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Abstract: This paper reviews recent studies in understanding neural-network representations and learning neu-
ral networks with interpretable/disentangled middle-layer representations. Although deep neural networks have
exhibited superior performance in various tasks, interpretability is always Achilles’ heel of deep neural networks.
At present, deep neural networks obtain high discrimination power at the cost of a low interpretability of their
black-box representations. We believe that high model interpretability may help people break several bottlenecks of
deep learning, e.g., learning from a few annotations, learning via human–computer communications at the semantic
level, and semantically debugging network representations. We focus on convolutional neural networks (CNNs),
and revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs,
approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations,
and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends in explainable
artificial intelligence.
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1 Introduction

Convolutional neural networks (CNNs) (LeCun
et al., 1998a; Krizhevsky et al., 2012; He et al., 2016;
Huang et al., 2017) have achieved superior perfor-
mance in many visual tasks, such as object clas-
sification and detection. However, the end-to-end
learning strategy makes CNN representations a black
box. Except for the final network output, it is dif-
ficult to understand the logic of CNN predictions
hidden inside the network. In recent years, a grow-
ing number of researchers have realized that high
model interpretability is of significant value in both
theory and practice, and have developed models with
interpretable knowledge representations.
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In this paper, we conduct a survey of cur-
rent studies in understanding neural-network rep-
resentations and learning neural networks with in-
terpretable/disentangled representations. We can
roughly define the scope of the review into the fol-
lowing five research directions:

1. Visualization of CNN representations in in-
termediate network layers. These methods either
synthesize mainly the image that maximizes the
score of a given unit in a pre-trained CNN, or in-
vert feature maps of a conv-layer back to the input
image. Please see Section 2 for detailed discussions.

2. Diagnosis of CNN representations. Related
studies may either diagnose a CNN’s feature space
for different object categories or discover potential
representation flaws in conv-layers. Please see Sec-
tion 3 for details.

3. Disentanglement of ‘the mixture of patterns’
encoded in each filter of CNNs. These studies disen-
tangle mainly complex representations in conv-layers
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and transform network representations into inter-
pretable graphs. Please see Section 4 for details.

4. Building explainable models. We discuss
interpretable CNNs (Zhang et al., 2018d), capsule
networks (Sabour et al., 2017), interpretable R-
CNNs (Wu et al., 2017), and InfoGAN (Chen et al.,
2016) in Section 5.

5. Semantic-level middle-to-end learning via
human–computer interaction. A clear semantic dis-
entanglement of CNN representations may further
enable ‘middle-to-end’ learning of neural networks
with a weak supervision. Section 7 introduces meth-
ods to learn new models via human–computer inter-
actions (Zhang et al., 2017b) and active question-
answering with a limited human supervision (Zhang
et al., 2017a).

Among all the above, the visualization of CNN
representations is the most direct way to explore net-
work representations. The network visualization also
provides a technical foundation for many approaches
to diagnosing CNN representations. The disentan-
glement of feature representations of a pre-trained
CNN and the learning of explainable network rep-
resentations present more challenges to the state-of-
the-art algorithms. Finally, explainable or disentan-
gled network representations are also the starting
point for weakly-supervised middle-to-end learning.

The clear semantics in high conv-layers can help
people trust a network’s prediction. As discussed in
Zhang et al. (2018a), considering dataset and repre-
sentation bias, a high accuracy on testing images still
cannot ensure that a CNN will encode correct repre-
sentations. For example, a CNN may use an unreli-
able context—eye features—to identify the ‘lipstick’
attribute of a face image. Therefore, people usu-
ally cannot fully trust a network unless a CNN can
semantically or visually explain its logic, e.g., what
patterns are used for prediction.

In addition, the middle-to-end learning or de-
bugging of neural networks based on the explainable
or disentangled network representations may signif-
icantly reduce the requirements for human annota-
tion. Furthermore, based on semantic representa-
tions of networks, it is possible to merge multiple
CNNs into a universal network (i.e., a network en-
coding generic knowledge representations for differ-
ent tasks) at the semantic level in the future.

2 Visualization of convolutional neural
network representations

Visualization of filters in a CNN is the most
direct way to explore visual patterns hidden inside a
neural unit. Different types of visualization methods
have been developed for network visualization.

