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Abstract: Underwater imaging is being used increasingly by marine biologists as a means to assess the abundance
of marine resources and their biodiversity. Previously, we developed the first automatic approach for estimating the
abundance of Norway lobsters and counting their burrows in video sequences captured using a monochrome camera
mounted on trawling gear. In this paper, an alternative framework is proposed and tested using deep-water video
sequences acquired via a remotely operated vehicle. The proposed framework consists of four modules: (1) pre-
processing, (2) object detection and classification, (3) object-tracking, and (4) quantification. Encouraging results
were obtained from available test videos for the automatic video-based abundance estimation in comparison with
manual counts by human experts (ground truth). For the available test set, the proposed system achieved 100%
precision and recall for lobster counting, and around 83% precision and recall for burrow detection.
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1 Introduction

As the costs associated with the use of underwa-
ter equipment drop, underwater video has been used
increasingly in the context of management of com-
mercial fish stocks. An example is the Norway lob-
ster (Nephrops norvegicus), a burrowing crustacean
species living in muddy sediments at depths rang-
ing from 15 m to more than 800 m in the whole
Northeastern Atlantic Ocean and Mediterranean Sea
(Howard, 1989). Since Norway lobsters constitute a
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valuable commercial catch in the European fish mar-
ket (Howard, 1989), regular, long-term, and large-
scale monitoring surveys have been established for
this species to assess and manage its populations.
Lobsters are highly territorial species, usually spend-
ing most of their lifespan within or in the vicinity
of their burrows. Emergence from burrows reflects
a daily routine, affected by seasonal variations, for
instance, related to reproduction cycles, directly af-
fecting the density and sex-ratio estimates observed
in monitoring surveys. Owing to the recent avail-
ability of image surveys, burrow density has become
an important clue and is being used regularly as an
abundance index in lobster stock assessment (Sardà
and Aguzzi, 2012). Currently, underwater imag-
ing is well-suited for the estimation of lobster stock
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abundance through integration with burrow densi-
ties, due to its ability to perceive the burrows’ visual
details from the video footage (Morello et al., 2007).
This paper takes this information into consideration
for the development of an automatic video-based
application. In earlier experimental work carried
out in Nephrops fishing grounds off the Portuguese
southern coast, the experimental setup consisted of a
Kongsberg Maritime OE1324 monochrome low-light
SIT camera mounted on the upper center of a trawl
gear headline, angling down in the tow direction.
Tows were carried out at about 3.0 knots, producing
images captured from an observation angle of ap-
proximately 45◦ (Fonseca et al., 2008). Datasets re-
ferred to in Fonseca et al. (2008) are usually obtained
by using video cameras mounted on either towed
gears (Correia et al., 2007; Lau et al., 2008, 2012),
or, most often, sledges towed behind a research ves-
sel (Sooknanan et al., 2013). In practice, these se-
tups are limited to towing in straight lines, with the
video camera capturing video from a fairly fixed view
point. In this paper, the dataset to be analyzed was
acquired off the Portuguese south Atlantic coast us-
ing a remotely operated vehicle (ROV), belonging to
the non-governmental organization OCEANA. The
ROV was controlled by a technician on board of a
research vessel, and could move freely in any de-
sired direction while recording. In this new setup,
the area observed by the ROV-mounted camera is
unstructured and highly dynamic, unlike the exper-
imental setups previously discussed (Fonseca et al.,
2008). The ROV can capture images from various
viewpoints, as the camera can be oriented in differ-
ent angles and directions, conducting video analysis
for lobster and burrow detections and tracking more
challengingly. Thus, estimation of the monitored
area becomes more difficult.

Traditional underwater video processing is car-
ried out manually, with trained technicians, usually
marine biologists, identifying the observed marine
species or biogenic structures and counting them.
During calibration tests, biologists evaluate video
clips with good, medium, and poor visibility to check
how illumination conditions affect the counting by
different observers. The manual approach suffers
from several shortcomings, mostly related to hu-
man operator experience and capacity for concen-
tration, often resulting in counting bias, especially
for low-visibility videos and/or densely populated

lobster fishing grounds. Additionally, when a large
set of relevant video clips needs to be processed, the
manual approach becomes bottlenecked. To mini-
mize human-intensive workload, a number of auto-
mated digital image processing approaches have been
presented to assist in the study on Norway lobster
abundance (Correia et al., 2007; Lau et al., 2008,
2012). Automatic analysis requires understanding
which key characteristics of the lobsters and burrows
should be looked for.

Correia et al. (2007) worked with monochrome
images and noticed that lobsters correspond to
brighter image areas, while burrows appear as
crescent-shaped areas with shadows in the mid-
dle. They proposed a Norway lobster detection and
counting solution based on the analysis of three vi-
sual feature maps: intensity, edge, and motion. A
year later, a software prototype, named ‘IT-IPIMAR
N. norvegicus I2N2’, was developed by the same team
to provide a more comprehensive analysis of lobster
and burrow density estimation (Lau et al., 2008).
Lau et al. (2012) proposed an improved segmenta-
tion of non-uniformly illuminated regions using a lo-
cal thresholding technique. Sooknanan et al. (2013)
adapted a mosaic indexing representation to solve
the burrow detection problem, the mosaic being the
composite image generated across the frames in a
video. Their mosaic-based indexing approach in-
directly solves the geometric distortion and limited
field view problems. However, their work requires a
consistent acquisition method; i.e., the images should
be registered correctly without any distortion or in-
formation loss before starting the detection. In our
recent work (Tan et al., 2014, 2015), the initially
released subset of the dataset acquired from ROV
was considered. In Tan et al. (2014), a preliminary
solution was proposed by analyzing each image indi-
vidually. Later, a visual tracking scheme was added
by Tan et al. (2015) to track the detected lobsters
and burrows in a dynamic motion environment, and
finally to estimate the numbers of lobsters and bur-
rows in the whole footage, preventing over-counting
for objects detected in consecutive frames. The in-
tegration of Tan et al. (2014, 2015) allows an auto-
matic processing of ROV video sequences. However,
when further video sequences from the ROV dataset
become available, it becomes apparent that the de-
tection algorithm presented by Tan et al. (2014)
cannot effectively discriminate the targets in the
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presence of other, previously unobserved, seabed
structures. The features considered for detection
and segmentation are not robust enough, with some
of the regions of interest being missed due to poor
region segmentation.

