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Abstract: Double-authentication-preventing signature (DAPS) is a novel signature notion proposed at ESORICS
2014. The double-authentication-preventing property means that any pair of signatures on two different messages
with the same subject will result in an immediate collapse of the signature system. A few potential applications of
DAPS have been discussed by its inventors, such as providing a kind of self-enforcement to discourage certificate
authority (CA) from misbehaving in public key infrastructure and offering CA some cryptographic arguments to
resist legal coercion. In this study, we focus on some fundamental issues on DAPS. We propose a new definition,
which is slightly weakened but still reasonable and strong enough to capture the DAPS concept. We develop the new
notion of invertible chameleon hash functions with key exposure. Then we propose a generic DAPS scheme, which
is provably secure if the underlying invertible chameleon hash function with key exposure is secure. We instantiate
this general construction to obtain the DAPS schemes respectively based on the well-known assumptions of integer
factorization, Rivest-Shamir-Adleman (RSA), and computational Diffie-Hellman (CDH). They are more efficient
than previous DAPS schemes. Furthermore, unlike previous constructions, the trusted setup condition is not needed
by our DAPS schemes based on RSA and CDH.

Key words: Double-authentication-preventing signatures; Chameleon hash function; Digital signature; Provable
security; Authority trust level
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1 Introduction

The novel notion of double-authentication-
preventing signature (DAPS) was first proposed at
ESORICS 2014 (Poettering and Stebila, 2014, 2017).
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For DAPS, the signed value consists of the subject
part and the message part. It aims to provide a cer-
tain deterrent mechanism for preventing the signer
from signing more than one message for each sub-
ject. In particular, if two different messages with
the same subject are signed, the signer will be im-
mediately and automatically punished. For exam-
ple, the punishment may be the automatic expo-
sure of the signing key. Since this punishment can
be seen as fatal for the signer, it forms one deter-
rent mechanism for ensuring this so-called double-
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authentication-preventing requirement.
The practical applicability of DAPS has been

carefully discussed by Poettering and Stebila (2014).
In particular, the authors proposed and examined
some application cases in detail. Here, we review the
potential applications of DAPS for certificate author-
ities in public key infrastructure (PKI). First, DAPS
can help the PKI system realize an authority trust
level higher than three (Girault, 1991). When us-
ing a traditional signature to generate certificates,
authority trust is at level three: although certificate
authority (CA) can generate a certificate binding any
malicious public key, there is no way for CA to deny
the proof of this malicious behavior.

The trust level above has been thought of as
the highest possible in cryptography since being de-
fined by Girault (1991). However, it ensures only
the proof, but not any final penalty, the execution of
which requires a third-party arbitrator. In contrast,
using DAPS to generate certificates, a higher author-
ity trust level may be obtained, as described below:
although CA can generate a certificate binding any
malicious public key, there is no way for CA to avoid
an objective, automatic, and immediate penalty for
this misbehavior.

Note that the above idea has been implicitly
proposed in Poettering and Stebila (2014) and we
tentatively call it authority trust level four. DAPS
can help the honest signer (CA in PKI) resist double-
signature coercion in the form of legal demands from
governments, such as the so-called compelled cer-
tificate creation attack (Soghoian and Stamm, 2011;
Poettering and Stebila, 2014), with the argument
that this co-operation will fatally expose CA’s sign-
ing key. In fact, as demonstrated by the Edward
Snowden incident, governments may be very inter-
ested in such compelling behaviors (Soghoian and
Stamm, 2011). Additionally, as discussed by the in-
ventors (Poettering and Stebila, 2014), in practice as
a new cryptographic primitive, the existence of some
imperfections in these DAPS applications is unavoid-
able. In other words, what DAPS contributes to
these applications is not the full practical solution,
but a theoretical starting point for a better prac-
tical solution than currently exists. For details on
potential applications, please refer to Poettering and
Stebila (2014).

Poettering and Stebila (2014) presented the
formalization for DAPS, constructed one generic

DAPS scheme from the new cryptographic primitive
called extractable 2 : 1 trapdoor functions and
the unique instantiation based on sign-agnostic
quadratic residues. They also discussed some ap-
plications of DAPS in PKI and time-stamping. In
Poettering and Stebila (2014), many cryptographic
primitives which seem relative to DAPS are com-
pared with DAPS, including traitor tracing (Chor
et al., 2000), accountable identity based encryption
(Goyal, 2007), digital cash schemes (Chaum et al.,
1988), one-time signatures (Mohassel, 2010), fail-
stop signatures (Pedersen and Pfitzmann, 1997),
and chameleon hash functions (Krawczyk and Ra-
bin, 2000). In particular, the authors put forth the
open problem of how DAPS could be constructed
from chameleon hash functions.