First, gradient-based methods (Simonyan et al.,
2013; Zeiler and Fergus, 2014; Mahendran and
Vedaldi, 2015; Springenberg et al., 2015) are the
mainstream of network visualization. These meth-
ods compute mainly gradients of the score of a given
CNN unit w.r.t. the input image. They use the gra-
dients to estimate the image appearance that max-
imizes the unit score. Olah et al. (2017) provided
a toolbox of existing techniques to visualize pat-
terns encoded in different conv-layers of a pre-trained
CNN.

Second, the up-convolutional net (Dosovitskiy
and Brox, 2016) is another typical technique to vi-
sualize CNN representations. The up-convolutional
net inverts CNN feature maps to images. We can
regard the up-convolutional net as a tool that indi-
rectly illustrates the image appearance correspond-
ing to a feature map, although compared to gradient-
based methods, the up-convolutional net cannot en-
sure mathematically that the visualization results
exactly reflect actual representations in CNN. Simi-
larly, Nguyen et al. (2017) further introduced an ad-
ditional prior, which controls the semantic meaning
of the synthesized image, to the adversarial genera-
tive network. We can use CNN feature maps as the
prior for visualization.

In addition, Zhou et al. (2015) proposed a
method to accurately compute the image-resolution
receptive field of neural activations in a feature map.
The actual receptive field of neural activation is
smaller than the theoretical receptive field computed
using the filter size. The accurate estimation of the
receptive field helps people understand the represen-
tation of a filter.

3 Diagnosis of convolutional neural
network representations

Some methods have went beyond the visualiza-
tion of CNNs and diagnosed CNN representations to
obtain insight understanding of features encoded in
a CNN. We roughly divide all relevant research into
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the following five directions:
1. Studies in the first direction analyze CNN

features from a global view. Szegedy et al. (2014)
explored semantic meanings of each filter. Yosin-
ski et al. (2014) analyzed the transferability of filter
representations in intermediate conv-layers. Aubry
and Russell (2015) and Lu (2015) computed feature
distributions of different categories/attributes in the
feature space of a pre-trained CNN.

2. The second research direction extracts image
regions that directly contribute to the network out-
put for a label/attribute to explain CNN represen-
tations of the label/attribute. This is similar to the
visualization of CNNs. Fong and Vedaldi (2017) and
Selvaraju et al. (2017) proposed methods to propa-
gate gradients of feature maps w.r.t. the final loss
back to the image plane to estimate the image re-
gions. The LIME model proposed by Ribeiro et al.
(2016) extracts image regions that are highly sensi-
tive to the network output. Zintgraf et al. (2017),
Kindermans et al. (2017), and Kumar et al. (2017)
invented methods to visualize areas in the input im-
age that contribute the most to the decision-making
process of CNN. Wang et al. (2017) and Goyal et al.
(2016) tried to interpret the logic for visual question-
answering encoded in neural networks. These studies
have listed important objects (or regions of interests)
detected from the images and crucial words in ques-
tions as the explanation of output answers.

3. The estimation of vulnerable points in the
feature space of a CNN is also a popular direction
for diagnosing network representations. Approaches
proposed by Su et al. (2017), Koh and Liang (2017),
and Szegedy et al. (2014) were developed to compute
adversarial samples for a CNN; i.e., these studies aim
to estimate the minimum noisy perturbation of the
input image that can change the final prediction.
In particular, influence functions proposed by Koh
and Liang (2017) can be used to compute adversarial
samples. The influence function can also provide
plausible ways to create training samples to attack
the learning of CNNs, fix the training set, and further
debug representations of a CNN.

4. The fourth research direction is to re-
fine network representations based on the analy-
sis of network feature spaces. Given a CNN pre-
trained for object classification, Lakkaraju et al.
(2017) proposed a method to discover knowledge
blind spots (unknown patterns) of CNN in a

weakly-supervised manner. This method groups all
sample points in the entire feature space of a CNN
into thousands of pseudo-categories. It assumes that
a well-learned CNN would use the sub-space of each
pseudo-category to exclusively represent a subset of
a specific object class. In this way, this study ran-
domly showed object samples within each sub-space,
and used the sample purity in the sub-space to dis-
cover potential representation flaws hidden in a pre-
trained CNN. To distill representations of a teacher
network to a student network for sentiment analysis,
Hu et al. (2016) proposed a method of using logic
rules of natural languages (e.g., I-ORG cannot fol-
low B-PER) to construct a distillation loss to super-
vise the knowledge distillation of neural networks, to
obtain more meaningful network representations.