This paper extends the work started in Tan
et al. (2014, 2015) by: (1) proposing improved lob-
ster and burrow detection algorithms, which include
additional features and consider the use of a sup-
port vector machine (SVM) classifier, (2) providing
a complete framework for this study, adding track-
ing along with time, and (3) performing a more ex-
haustive evaluation, considering the additional video
sequences that were made available.

2 Experimental setups

In this study, a set of video sequences of ocean
seabed, captured by a camera mounted on a ROV,
are used. The ‘Sea-eye’ Falcon ROV, belonging to
the non-governmental organization OCEANA, was
used on board of a research vessel off the Portuguese
south Atlantic coast, during a survey dedicated to es-
timating the effects of continued trawling on Norway
lobster deep-water fishing grounds, within the scope
of project IMPACT. The ROV was submerged to a
depth of about 500 m, under artificial illumination.
An RGB video camera, operating at a frame rate of
12 frames/s with a spatial resolution of 640 × 360

pixels and storing at 24 bits/pixel, was used. An
image of the ROV and the sample images acquired
from Norway lobster fishing grounds are included
in Figs. 1 and 2, respectively. During video footage
recording, the ROV moved smoothly over the seabed,
acquiring video sequences of sufficient spatial reso-
lution for the desired analysis, without introducing
significant motion blur problems. However, some
seafloor video sequences presented several challenges,
including: (1) ‘marine snow’, due to the mud clouds
moving in front of the camera, thus severely limit-
ing visibility; (2) artifacts appearing at the image
borders due to the presence of the camera container
used to withstand the high pressure.

3 Proposed system

In this study, we propose an improved automatic
video analysis framework, whose architecture is pre-
sented in Fig. 3, for the detection and counting of

Fig. 1 Remotely operated vehicle used for image ac-
quisition: Seaeye Falcon

(a) (b)

Fig. 2 Sample images: (a) sample image distorted
by the presence of ‘marine snow’; (b) sample im-
age containing a lobster (marked with an ellipse) and
three large burrow entrances (marked with rectangu-
lar boxes)

visible lobsters and burrows. It includes four main
modules: (1) pre-processing, (2) object detection
and classification, (3) object tracking, and (4) quan-
tification. The goals of the pre-processing module
include elimination of irrelevant image details and
compensation for the effect of non-uniform illumina-
tion. The object detection module searches for the
regions of interest in the image, segments them, ex-
tracts visual features, and then classifies the regions
as lobsters, burrows, or others. The next module
tracks objects along consecutive video frames, and is
able to recognize when ROV returns to an area vis-
ited previously. Finally, the quantification module
delivers a video-based estimate of the abundance of
lobsters and burrows.

3.1 Pre-processing

In an oceanic environment, the deeper the wa-
ter, the more light is absorbed (Johnsen and Sosik,
2004). The present work considers high depths,
where natural light is too weak, requiring ROV
to carry artificial illumination. From the acquired
video sequences, it is possible to observe that the
color information present in the images is attenu-
ated greatly, making the image intensity component
much more representative of the observed content;
therefore, video frames are converted to grayscale for



Tan et al. / Front Inform Technol Electron Eng 2018 19(8):1042-1055 1045

Video acquisition

Pre-processing

Object tracking

Region
segmentation

Region
segmentation

Feature
extraction

Feature
extraction

Classification
(lobster vs. other)

Classification
(burrow vs. other)

Local minimum regions
map, ID

Local maximum regions 
map, ID

Detected lobster(s)Detected lobster(s)

Lobster tracker(s)Lobster tracker(s)

Quantification

Lobster counting Burrow counting

Lobster
detection

Burrow
detection

Fig. 3 Architecture of the proposed system

further pre-processing. To discard irrelevant details
appearing in images due to instrumentation setup,
notably the black borders near image boundaries
caused by the camera container to withstand high
pressure (Fig. 2), a cropping operation is conducted.
The illumination sources installed in ROV propagate
a light spot in the direction of the acquired images;
however, they have a limited range. As illustrated
in Fig. 2, the illumination is brighter in the area
near the light source and gradually decreases with
distance. This causes a non-uniform illumination
of the imaged area. The goal of this module is to
compensate for the non-uniform background illumi-
nation and to create two foreground maps, using the
difference in Gaussian distribution, according to

IB = G1 · I −G2 · I, (1)

ID = G2 · I −G1 · I, (2)

where I is the input grayscale image, G1 and G2

are two-dimensional Gaussian kernels of size 55 ×
55 and 5 × 5, respectively, and IB and ID are the
output images containing the local maximum and
minimum regions (Fig. 4), respectively. The idea
behind the selection of a large value for kernel size
for G1(x, y) is to substantially extrapolate the local
intensity difference.

3.2 Lobster and burrow detection

The object detection module is composed of
three main steps: (1) region segmentation, (2) fea-
ture extraction, and (3) classification. Each of these
steps is detailed in the following.

(a) (b)

Fig. 4 Output images: (a) the lobster contains
brighter pixels, in contrast to its surrounding regions;
(b) the burrow contains darker pixels, in contrast to
its surrounding regions

3.2.1 Region segmentation

This section discusses the identification of re-
gions corresponding to lobster or burrow candidates.
From an exhaustive analysis of imaged lobster ex-
amples, it was observed that lobster regions tend to
present a high intensity contrast to their surround-
ing area, while burrow regions usually present a low
intensity contrast. Therefore, image IB was used as
an input for candidate lobster region segmentation,
while for burrows, image ID was used. Candidate
lobster (CL) region segmentation can be done by a
global thresholding technique, which was applied to
image IB according to

CL(x, y) =

{
255, IB(x, y) ≥ m+Imax

2 ,

0, otherwise,
(3)

where m is image mean intensity and Imax is the
maximum intensity of image IB.

