction method can significantly affect classification
accuracy (F = 9.450, p < 0.001), but the MI
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Table 2 Precision, recall, and F -score values of each class of MI using three methods (all subjects)

Data set Subject Evaluation
B-CSP Original CSP AR

Left hand
Foot/

Left hand
Foot/

Left hand
Foot/

right hand right hand right hand

Public
data set
(left hand
vs. right
hand)

ds1b Precision 0.8095 0.8421 0.8750 0.7500 0.6842 0.6667
Recall 0.8500 0.8000 0.7000 0.9000 0.6500 0.7000
F -score 0.8293 0.8205 0.7778 0.8182 0.6667 0.6829

ds1c Precision 0.9474 0.9048 0.8125 0.7083 0.8095 0.8421
Recall 0.9000 0.9500 0.6500 0.8500 0.8500 0.8000
F -score 0.9231 0.9268 0.7222 0.7727 0.8293 0.8205

ds1d Precision 0.7727 0.8333 0.7826 0.8824 0.7500 0.7500
Recall 0.8500 0.7500 0.9000 0.7500 0.7500 0.7500
F -score 0.8095 0.7895 0.8372 0.8108 0.7500 0.7500

ds1e Precision 0.8000 0.8000 0.7083 0.8125 0.8824 0.7826
Recall 0.8000 0.8000 0.8500 0.6500 0.7500 0.9000
F -score 0.8000 0.8000 0.7727 0.7222 0.8108 0.8372

ds1g Precision 1.0000 0.8000 0.9412 0.8261 0.7391 0.8235
Recall 0.7500 1.0000 0.8000 0.9500 0.8500 0.7000
F -score 0.8571 0.8889 0.8649 0.8837 0.7907 0.7567

Public
data set
(left hand
vs. foot)

ds1a Precision 0.8636 0.9444 0.9444 0.8636 0.7826 0.8824
Recall 0.9500 0.8500 0.8500 0.9500 0.9000 0.7500
F -score 0.9048 0.8947 0.8947 0.9047 0.8372 0.8108

ds1f Precision 0.9474 0.9048 0.8182 0.8889 0.8261 0.9412
Recall 0.9000 0.9500 0.9000 0.8000 0.9500 0.8000
F -score 0.9231 0.9268 0.8571 0.8421 0.8837 0.8649

Experimental
data set
(left hand
vs. foot)

Subject 1 Precision 0.9375 0.9565 0.8478 0.8333 0.8269 0.9048
Recall 0.9574 0.9362 0.8298 0.8511 0.9149 0.8085
F -score 0.9474 0.9462 0.8387 0.8421 0.8687 0.8539

Subject 2 Precision 0.8696 0.8542 0.8750 0.8913 0.7843 0.8372
Recall 0.8511 0.8723 0.8936 0.8723 0.8511 0.8298
F -score 0.8602 0.8632 0.8842 0.8817 0.8163 0.8335

Subject 3 Precision 0.8519 0.9750 0.9048 0.8269 0.9545 0.9000
Recall 0.9787 0.8298 0.8085 0.9149 0.8936 0.9574
F -score 0.9109 0.8966 0.8539 0.8687 0.9231 0.9278

has no significant effect on classification accuracy
(F = 0.082, p > 0.05).

4 Conclusions

In this paper, we have proposed an improved
common spatial pattern (B-CSP) method to ex-
tract features for alleviating the adverse effects
of low SNR and individual differences. First, for
different subjects, the optimal frequency band of
each electrode including strong ERD/ERS patterns
was selected, using the method of Bhattacharyya
distance; then the signals of the optimal frequency
band were decomposed into spatial patterns, and the
features that can describe the maximum differences
of two classes of MI were extracted from the EEG
data. An improved classification performance for
both data sets (public data set: 91.25%±1.77%

for left hand vs. foot and 84.50%±5.42% for
left hand vs. right hand; experimental data set:
90.43%±4.26% for left hand vs. foot) verified the
advantages of the B-CSP method over conventional
methods. The results demonstrated that our
proposed B-CSP method can classify EEG-based
MI tasks effectively, and this study provides prac-
tical and theoretical approaches to BCI applications.
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