5. Finally, Zhang et al. (2018a) presented a
method to discover potential, biased representations
of a CNN. Fig. 1 shows biased representations of
a CNN trained to estimate face attributes. When
an attribute usually co-appears with specific visual
features in training images, CNN may use such co-
appearing features to represent the attribute. When
the co-appearing features used are not semantically
related to the target attribute, these features can be
considered as biased representations.

Original

Masked

Pasted

+16.93

+12.17

+19.77

Score of ‘wearing lipstick’

wearing lipstick

...

Wearing lipstick

Fig. 1 Biased representations in a convolutional neu-
ral network (Zhang et al., 2018a)
Considering potential dataset bias, a high accuracy on test-
ing images cannot always ensure that a convolutional neural
network (CNN) learns correct representations. CNN may
use unreliable co-appearing contexts to make predictions.
For example, people may modify mouth appearances of two
faces manually by masking mouth regions or pasting an-
other mouth; however, such modifications do not significantly
change prediction scores for the ‘lipstick’ attribute. Fig. 1
shows the heat maps of inference patterns of the ‘lipstick’ at-
tribute, where red/blue patterns are positive/negative with
the attribute score. CNN mistakenly considers unrelated
patterns as contexts to infer the lipstick. References to color
refer to the online version of this figure

Given a pre-trained CNN (e.g., a CNN that was
trained to estimate face attributes), Zhang et al.
(2018a) required people annotate some ground-truth
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relationships between attributes; e.g., the ‘lipstick’
attribute is positively related to the ‘heavy-makeup’
attribute, and is not related to the ‘black hair’ at-
tribute. Then, the method mines inference patterns
of each attribute output from conv-layers, and uses
inference patterns to compute actual attribute re-
lationships encoded in CNN. Conflicts between the
ground-truth and the mined attribute relationships
indicate biased representations.

4 Disentangling convolutional neural
network representations into explana-
tory graphs and decision trees

4.1 Disentangling convolutional neural net-
work representations into explanatory graphs

Compared with the visualization and diag-
nosis of network representations in Sections 2
and 3, disentangling CNN features into human-
interpretable graphical representations (namely ‘ex-
planatory graphs’) provides a more thorough ex-
planation of network representations. Zhang et al.
(2016, 2018b) proposed disentangling features in
conv-layers of a pre-trained CNN and used a graphi-
cal model to represent the semantic hierarchy hidden
inside a CNN.

As shown in Fig. 2, each filter in a high conv-
layer of a CNN usually represents a mixture of pat-
terns. For example, the filter may be activated by
both the head and tail parts of an object. Thus,
to provide a global view of how visual knowledge
is organized in a pre-trained CNN, Zhang et al.
(2016, 2018b) aimed to answer the following three
questions:

1. How many types of visual patterns are mem-
orized by each convolutional filter of CNN (here, a
visual pattern may describe a specific object part or
a certain texture)?

2. Which patterns are co-activated to describe
an object part?

3. What is the spatial relationship between two
co-activated patterns?

As shown in Fig. 3, the explanatory graph ex-
plains the knowledge semantic hidden inside CNN.
The explanatory graph disentangles the mixture of
part patterns in each filter’s feature map of a conv-
layer, and uses each graph node to represent a part:

1. The explanatory graph has multiple layers.

Filter 1

Filter 2

Filter 3

Filter 4

Fig. 2 Feature maps of a filter obtained using different
input images (Zhang et al., 2018b)
To visualize the feature map, the method propagates recep-
tive fields of activated units in the feature map back to the
image plane. In each sub-feature, the filter is activated by
various part patterns in an image. This makes it difficult to
understand the semantic meaning of a filter. References to
color refer to the online version of this figure

Each graph layer corresponds to a specific conv-layer
of a CNN.

2. Each node in the explanatory graph consis-
tently represents the same object part through dif-
ferent images. We can use the node to localize the
corresponding part on the input image. To some ex-
tent, the node is robust to shape deformation and
pose variations.

3. Each edge encodes the co-activation and
spatial relationships between two nodes in adjacent
layers.

4. We can regard an explanatory graph as a
compression of feature maps of conv-layers. A CNN
has multiple conv-layers. Each conv-layer may have
hundreds of filters, and each filter may produce a fea-
ture map with hundreds of neural units. We can use
tens of thousands of nodes in the explanatory graph
to represent information contained in all tens of mil-
lions of neural units in these feature maps, i.e., by
which part patterns the feature maps are activated,
and where the part patterns are localized in input
images.