For candidate burrow (CB) region segmenta-
tion, a local thresholding operation is preferred since
burrow regions exhibit a range of different graylevels.
For this purpose, integral images were considered,
and the technique proposed by Sauvola and Pietikäi-
nen (2000) was applied to image ID. Sauvola and
Pietikäinen (2000)’s binarization method selects a lo-
cal threshold T2 for each pixel, taking a local window
of size W ×W as a context:

T2(x, y) = m(x, y)

[
1 + k

(
δ(x, y)

R
− 1

)]
, (4)

CB(x, y) =

{
255, ID(x, y) ≥ max(T2, T3),

0, otherwise.
(5)

In the literature, the value of 128 is suggested for
R with 8-bit grayscale images, and for k, a value
in range [0.10, 0.50] is suggested for document seg-
mentation (Sauvola and Pietikäinen, 2000; Badekas
and Papamarkos, 2005; Shafait et al., 2008). Small
values of W (e.g., 3, 5) cannot preserve too many
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secondary details, while larger values (e.g., 11, 13)
are prone to over-fitting. In this study, after some
initial experiments, it was concluded that Sauvola
and Pietikäinen (2000)’s thresholding technique can
be applied with k = 0.35, R = 128, and W = 9, to
achieve the desired segmentation results. To reduce
complexity in the local threshold computation T2,
an integral image is used to calculate the sum of all
pixel intensities fast within a selected window, and to
derive the corresponding mean m(x, y) and standard
deviation δ(x, y). Additionally, to avoid the effect of
noise in image ID, a minimum value, T3, is imposed
on the local threshold with its value experimentally
set to five.

For the image, a morphologic close operation is
then applied as a post-processing step to both CL

and CB, to merge any small region fragment and
to fill in holes in the candidate region. Last, a con-
nected component analysis is performed to merge
adjacent pixels and to analyze the resulting contours
as appropriate (Suzuki and Be, 1985). As a result,
the sets of lobster and burrow candidate regions are
identified (Fig. 5).

(a) (b)

Fig. 5 Results of image region segmentation: (a) IB;
(b) ID

3.2.2 Feature extraction

For each lobster or burrow candidate region, a
set of features is extracted to describe its visual struc-
ture: F1 is the curvature, F2 is the local intensity
contrast, F3 is the aspect ratio, F4 is the diame-
ter, F5 is the region area, and F6 is the orienta-
tion. Features F2 and F6 are considered for the first
time in this context. Each feature is detailed in the
following.

F1 (curvature): When ROV moves, it provides
dynamic observation of the scene. For instance, the
visual appearance of a burrow entrance changes con-
siderably according to the viewing angle and dis-
tance from the camera. From afar, the burrow en-
trance can often be characterized by its downward

oriented crescent-like shape, permitting a partial
view of the burrow tunnel. Curvature feature F1
proposed herein describes whether the burrow open-
ing is downward oriented. This feature replaces the
one used for the same purpose as in our previous work
(Tan et al., 2014), as it is proved to have a superior
performance. Computation of F1 (Fig. 6) relies on
knowing, for each candidate region, its contour as
well as the smallest rectangular bounding box. In
case that the rectangular bounding box presents a
slant angle α, being greater than 0, then the candi-
date region is rotated to make it horizontal. Then,
the following second-order polynomial is fit to the
region’s contour pixels C(xi, yi) (i ∈ {1, 2, ..., N}):

y = ax2 + bx+ c. (6)

Curve fitting can be solved by the least-squares
method, minimizing ε:

ε =

N∑
i=1

(yi − ax2
i − bxi − c)2. (7)

If quadratic coefficient a is positive, it means that the
parabola opens upwards (Denise, 2007); otherwise, it
opens downwards. Since burrows typically present a
down-oriented curvature, the curvature feature can
be obtained from coefficient a:

F1 = a. (8)

F2 (local intensity contrast): Both lobsters and
burrows typically present with a significant inten-
sity contrast compared with their surrounding area.
Feature F2 tries to capture this visual characteristic,
corresponding to a significant local intensity contrast
between the candidate region and the neighboring
pixels at a certain distance. To compute feature F2,
a median filter H with kernel size WH is applied
according to

IM = |I − (H · I)|, (9)

(a)

(d)

(b)

(c)

Fig. 6 Feature F1 extraction: (a) grayscale image of
a candidate region; (b) segmentation of the candidate
region; (c) rotation of the candidate region to make
it parallel to the image horizontal axis; (d) results of
curve fitting using the least-squares method
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producing IM as the output. The value of WH will
be determined in Section 3.2.3 and the local intensity
contrast (F2) can be measured by

F2 =
1

N

N∑
i=1

IM(xi, yi), IM(xi, yi) ∈ C(xi, yi),

(10)
where IM(x, y) is the absolute value of the difference
between the candidate region image and the median
filter output, and C(x, y) is the set of contour pixels
of the candidate region under analysis.

F3 (aspect ratio): This feature is used to de-
scribe the relationship between the width and height
of candidate lobster and burrow regions. For in-
stance, it is known that burrows usually have an
elongated appearance, with a greater length horizon-
tally than vertically. For lobsters, this relationship
typically yields even higher values of the aspect ratio.
Therefore, feature extraction and subsequent classi-
fication are carried out separately for lobsters and
burrows. This feature is used to select preliminar-
ily between the target (lobster or burrow) and other
structures observable in the input image, and not to
discriminate between lobsters and burrows. It has
been observed that typical aspect ratio values are
above 1.5 for lobsters and above 1.0 for burrows. For
burrows, the region is first rotated to make it parallel
to the image horizontal axis; thus, F3 is computed
as the ratio between the longest lengths of the hori-
zontal (lH) and vertical (lV) axes of the object:

F3 =
lH
IV

. (11)

Since lobsters are often found in different locations
and with different orientations, due to their move-
ments, the F3 feature for lobsters is computed ac-
cording to

F3 =
Imajor

Iminor
, (12)

where lmajor = max(lH, lV) and lminor = min(lH, lV).
The extraction of F3 is shown in Fig. 7.