5. Just like a dictionary, each input image can
trigger only a small subset of part patterns (nodes) in
the explanatory graph. Each node describes a com-
mon part pattern with a high transferability, which is
shared by hundreds or thousands of training images.

Fig. 4 lists top-ranked image patches corre-
sponding to different nodes in the explanatory graph.
Fig. 5 visualizes the spatial distribution of object
parts inferred by the top 50% nodes in the Lth layer
of the explanatory graph with the highest inference
scores. Fig. 6 shows object parts inferred by a single
node.
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Fig. 3 Explanatory graph (Zhang et al., 2018b)
An explanatory graph represents the knowledge hierarchy
hidden in conv-layers of a CNN. Each filter in a pre-trained
CNN may be activated by different object parts. Zhang
et al. (2018b) disentangles part patterns from each filter
in an unsupervised manner, thereby clarifying the knowledge
representation. References to color refer to the online version
of this figure

4.1.1 Application: multi-shot part localization

There are many potential applications based on
the explanatory graph. For example, we can regard
the explanatory graph as a visual dictionary of a cat-
egory and transfer graph nodes to other applications,
such as multi-shot part localization.

Given a few bounding boxes of an object part,
Zhang et al. (2018b) proposed a method of retrieving
hundreds of nodes that are related to part annota-
tions from the explanatory graph, and then using the
retrieved nodes to localize object parts in previously
unseen images. Because each node in the explana-
tory graph encodes a part pattern shared by numer-
ous training images, the retrieved nodes describe a
general appearance of the target part without being
over-fitted to the limited annotations of part bound-
ing boxes. Given three annotations for each object
part, the explanatory-graph-based method exhibits
superior performance of part localization and de-
creases by about 1/3 localization errors w.r.t. the
second best baseline.

4.2 Disentangling convolutional neural net-
work representations into decision trees

Zhang et al. (2018c) further proposed a deci-
sion tree to encode decision modes in fully connected
layers. The decision tree is not designed for classifi-
cation. Instead, it is used to quantitatively explain

Fig. 4 Image patches corresponding to different nodes in the explanatory graph (Zhang et al., 2018b)

References to color refer to the online version of this figure

 L=1         L=2         L=3          L=4  L=1         L=2         L=3          L=4

Fig. 5 Heat maps of patterns (Zhang et al., 2018b)

A heat map visualizes the spatial distribution of the top 50% patterns in the Lth layer of the explanatory graph with the
highest inference scores. References to color refer to the online version of this figure
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Fig. 6 Image regions inferred by each node in an explanatory graph (Zhang et al., 2018b)
The method proposed by Zhang et al. (2018b) successfully disentangles object-part patterns from representations of every
single filter. References to color refer to the online version of this figure

the logic for each CNN prediction; i.e., given an in-
put image, we use CNN to make a prediction. The
decision tree tells people which filters in a conv-layer
are used for the prediction and how much they con-
tribute to the prediction.

As shown in Fig. 7, the method mines potential
decision modes memorized in fully connected lay-
ers. The decision tree organizes these potential deci-
sion modes in a coarse-to-fine manner. Furthermore,
this study uses the method proposed by Zhang et al.
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Fig. 7 Decision tree that explains a convolutional
neural network (CNN) prediction at the semantic
level (Zhang et al., 2018c)
A CNN is learned for object classification with disentan-
gled representations in the top conv-layer, where each filter
represents a specific object part. The decision tree encodes
various decision modes hidden inside fully connected layers of
CNN in a coarse-to-fine manner. Given an input image, the
decision tree infers a parse tree (red lines) to quantitatively
analyze rationales for the CNN prediction, i.e., which object
parts (or filters) are used for prediction and how much an ob-
ject part (or filter) contributes to the prediction. References
to color refer to the online version of this figure

(2018d) to disentangle representations of filters in
the top conv-layers, i.e., making each filter represent
a specific object part. In this way, people can use
the decision tree to explain rationales for each CNN
prediction at the semantic level, i.e., which object
parts are used by CNN to make the prediction.

5 Learning neural networks with inter-
pretable/disentangled representations

Almost all methods mentioned in Sections 2–
4 focus on the understanding of a pre-trained net-
work. In this section, we review studies of learn-
ing disentangled representations of neural networks,
where representations in middle layers are no longer
a black box but have clear semantic meanings. Com-
pared with the understanding of pre-trained net-
works, learning networks with disentangled repre-
sentations present more challenges. Up to now, only
a few studies have been published in this direction.

5.1 Interpretable convolutional neural net-
works

As shown in Fig. 8, Zhang et al. (2018d) devel-
oped a method to modify an ordinary CNN to obtain
disentangled representations in high conv-layers by
adding a loss to each filter in the conv-layers. The
loss is used to regularize the feature map towards the
representation of a specific object part.

Note that people do not need to annotate any
object parts or textures to supervise the learning of
interpretable CNNs. Instead, the loss automatically
assigns an object part to each filter during the end-
to-end learning process. As shown in Fig. 9, this
method designs some templates. Each template Tµi
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Fig. 8 Structures of an ordinary conv-layer and an
interpretable conv-layer (Zhang et al., 2018d)
Green and red lines indicate the forward and backward prop-
agations, respectively. References to color refer to the online
version of this figure
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Fig. 9 Templates designed by Zhang et al. (2018d)
Each template Tµi matches a feature map when the tar-
get part triggers mainly the ith unit in the feature map.
References to color refer to the online version of this figure

is a matrix with the same size of feature map. Tµi

describes the ideal distribution of activations for the
feature map when the target part triggers mainly the
ith unit in the feature map.

Given the joint probability of fitting a feature
map to a template, the loss of a filter is formulated
as the mutual information between the feature map
and the templates. This loss encourages a low en-
tropy of inter-category activations; i.e., each filter in
the conv-layer is assigned to a certain category. If
the input image belongs to the target category, then
the loss expects the filter’s feature map to match a
template well; otherwise, the filter needs to remain
inactivated. In addition, the loss encourages a low
entropy of spatial distributions of neural activations;
i.e., when the input image belongs to the target cat-
egory, the feature map is supposed to exclusively fit
a single template. In other words, the filter needs to
activate a single location on the feature map.

Zhang et al. (2018d) assumed that if a filter
repetitively activates various feature-map regions,
then this filter is more likely to describe low-level
textures (e.g., colors and edges) instead of high-level

parts. For example, the left eye and the right eye may
be represented by different filters, because contexts
of the two eyes are symmetric, but not the same.

Fig. 10 shows feature maps produced with dif-
ferent filters of an interpretable CNN. Each filter
consistently represents the same object part through
various images.

5.2 Interpretable region-based convolutional
neural networks

Wu et al. (2017) proposed the learning of qual-
itatively interpretable models for object detection
based on the region-based convolutional neural net-
work (R-CNN) to unfold latent configurations of ob-
ject parts automatically during the object-detection
process. This method is learned without using
any part annotations for supervision. Wu et al.
(2017) used a top-down hierarchical and composi-
tional grammar, namely an ‘And-Or graph (AOG)’,
to model latent configurations of object parts. This
method uses an AOG-based parsing operator to sub-
stitute for the RoI-Pooling operator used in R-CNN.
The AOG-based parsing harnesses explainable com-
positional structures of objects and maintains the
discrimination power of an R-CNN. This idea is re-
lated to the disentanglement of the local, bottom-up,
and top-down information components for predic-
tion (Wu et al., 2007; Yang et al., 2009; Wu and Zhu,
2011).

During the detection process, a bounding box is
interpreted as the best parse tree derived from AOG
on the fly. During the learning process, a folding-
unfolding method is used to train AOG and R-CNN
in an end-to-end manner.

Fig. 11 illustrates an example of object detection
proposed by Zhang et al. (2018d). This method de-
tects object bounding boxes. It also determines the
latent parse tree and part configurations of objects
as the qualitatively extractive rationale in detection.

5.3 Capsule networks

Sabour et al. (2017) designed novel neural units,
namely ‘capsules’, to substitute for traditional neural
units to construct a capsule network. Each capsule
outputs an activity vector instead of a scalar. The
length of the activity vector represents the activa-
tion strength of the capsule, and the orientation of
the activity vector encodes instantiation parameters.
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Fig. 10 Visualization of interpretable filters in the top conv-layer (Zhang et al., 2018d)
We used Zhou et al. (2015) to estimate the image-resolution receptive field of activations in a feature map to visualize a
filter’s semantics. An interpretable CNN usually encodes head patterns of animals in its top conv-layer for classification.
References to color refer to the online version of this figure