F4 (diameter): This feature is important for
burrow morphology study. Since burrows are rec-
ognized mostly by their dark entrances and large
diameters (Fonseca et al., 2008), F4 is defined as the
longest diagonal of the candidate region. Addition-
ally, this feature will help in distinguishing burrows
from other muddy sediment structures frequently
found on the seabed, including marks from fishing

Fig. 7 Feature F3 extraction: computation of feature
F3 for a burrow (a) and a lobster (b) candidate region
(References to color refer to the online version of this
figure)

trawls which present a long straight and narrow ap-
pearance. F4 is defined as

F4 =
IH
WI

, (13)

where WI is the image width. To avoid false alarms,
F4 should take values in range [0.05, 0.50].

F5 (region area): This feature is used to elimi-
nate false alarms for lobster candidate regions. The
segmentation step often produces a set of false pos-
itives corresponding to noisy image regions, which
are typically very small. To exclude such regions
from further analysis, each candidate region’s area
is analyzed, with the lobster regions’ area, Alobster,
being expected to be between 0.02 and 0.30 of the
captured image area AI :

F5 =
Alobster

AI
. (14)

F6 (orientation): A candidate region containing
a single lobster typically provides a strong response
to orientation detection filters. This feature is com-
puted by applying a set of Gabor filters Gu,v(x, y)

(Struc et al., 2008) with different orientations u and
scales v, as defined in the following equation, which
are convolved with image IB:

Gu,v(x, y) =
f2
u

πγη
exp

[
−
(
f2

γ2
x′2 +

f2

γ2
y′2

)]
(15)

· exp (j2πfux′) ,

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ,

and fu =
fmax

2u/2
. Parameters γ and η determine the

ratio between the center frequency and the size of
the Gaussian envelope, set to γ = η =

√
2. Pa-

rameter fmax denotes the maximum filter frequency
set to π/2. In practice, it is observed that lobster
regions present strongly oriented gradients, and fil-
tering at orientations v = (0,π/4,π/2, 3π/4) pro-
vides a strong response as lobsters usually appear
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at a slant angle, even when moving parallel to the
seabed surface. Therefore, Gabor filters with three
scales and four orientations, i.e., u = 0, 1, 2 and
v = (0,π/4,π/2, 3π/4), yielding a total of 12 fea-
ture maps, are considered. These feature maps are
combined as

s =

u∑
3

v∑
4

Gu,v. (16)

Finally, orientation feature F6 is computed as

F6 =
1

N

i=1∑
N

S(xi, yi), S(xi, yi) ∈ C(xi, yi). (17)

3.2.3 Region classification

After a set of features describing each candidate
region has been extracted, these features can now be
used to classify the candidate regions. Lobster and
burrow candidate regions are classified separately.
The former are labeled as ‘lobster’ or ‘other’, while
the latter as ‘burrow’ or ’other’. Initially, each re-
gion is evaluated based on a feature subset {F3, F5}
for lobster candidate regions, and {F1, F3, F4} for
burrow candidate regions. Only the regions satisfy-
ing the conditions imposed on the selected features
are considered for further evaluation; otherwise, they
are classified as ‘other’. Then an SVM is employed to
further classify the remaining regions, based on fea-
tures F2 and F6 for lobster candidate regions, and on
feature F2 for burrow candidate regions. The goal of
SVM is to optimally separate the different classes of
data using a hyperplane that maximizes the margin
of separation between two different classes (Ben-Hur
and Weston, 2010).

1. Classification performance
Several experiments were conducted to optimize

the lobster and burrow classification performance by
selecting the best parameter values using a feature
set selection strategy. The dataset used for the lob-
ster and burrow classification was obtained from a set
of available video sequences acquired along the tar-
get trajectory, and labeled manually as illustrated
in Fig. 8. A total of 2128 and 5949 samples, for
lobsters and burrows, respectively, were identified.
From these samples, subsets of 240 and 600 samples,
for lobsters and burrows, respectively, were selected
for training, whereby the sizes of the positive train-
ing samples are consistent with those of the negative
ones (Akbani et al., 2004). The remaining samples

were used as testing samples. The numbers of sam-
ples, positive and negative, for the lobster and bur-
row training and testing processes, are reported in
Table 1.

N
N

N
N

N
N

NNN

L L L
B B

B B

(a) (b) (c)

Fig. 8 Training sample selection: one of the frames
(a) used to select training samples, and samples se-
lected in one image used for training of F2 (b) and
F6 (c)

Table 1 Numbers of samples in the datasets for train-
ing and testing

Sample
target

Number of samples

Training dataset Testing dataset

Positive Negative Positive Negative

Lobster 120 120 53 1835
Burrow 300 300 716 4633

To determine the optimal values of parameter
WH for feature F2 and parameter C for the SVM
classifier, a 10-fold cross-validation technique was ap-
plied. The original sample set consists of a total of
600 samples, which were partitioned randomly into
10 equally sized subsets. Of the 10 subsets, a single
subset was retained for the testing model, and the
remaining subsets were used as the training data.
The cross-validation process consisted of repeating
the procedure considering each of the 10 subsets for
testing. Average results for the 10 experiments are
reported in Figs. 9 and 10, leading to the selection of
WH = 55 and C = 0.1 for both SVM classifiers, as
these values provide the highest accuracy during the
validation.

2. Classification strategy
To determine the best classification strategy be-

tween burrow and non-burrow regions, the perfor-
mances of the feature selection and combination were
examined. Results of the tests conducted using the
proposed system for counting lobsters and burrows,
and their comparison with the ground truth obtained
by manual annotation, are reported. The evaluation
metrics for these experiments were Precision, Recall,
and F-score, according to
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Fig. 9 Accuracy as a function of parameter WH used
for feature F2
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Fig. 10 Accuracy as a function of parameter C used
by the support vector machine

Recall =
Ntrue_positive

Npositive
× 100%, (18)

Precision =
Ntrue_positive

Ntrue_positive +Nfalse_positive
× 100%,

(19)

F-score = 2 · Recall · Precision
Recall + Precision

× 100%, (20)

whereNpositive denotes the actual total count of man-
ually labeled objects in the video, and Ntrue_positive

and Nfalse_positive are the total counts of true and
false positives obtained by the proposed system, re-
spectively. As shown in Table 2, from individual fea-
ture analysis, individual feature F2 obtained an F-
score of 48.48% with smaller classification errors than
the other individual features, while feature F4 was
the worst with an F-score of 11.59%. From the anal-
ysis of different feature combinations using SVM, one
of the interesting points that should be noted is that
most of the combined feature sets performed better
than using an individual feature, especially for fea-
ture subset {F1, F2, F3} or {F1, F2, F3, F4}, which
both obtained an F-score of 48.67%. As such, the
proposed burrow classification strategy (Fig. 11) is
even superior to the SVM feature subset, since it
clearly showed that an F-score of 60.47% is achieved
with the best recall of 51.06%.