Configuration

Parse tree

Configuration

Parse tree

Fig. 11 Detection examples of the method proposed
by Wu et al. (2017)
In addition to predicted bounding boxes, the method outputs
the latent parse tree and part configurations as the qualita-
tively extractive rationale in detection. The parse trees are
inferred on the fly in the space of latent structures, which fol-
low a top-down compositional grammar of an And-Or graph
(AOG)

Active capsules in the lower layer send messages to
capsules in the adjacent higher layer. This method
uses an iterative routing-by-agreement mechanism
to assign higher weights with the low-layer capsules
whose outputs better fit the instantiation parameters
of the high-layer capsule.

Experiments showed that when people train
capsule networks using the MNIST dataset (LeCun
et al., 1998b), a capsule encoded a specific semantic
concept. Different dimensions of the activity vec-
tor of a capsule controlled different features, includ-
ing (1) scale and thickness, (2) localized part, (3)

stroke thickness, (4) localized skew, and (5) width
and translation.

5.4 Information maximizing generative ad-
versarial nets

The information maximizing generative adver-
sarial net (Chen et al., 2016), namely ‘InfoGAN’,
is an extension of the generative adversarial net-
work. InfoGAN maximizes the mutual information
between certain dimensions of the latent representa-
tion and the image observation. InfoGAN separates
input variables of the generator into two types, i.e.,
incompressible noise z and latent code c. This study
aims to learn latent code c to encode certain semantic
concepts in an unsupervised manner.

InfoGAN was trained using the MNIST
dataset (LeCun et al., 1998b), the CelebA
dataset (Liu et al., 2015), the SVHN dataset (Net-
zer et al., 2011), the 3D face dataset (Paysan et al.,
2009), and the 3D chair dataset (Aubry et al., 2014).
Experiments have shown that the latent code suc-
cessfully encodes the digit type, rotation, and width
of digits in the MNIST dataset, the lighting con-
dition and plate context in the SVHN dataset, the
azimuth, existence of glasses, hairstyle, emotion in
the CelebA dataset, and width and 3D rotation in
the 3D face and chair datasets.
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6 Evaluation metrics for network inter-
pretability

Evaluation metrics for model interpretability
are crucial for the development of explainable mod-
els. This is because unlike traditional well-defined
visual applications (e.g., object detection and seg-
mentation), network interpretability is more difficult
to define and evaluate. The evaluation metric of
network interpretability can help people define the
concept of network interpretability and guide the
development of learning interpretable network rep-
resentations. Up to now, only a few studies have
discussed the evaluation of network interpretability.
Proposing a promising evaluation metric is still a big
challenge to state-of-the-art algorithms. In this sec-
tion, we simply introduce two latest evaluation met-
rics for the interpretability of CNN filters, i.e., the
filter interpretability proposed by Bau et al. (2017)
and the location instability proposed by Zhang et al.
(2018b).

6.1 Filter interpretability

Bau et al. (2017) defined six types of semantics
for CNN filters, i.e., ‘objects’, ‘parts’, ‘scenes’, ‘tex-
tures’, ‘materials’, and ‘colors’. The evaluation of
filter interpretability requires people annotate these
six types of semantics on testing images at the pixel
level. The evaluation metric measures the fitness be-
tween the image-resolution receptive field of a filter’s
neural activations (The method propagates the re-
ceptive field of each activated unit in a filter’s feature
map back to the image plane as the image-resolution
receptive field of a filter) and the pixel-level seman-
tic annotations on the image. For example, if the
receptive field of a filter’s neural activations usually
overlaps highly with ground-truth image regions of
a specific semantic concept through different images,
then we can consider that the filter represents this
semantic concept.

For each filter f , this method computes its fea-
ture maps X = {x = f(I)|I ∈ I} on different testing
images. Then, the distribution of activation scores
in all positions of all feature maps is computed. Bau
et al. (2017) set an activation threshold Tf such that
p(xij > Tf) = 0.005, to select top activations from
all spatial locations [i, j]’s of all feature maps x ∈ X

as valid map regions corresponding to f ’s semantics.
Then, the method scales up low-resolution valid map

regions to the image resolution, thereby obtaining
the receptive field of valid activations on each image.
We use SI

f to denote the receptive field of f ’s valid
activations w.r.t. image I.

The compatibility between a filter f and a spe-
cific semantic concept is reported as an intersection-

over-union (IoU) score IoUI
f,k =

‖SI
f ∩ SI

k‖
‖SI

f ∪ SI
k‖

, where

SI
k denotes the ground-truth mask of the kth se-

mantic concept on image I. Given an image
I, filter f is associated with the kth concept if
IoUI

f,k > 0.04. The probability of the kth concept
being associated with filter f is given as Pf,k =

meanI:with kth concept1(IoU
I
f,k > 0.04). Thus, we can

use Pf,k to evaluate the filter interpretability of f .

6.2 Location instability

Another evaluation metric is location instability.
This metric was proposed by Zhang et al. (2018b) to
evaluate the fitness between a CNN filter and the
representation of an object part. Given an input im-
age I, CNN computes a feature map x ∈ R

N×N of
filter f . We can regard unit xi,j (1 ≤ i, j ≤ N) with
the highest activation as the location inference of f ,
where N×N is the size of the feature map. We use p̂
to denote the image position that corresponds to the
inferred feature map location (i, j), i.e., the center
of unit xi,j ’s receptive field when we backward prop-
agated the receptive field to the image plane. The
evaluation assumes that if f consistently represents
the same object part (the object part may not have
an explicit name according to people’s cognition)
through different objects, then distances between the
image position p̂ and some object landmarks should
not change much among different objects. For ex-
ample, if filter f represents the shoulder, then the
distance between the shoulder and the head should
remain stable through different objects.

Therefore, people can compute the deviation of
the distance between the inferred position p̂ and a
specific ground-truth landmark among different im-
ages. The average deviation w.r.t. various land-
marks can be used to evaluate the location instability

of f . As shown in Fig. 12, let dI(pk, p̂) =
‖pk − p̂‖√
w2 + h2

denote the normalized distance between the inferred
part and the kth landmark pk on image I, and√
w2 + h2 denotes the diagonal length of the input

image. Thus, Df,k =
√

varI [dI(pk, p̂)] is reported as
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the relative location deviation of filter f w.r.t. the
kth landmark, where varI [dI(pk, p̂)] is referred to as
the variation of distance dI(pk, p̂). Because each
landmark cannot appear in all testing images, for
each filter f , the metric uses only inference results
with the top-M highest activation scores on images
containing the kth landmark to compute Df,k. In
this way, the average of relative location deviations
of all the filters in a conv-layer w.r.t. all landmarks,
i.e., meanfmeanK

k=1Df,k, measures the location in-
stability of a CNN, where K denotes the number of
landmarks.

Inferred position 

 

Annotated landmark

Fig. 12 Notation for the computation of a filter’s
location instability (Zhang et al., 2018b)

References to color refer to the online version of this figure

7 Network interpretability for middle-
to-end learning

Based on studies discussed in Sections 4 and 5,
people may either disentangle representations of a
pre-trained CNN or learn a new network with inter-
pretable, disentangled representations. Such inter-
pretable/disentangled network representations can
further enable middle-to-end model learning at the
semantic level without strong supervision. We briefly
review two typical studies (Zhang et al., 2017a,b) of
middle-to-end learning as follows.

7.1 Active question-answering for learning
And-Or graphs

Based on the semantic And-Or representation
proposed by Zhang et al. (2016), Zhang et al. (2017a)
developed a method to use active question-answering
to semanticize neural patterns in conv-layers of a
pre-trained CNN and built a model for hierarchical
object understanding.

As shown in Fig. 13, CNN is pre-trained for
object classification. The method aims to extract a
four-layer interpretable AOG to explain the semantic

hierarchy hidden in a CNN. The AOG encodes four-
layer semantics, ranging across the ‘semantic part’
(OR node), ‘part templates’ (AND nodes), ‘latent
patterns’ (OR nodes), and ‘neural units’ (terminal
nodes) on feature maps. In AOG, AND nodes repre-
sent compositional regions of a part, and OR nodes
encode a list of alternative template/deformation
candidates for a local part. The top part node (OR
node) uses its children to represent some template
candidates for the part. Each part template in the
second layer (AND node) uses children latent pat-
terns to represent its constituent regions. Each la-
tent pattern in the third layer (OR node) naturally
corresponds to a certain range of units within the
feature map of a filter. The latent pattern selects a
unit within this range to account for its geometric
deformation.
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Input 
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Conv layer-