Table 2 Lobster and burrow classification perfor-
mance with different feature combinations

Target Feature
Precision Recall F-score

(%) (%) (%)

Burrow

F1 100.00 13.97 24.51
F2 84.50 33.99 48.48
F3 85.06 26.07 39.90
F4 11.59 11.42 11.50

{F1, F2} 84.50 34.01 48.50
{F1, F3} 85.75 26.65 40.66
{F1, F4} 100.00 14.06 25.48
{F2, F3} 84.63 34.14 48.66
{F2, F4} 84.50 33.99 48.47
{F3, F4} 84.63 29.66 43.93

{F1, F2, F3} 84.64 34.16 48.67
{F1, F2, F4} 84.50 34.01 48.50
{F1, F3, F4} 85.06 30.02 44.37
{F2, F3, F4} 84.64 34.14 48.66

{F1, F2, F3, F4} 84.64 34.16 48.67

Proposed strategy 74.16 51.06 60.47

Lobster

F2 75.47 26.31 39.02
F3 32.08 1.35 2.59
F5 41.51 10.63 16.92
F6 100.00 20.00 33.33

{F2, F3} 77.36 26.28 39.23
{F2, F5} 75.47 26.32 39.02
{F2, F6} 96.23 27.27 42.50
{F3, F5} 32.08 1.35 2.59
{F3, F6} 100.00 19.92 33.23
{F5, F6} 100.00 20.00 33.33

{F2, F3, F5} 77.36 26.28 39.23
{F2, F3, F6} 96.23 26.98 42.15
{F2, F5, F6} 96.23 27.28 42.50
{F3, F5, F6} 100.00 19.92 33.29

{F2, F3, F5, F6} 96.23 26.98 42.15

Proposed strategy 96.23 34.23 50.50

For the classification between lobster and non-
lobster regions, the individual features F2 and F6 ob-
tained F-scores of 39.02% and 33.33%, respectively,
showing a better performance compared with F3 and
F5. Feature subsets {F2, F6} and {F2, F5, F6} ob-
tained the same F-score of 42.50%, which is the best
among all the feature combinations for lobster clas-
sification. As such, the proposed strategy (Fig. 11)
is superior to the strategies using the feature subsets
above, since it clearly achieved an F-score of 50.50%,
with the best recall at 34.23%. Again, it should be
noted that all the samples were acquired along the
target trajectory. When either a burrow or lobster
spatially leaves the scene or the distance between the
targets to the camera is long, we still consider this
region as the target and mark its label with the rele-
vant class. This is the reason why in these cases the
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Lobster region candidates

Decision
(F3, F5)

No Yes

No Yes

Other

Other Lobster

SVM classifier
(F2, F6)

Burrow region candidates

Decision
(F1, F3, F4)

No Yes

No Yes

Other

Other Burrow

SVM classifier
(F2)

(a) (b)

Fig. 11 Proposed classification schemes: (a) lobster;
(b) burrow

classifications for lobsters and burrows did not per-
form well, because the analysis was performed based
on a single image instead of consecutive frames. This
will be solved in the next step by integration with the
object tracking module, the objective of which is to
assign into the same tracker those objects (lobsters or
burrows) of interest that are the same as appearing
in consecutive frames.

3.3 Object tracking

The aim of the object tracking module is to as-
sign the same unique label to an object that appears
in consecutive video frames. This will then be ex-
plored by the final module of the proposed system
for computing a video-based estimation of lobster
and burrow abundance. The visual-tracking scheme
proposed by Tan et al. (2015) was applied to solve
the lobster and burrow tracking problem, relying on
the use of an image mosaicing technique. This tech-
nique estimates the motion between the consecutive
images, relying on the identification of the same tex-
tured patch or visual clue in consecutive images, after
eventually applying some geometric transformation
to compensate for the differences in camera observa-
tion angles due to camera motion and eventually to
the remote operator actions, such as zoom.

Since burrows are static elements, burrow track-
ing is solved using the above strategy, taking into ac-
count the camera motion, which is a dynamic obser-
vation. In this case, an affine transformation model
is used to describe the observed motion, which is es-
timated using a set of local spatial flow fields over
pairs of consecutive images and the iterative Lucas-
Kanade optical flow method (Bouguet, 2003). Once
the affine transformation parameters are available,
a burrow position in the next frame can be pre-
dicted. Note that a tracked burrow location will
be available when analyzing the following frames.

Lobsters, on the other hand, may either move or
idle with the translation under the observation by a
non-stationary camera, e.g., carried out by a ROV
with translation at time t. This means that a lob-
ster’s location is not only defined with respect to the
motion of the camera, but also affected by its own
motion activity. In this case, the lobster may move
additionally from the position where it was observed
originally. As such, the particle filter based method
(Yang et al., 2005) is used to predict the state of
a tracked lobster candidate in consecutive frames.
Subsequently, data association is performed for the
lobster and burrow regions separately. The tracking
cycle thus involves the steps of (1) state prediction
and (2) data association. Given a set of lobsters
Lt and burrows Bt detected at frame t, and the es-
timated lobster and burrow trajectories L_Tr1:t−1

and B_Tr1:t−1, respectively, object correspondences
between frames t and t− 1 can be established using
the information available from Lt and L_Tr1:t, Bt

and B_Tr1:t, respectively, considering the centroids
of the lobster and burrow regions. This data asso-
ciation can be solved by the Hungarian algorithm
(Kuhn, 1955). If a region detected at frame t and a
region tracked from frame t − 1 are overlapping by
more than 30% of the maximum area, they receive
the same identification label.