Fig. 13 And-Or graph (AOG) grown on a pre-trained
convolutional neural network (CNN) as a semantic
branch (Zhang et al., 2017a)
AOG associates specific CNN units with certain image re-
gions. Red lines indicate the parse graph. References to
color refer to the online version of this figure

To learn an AOG, Zhang et al. (2017a) allowed
the computer to actively identify and ask about ob-
jects, whose neural patterns cannot be explained by
the current AOG. As shown in Fig. 14, in each step
of the active question-answering, the current AOG
is used to localize object parts among all the unan-
notated images. The method actively selects objects
that cannot well fit AOG, namely ‘unexplained ob-
jects’. The method predicts the potential gain of
asking about each unexplained object, and thus de-
termines the best sequence of questions (e.g., asking
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about template types and bounding boxes of unex-
plained object parts). In this way, the method uses
the answers to either refine an existing part tem-
plate or mine latent patterns for new object-part
templates, to grow AOG branches. Fig. 15 com-
pares the part-localization performance of different
methods. The QA-based learning exhibits a signif-
icantly higher efficiency than other baselines. The
proposed method uses about 1/6–1/3 of the part an-
notations for training, but achieves similar or better
part-localization performance compared with fast-
RCNN methods.
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Q: Is it a correct localization of the ‘head’? Is it a
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Fig. 14 Illustration of the question-answering (QA)
process (Zhang et al., 2017a): (a) method of sorting
and selecting unexplained objects; (b) questions for
each target object
In (a), ΔKL indicates the predicted information gain of the
And-Or graph (AOG) model obtained from asking about
different objects, and the horizontal axis indicates different
objects sorted w.r.t. the predicted information gain
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7.2 Interactive manipulations of convolu-
tional neural network patterns

Let a CNN be pre-trained using annotations
of object bounding boxes for object classification.
Zhang et al. (2017b) explored an interactive method
to diagnose knowledge representations of a CNN, to
transfer CNN patterns to model object parts. Un-
like traditional end-to-end learning of CNNs that re-
quires numerous training samples, this method mines
object part patterns from CNN in the scenario of
one/multi-shot learning.

Specifically, the method uses part annotations
on a few (e.g., three) object images for supervision.
Given a bounding-box annotation of a part, the pro-
posed method first uses the method proposed by
Zhang et al. (2016) to mine latent patterns, which
are related to the annotated part, from conv-layers
of CNN. An AOG is used to organize all mined pat-
terns as the representation of the target part. The
method visualizes the mined latent patterns and asks
people to remove latent patterns unrelated to the tar-
get part interactively. In this way, people can simply
prune incorrect latent patterns from AOG branches
to refine AOG. Fig. 16 visualizes initially mined pat-
terns and the remaining patterns after human inter-
action. With guidance of human interactions, Zhang
et al. (2017b) exhibited a superior performance of
part localization.

Patterns in the 
original AOG

Patterns in conv-
layers 5–7 after 

interactions

Patterns in conv-
layers 8-10 after 

interactions

Fig. 16 Visualization of patterns for the head part
before and after human interactions (Zhang et al.,
2017b)

8 Prospective trends and conclusions

In this paper, we have reviewed several research
directions within the scope of network interpretabil-
ity. Visualization of a neural unit’s patterns was
the starting point of understanding network repre-
sentations in the early years. Then, people have
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gradually developed methods to analyze feature
spaces of neural networks and diagnose potential
representation flaws hidden inside neural networks.
At present, disentangling chaotic representations of
conv-layers into graphical models or symbolic logic
has become an emerging research direction to open
the black-box of neural networks. The approach for
transforming a pre-trained CNN into an explanatory
graph was proposed. It exhibited a significant effi-
ciency in knowledge transfer and weakly-supervised
learning.

End-to-end learning of interpretable neural net-
works, whose intermediate layers encode comprehen-
sible patterns, is also a prospective trend. Inter-
pretable CNNs have been developed, where each fil-
ter in high conv-layers represents a specific object
part.

Furthermore, based on interpretable represen-
tations of CNN patterns, semantic-level middle-to-
end learning was proposed to speed up the learn-
ing process. Compared with traditional end-to-end
learning, middle-to-end learning allows human in-
teractions to guide the learning process and can be
applied with a few annotations for supervision.

In the future, we believe that the middle-to-end
learning will continuously be a fundamental research
direction. In addition, based on the semantic hier-
archy of an interpretable network, debugging CNN
representations at the semantic level will create new
visual applications.
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