3.4 Quantification strategy

A video-based estimation of lobster and bur-
row abundance is the ultimate goal of this study.
Therefore, in the calculation of the total number of
objects observable in the video footage, the informa-
tion computed by the tracking module needs to be
considered. Each tracked object has been assigned
a unique identity and its trajectory has been com-
puted. The quantification module should be able
to analyze each tracked object and reject false pos-
itives that may have been detected. To do so, this
module searches objects that can be characterized as
unstable over time, meaning that they are detected
for short and discontinuous time periods. To ensure
the consistency of the object count, a quantification
strategy is applied in this step.

3.4.1 Lobster quantification

During the observation, and given that video
sequences are captured by a ROV whose trajectory
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is not predetermined (as one would expect in a lin-
ear trawling survey), lobsters may leave and possibly
re-enter the observed scene later. However, since a
lobster’s activity after leaving the scene is unknown
and unpredictable (e.g., it may have entered a bur-
row and stood there for a long period, eventually
reappearing later at a different exit of the burrow-
ing system), the decision was to stop the tracking
of a given lobster if it leaves the scene, even if the
trajectory of ROV can be estimated. For counting
purposes, the quantification module takes into ac-
count any lobster object that satisfies

NDetection ≥ δ, (21)

where NDetection is the number of frames in which
the lobster candidate is successfully tracked, and δ

is a threshold corresponding to the minimum value
to consider that the object does not correspond to a
false detection. Herewith, δ is set to 10 after a set of
preliminary tests, which means that the object will
be detected in at least 10 frames.

3.4.2 Burrow quantification

At every frame, a burrow tracker is updated
based on the ROV estimated motion model. The pre-
dicted position of a tracked burrow is updated based
on the estimated ROV movement, even if outside
the image. Therefore, the tracking of each detected
burrow is kept until the last frame of the video. We
assign two variables, NB and NO, for each burrow
trajectory. At frame t, when the tracked burrow is
detected again in the visible image area, then its NB

is increased by one. Otherwise, if the tracked bur-
row centroid is supposed to be found in the image
area but not detected, then NO is increased by one.
After processing the complete video sequence, each
tracked burrow is counted if its tracker information
satisfies both Eq. (21) and

f =
NB

NB +NO
≥ 0.5, (22)

where f describes how frequently the tracked object
is detected correctly when revisiting a given location.
If f is greater than 0.5, it means that the burrow is
tracked successfully, and thus can be counted as a
detected burrow.

4 Experimental results

This section describes the dataset used to test
the proposed system and the results obtained. The
proposed automatic analysis software was imple-
mented in C++, using Microsoft Visual Studio, inte-
grated with the OpenCV (http://opencv.org/) open
source library. Tests were conducted in a computer
with an Intel core i7-3770@3.440-GHz processor and
with a 16-GB RAM, running the Windows operating
system.

4.1 Available dataset

To evaluate the performance of the proposed
methodology, two challenging real-time underwater
video sequences, recorded on different days, were
used. These video sequences were captured by a
video camera installed in a ROV using the experi-
mental setups described in Section 2. The two long
video sequences, around 2-h duration each, were split
into several short video clips; after removing uninter-
ested contents, e.g., due to marine snow or the posi-
tioning of ROV, a total of 17 meaningful clips were
selected (Table 3). All the video clips were tested at
12 frames/s, with a resolution of 640× 360. The av-
erage playing time of these video clips was 43 s, and
the total playing time was around 12 min. One of
these video clips was used for training, as discussed
in Section 3.2.3. In some clips, both lobsters and
burrows are visible, while in others only burrows or

Table 3 Selected video clips for analysis

Video Evaluation
Playing time Lobster (L)

(s) Burrow (B)

1 Train 75 LB
2 Test 31 B
3 Test 53 B
4 Test 16 B
5 Test 25 L
6 Test 12 B
7 Test 70 B
8 Test 17 B
9 Test 50 –
10 Test 91 L
11 Test 33 B
12 Test 23 B
13 Test 65 B
14 Test 79 B
15 Test 31 L
16 Test 32 B
17 Test 33 B

Data were taken from two different long sequences
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lobsters are. Seldom, more than one lobster is found
in a single image.

To validate the system’s automatic operation,
the available video clips were labeled manually by an
expert to be considered as ground-truth data. Note
that even expert marine biologists cannot convey a
high confidence in burrow classification labeling with
results varying from person to person. This is an
ill-defined problem, due to the inconsistent geomet-
ric appearance of burrow entrances, partly because
of illumination inconsistencies and distance to the
camera, as well as the nature of the sediments found
in the seabed. Also, Norway lobsters are not the
only burrowing species. Therefore, in the context
of this study, the focus was on the primary burrow
system entrances, which can be recognized easily as
they present a better intensity, homogeneity, con-
trast, and a longer diameter which was assumed to
be greater than 0.05% of the image width in this
test. Note that, for quantification purposes, if the
same burrow was labeled manually in different im-
ages, including when ROV returned to a previously
visited location, it was not labeled as a new object.

4.2 Results

To evaluate the performance of the proposed
visual tracking scheme, one of the CLEAR multi-
ple object tracking (MOT) metrics, MOT accuracy
(MOTA) was used as the evaluation metric for this
experiment (Bernardin and Stiefelhagen, 2008). In
this case, the evaluation commenced as items were
detected and tracked. The higher the MOTA score,
the more precise the tracking system. Note that the
objective of this experiment was to investigate the
tracking performance, and thus we did not consider
whether the tracked objects were labeled correctly.
In addition, note that a lobster which left the scene
and then re-entered was assigned to a new track.

As seen in Table 4, the proposed tracking
scheme achieved 1.0000 and 0.9902 MOTA scores
for lobster and burrow tracking, respectively. When
tracking multiple objects at a scene, the method can
be prone to occlusion problems as the tracked ob-
ject overlaps with others. This possibility can lead
to missed tracking or false identity switching. In
our case, the testing scenario did not face this prob-
lem because there was rarely more than one lobster
present in the scene (lobster tracking), while burrow
structures are static (burrow tracking). However, a

few false positives were detected in burrow tracking
due to the inaccurate global motion of the images
(Fig. 12).

Table 4 Performance evaluation of the proposed sys-
tem based on the multiple object tracking accuracy
(MOTA) metric

Target
∑N

i=1 Gi MOTA ML FM ID

Lobster 681 1.0000 0 0 0
Burrow 7036 0.9902 0 0.0098 0

ML: ratio of the missed tracks in total frames; FM: ratio of
tracks with false positive in total frames; ID: ratio of mis-
matched id in total frames; Gi: number of mapped objects
over the entire trajectory at the ith frame

(a) (b)

(c) (d)

Fig. 12 False positive track for region B1 in the 250th

(a), 255th (b), 278th (c), and 293rd (d) frames (Ref-
erences to color refer to the online version of this
figure)

Bearing in mind that a proper quantification is
our ultimate goal, we conducted another experiment
to investigate the precision of the actual estimation
of abundance of lobsters and burrows in underwater
video sequences. The results of the tests using the
proposed system, for counting lobsters and burrows,
were compared with those obtained using the method
proposed by Tan et al. (2014), and both methods
were again compared with ground-truth data ob-
tained by manual annotation (Table 5).

Table 5 showed that the proposed system cor-
rectly detected and tracked all five lobsters and 87
out of 104 burrows. In addition, 17 false positive
burrows were detected. These results evidence a
clear improvement over the method proposed by Tan
et al. (2014), which correctly detected and tracked
five lobsters and 76 burrows, additionally identify-
ing one lobster and 34 burrows as false positives.
Sample images illustrating the experimental results
are included in Fig. 13, while Fig. 14 illustrates a
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Table 5 Comparison between an automatic approach and a manual approach

Approach Object
Manual Automatic True False False Recall Precision F-score
count count positive positive negative (%) (%) (%)

R1 Lobster 5 6 5 1 0 100.00 83.33 90.90
R1 Burrow 105 110 76 34 29 72.38 69.09 70.69
PS Lobster 5 5 5 0 0 100.00 100.00 100.00
PS Burrow 105 104 87 17 18 82.86 83.65 83.25

RI: methodological approach used in Tan et al. (2014) with the same tracking solution; PS: methodological approach used in this
paper

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 13 Lobster tracking in the 5th video clip: 148th

(a), 160th (c), 224th (e), and 264th (g) frames; burrow
tracking in the 4th video clip: 65th (b), 84th (d), 92nd

(f), and 102nd (h) frames

mosaic image outlining the area surveyed by the
movement of ROV during acquisition. As shown
in Fig. 13, the lobster contour could vary according
to different viewing angles and positions from the
observer. However, the proposed lobster detector
successfully detected and tracked the lobster across
the video frames. Note that when a leaving lobster
re-entered the observation scene, it was labeled with
a new identity. Since the test video was obtained
in the Nephrops fishing grounds at depths above
400 m, other benthic animals were rarely found in
the scene with the exception of a few fish species
appearing usually in the scene for short and tem-
porary periods, i.e., in one or two frames. However,
our proposed lobster detector was able to distinguish

200th frame

0th frame

Fig. 14 Image mosaic created using one of the test
video clips

between them. In addition, when the distance be-
tween lobster and observer positions was large, lead-
ing to a small lobster size and a low intensity contrast
compared with the surrounding region, the lobster
detector did not commence. When the observation
distance decreases, the visual appearance of the lob-
ster can be noticed clearly, leading to a correct de-
tection.

On the other hand, the geometric properties of
burrows vary highly according to the distance and
angle from the observer (Fig. 13). When the burrows
were far away from the observer, their presence could
not be noticed either because their entrance could
not be seen or because most of them presented in a
straight line. As the observation distance decreased,
the burrow entrance became visible, with both the
diameter and size becoming larger. Their shape mor-
phology changed from a straight line to a downward
crescent-like shape, and finally became a circle or el-
lipse. Similar to lobster detection, burrow detection
was possible from only a short observation distance.
The burrow detector proposed here analyzed the
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burrow morphology based on the intensity contrast
and several geometric features instead of shape or
contour information due to the inconsistency of bur-
row shape appearance. In fact, the majority of bur-
rows had downward curvature information; however,
there were a few exceptional cases where the burrows
presented with a sharp upper boundary (Fig. 15a).
One of the geometric features used to describe the
downward curvature could not be worked out since
it presented with an upward curvature. This was
one of the reasons that led to a missed burrow. A
few challenging benthic or artifact structures found
were over the seabed sediments in the test video.
In particular, trawl marks were rejected correctly
by the burrow detector (Fig. 16). Furthermore, we
compared Norway lobster abundance estimation ac-
cording to the automatic video processing techniques
reported in Lau et al. (2008, 2012) and Sooknanan
et al. (2013) (Table 6).

5 Conclusions

In this paper, we proposed an automated video
analysis framework, which constitutes a further step
in facilitating Norway lobster stock assessment by
automatically detecting, tracking, and finally quan-
tifying both this benthic species and its biogenic fea-
ture (main burrow entrance) from the underwater
video sequences obtained in deep-water crustacean
grounds. The proposed method presented in this
study is designed specifically to address the dynamic
motion environment of video footage obtained un-
der ROV operation. In this study, we improved the
performance of lobster and burrow detection using a
new algorithm. The results of testing a higher num-
ber of video sequences achieved 100% precision and
recall for the lobsters and 83.7% precision and 82.9%
recall for burrows. However, it must be stressed
once again that fishery scientists evaluate Norway
lobster abundance by counting burrow systems (as-
suming a single main entrance and several ventilation

Fig. 15 Experiment results of the 13th video clip:
tracking of multiple burrows in the 151st (a), 165th

(b), 182nd (c), 200th (d), 242nd (e), and 271st (e)
frames

(a) (b)

Fig. 16 Trawl marks that were rejected correctly by
the burrow detector in the 337th (a) and 599th (b)
frames

shafts) and not the lobsters themselves. In spite of a
reasonable approximation with manual counting, the
amount of missed (false negatives) and misidentified
burrows (false positives) may represent a hindrance
for the immediate adoption of this framework in field
work. Its extensive experimentation with footage
representing the different conditions found during
survey cruises is mandatory, e.g., bottoms with good,
acceptable, and poor visibility, and according to bot-
tom composition and hardness which conditions the
occurrence of marine snow.

Acknowledgements
The non-governmental organization OCEANA and

the team of the project IMPACT ‘Long-Term Effects of

Table 6 Comparison with other works estimating Norway lobster abundance

Method
Acquired Video Target Analysis Real time Dynamic Video Marine
method vision (L/B) technique analysis observation quality snow

Lau et al. (2008, 2012) Towing One-way LB Video Yes No Yes Yes
Sooknanan et al. (2013) Sledge One-way B Image No Yes No No

Proposed system ROV Free view LB Video Yes Yes Yes Yes



Tan et al. / Front Inform Technol Electron Eng 2018 19(8):1042-1055 1055

Continued Trawling on Deep-Water Muddy Ground’, fi-
nanced within the scope of the European Union program
EUROFLEETS, are gratefully acknowledged for the au-
thorization to use the underwater video footage analyzed
herein.

References
Akbani R, Kwek S, Japkowicz N, 2004. Applying support

vector machines to imbalanced datasets. Proc 15th Eu-
ropean Conf on Machine Learning, p.39-50.
https://doi.org/10.1007/978-3-540-30115-8_7

Badekas E, Papamarkos N, 2005. Automatic evaluation of
document binarization results. Proc 10th Iberoamerican
Congress Conf on Progress in Patt Recognition, Image
Analysis and Applications, p.1005-1014.
https://doi.org/10.1007/11578079_103

Ben-Hur A, Weston J, 2010. A user’s guide to support vector
machines. In: Carugo O, Eisenhaber F (Eds.), Data
Mining Techniques for the Life Sciences. Humana Press,
New York, p.223-239.
https://doi.org/10.1007/978-1-60327-241-4_13

Bernardin K, Stiefelhagen R, 2008. Evaluating multiple
object tracking performance: the CLEAR MOT met-
rics. EURASIP J Image Video Process, 2008:246309.
https://doi.org/10.1155/2008/246309

Bouguet JY, 2000. Pyramidal Implementation of the Lucas
Kanade Feature Tracker Description of the Algorithm.
Intel Corporation Microprocessor Research Labs, Santa
Clara, USA.

Correia PL, Lau PY, Fonseca P, et al., 2007. Underwater
video analysis for Norway lobster stock quantification
using multiple visual attention features. Proc 15th Eu-
ropean Signal Processing Conf, p.1764-1768.

Denise S, 2007. Homework Helpers: Calculus (Homework
Helpers). Career Press, Wayne.

Fonseca P, Correia PL, Campos A, et al., 2008. Fishery-
independent estimation of benthic species density—a
novel approach applied to Norway lobster Nephrops
norvegicus. Mar Ecol Prog Ser, 369:267-271.
https://doi.org/10.3354/meps076091

Howard FG, 1989. The Norway lobster. Scott Fisher Inform
Pamphl, No. 7.

Johnsen S, Sosik H, 2004. Shedding light on light in the ocean.
Ocean Mag, 43(2):1-5.

Kuhn HW, 1955. The Hungarian method for the assignment
problem. Nav Res Log Q, 2(1-2):83-97.
https://doi.org/10.1002/nav.3800020109

Lau PY, Correia PL, Fonseca P, et al., 2008. I2N2: a software
for the classification of benthic habitats characteristics.
Proc 16th European Signal Processing Conf, p.1-5.

Lau PY, Correia PL, Fonseca P, et al., 2012. Estimating
Norway lobster abundance from deep-water videos: an
automatic approach. IET Image Process, 6(1):22-30.
https://doi.org/10.1049/iet-ipr.2009.0426

Morello EB, Froglia C, Atkinson RJA, 2007. Underwater
television as a fishery-independent method for stock as-
sessment of Norway lobster (Nephrops norvegicus) in
the central Adriatic Sea (Italy). ICES J Mar Sci,
64(6):1116-1123.
https://doi.org/10.1093/icesjms/fsm082

Sardà F, Aguzzi J, 2012. A review of burrow counting as
an alternative to other typical methods of assessment
of Norway lobster populations. Rev Fish Biol Fisher,
22(2):409-422.
https://doi.org/10.1007/s11160-011-9242-6

Sauvola J, Pietikäinen M, 2000. Adaptive document image
binarization. Patt Recogn, 33(2):225-236.
https://doi.org/10.1016/S0031-3203(99)00055-2

Shafait F, Keysers D, Breuel TM, 2008. Efficient implemen-
tation of local adaptive thresholding techniques using
integral images. Proc SPIE, 6815:10.
https://doi.org/10.1117/12.767755

Sooknanan K, Doyle J, Wilson J, et al., 2013. Mosaics
for burrow detection in underwater surveillance video.
OCEANS, p.1-6.
https://doi.org/10.23919/OCEANS.2013.6741296

Struc V, Vesnicer B, Pavesic N, 2008. The phase-based Ga-
bor fisher classifier and its application to face recogni-
tion under varying illumination conditions. Proc 2nd Int
Conf on Signal Processing and Communication Systems,
p.1-6. https://doi.org/10.1109/ICSPCS.2008.4813663

Suzuki S, Be K, 1985. Topological structural analysis of dig-
itized binary images by border following. Comput Vis
Graph Image Process, 30(1):32-46.

Tan CS, Lau PY, Low TJ, et al., 2014. Detection of marine
species on underwater video images. Int Workshop on
Advanced Image Technology, p.192-196.

Tan CS, Lau PY, Correia PL, et al., 2015. A tracking scheme
for Norway lobster and burrow abundance estimation
in underwater video sequences. Proc Int Workshop on
Advanced Image Technology.

Yang CJ, Duraiswami R, Davis L, 2005. Fast multiple object
tracking via a hierarchical particle filter. Proc IEEE Int
Conf on Computer Vision, p.212-219.
https://doi.org/10.1109/ICCV.2005.95


	Introduction
	Experimental setups
	Proposed system
	Pre-processing
	Lobster and burrow detection
	Region segmentation
	Feature extraction
	Region classification

	Object tracking
	Quantification strategy
	Lobster quantification
	Burrow quantification


	Experimental results
	Available dataset
	Results

	Conclusions