The research on DAPS has just begun and there
are many interesting problems on this topic. In
their pioneering work (Poettering and Stebila, 2014),
the authors stated some basic problems on DAPS
in theory and in practice. In fact, one generic
DAPS construction from the so-called extractable
2 : 1 trapdoor functions was proposed in Poetter-
ing and Stebila (2014). However, there is only
one instantiation scheme based on the integer fac-
torization assumption. Furthermore, this concrete
DAPS signature scheme has a much larger signa-
ture size and longer running time for signing oper-
ations, compared with common signature schemes
such as Rivest-Shamir-Adleman (RSA) signatures.
Additionally, although the authors have formally de-
fined the double-signature forgeability with or with-
out a trusted setup, there is still no DAPS scheme
that is secure in the untrusted setup model, without
dependence on the zero-knowledge techniques.

In this study, we focus on some fundamental is-
sues of DAPS in both theory and practice, including,
but not limited to, the above problems. Our contri-
butions are as follows:

1. For DAPS, we revisit the most basic def-
inition of double-signature forgeability, which for-
mally captures the double-authentication-preventing
(DAP) property. We find that the original definition
uses conditions that are too severe to capture the
DAP property. Accordingly, we propose a new defi-
nition for double-signature forgeability. It is slightly
weaker than the previous one, but still reasonable
since it remains strong enough to ensure the DAP
property. As will be seen, under this new definition,
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it becomes easier to realize DAPS schemes.
2. For chameleon hash functions, we study the

properties of invertibility and key exposure. As will
be seen, although the invertibility is rarely men-
tioned for chameleon hash functions in cryptogra-
phy, it plays a key role for our generic construction.
We propose a new notion of the invertible chameleon
hash function with key exposure. We show that such
new kinds of chameleon hash functions can be eas-
ily constructed based on integer factorization (IF),
RSA, and computational Diffie-Hellman (CDH).

3. Depending upon the above new formaliza-
tions of DAPS and chameleon hash functions, we
propose a provably secure generic framework for
constructing the DAPS scheme from any invertible
chameleon hash function with key exposure. This
framework for constructing DAPS is much more
generic than the previous one in Poettering and
Stebila (2014), since the chameleon hash function
is much more popular than the new cryptographic
primitive, extractable 2 : 1 trapdoor functions.

4. Following the generic DAPS scheme, we in-
stantiate some more efficient DAPS schemes based
on IF, RSA, and CDH, respectively. Compared
with the first DAPS scheme (Poettering and Ste-
bila, 2014), the DAP property in the untrusted
setup model (Poettering and Stebila, 2014) for our
RSA/CDH-based construction is realized without
depending on zero-knowledge techniques.

2 Double-authentication-preventing
signature (DAPS)

In this section, we present an improved defi-
nition for DAPS. In particular, the difference from
that stated in Poettering and Stebila (2014) is the
new formalization for the double-signature forgeabil-
ity to capture the DAP property (Definition 4). This
is the basis of our new generic DAPS construction.
Definition 1 (DAPS (Poettering and Stebila,
2014)) A double-authentication-preventing signa-
ture scheme has three basic algorithms, DAPS =
(SKg, SSign, SVrf):

1. SKg(1k)→ (sk, pk). Given security parame-
ter 1k, it outputs secret/public keys sk/pk.

2. SSign(sk, sbj, msg)→ σ. Given secret key sk,
subject sbj, and message msg, it outputs signature
σ.

3. SVrf(pk, sbj, msg, σ) → b ∈ {0, 1}. Given

public key pk, subject sbj, message msg, and signa-
ture σ, it outputs b = 1 if σ is valid, and b = 0 if σ is
invalid.
Definition 2 (Correctness (Poettering and Stebila,
2014)) A DAPS scheme is correct if, for any key
pair (sk, pk) ← SKg(1k), any subject sbj, any mes-
sage msg, and any signature σ ← SSign(sk, sbj, msg),
it always holds that SVrf(pk, sbj, msg, σ) = 1.
Definition 3 (Existential unforgeability (Poettering
and Stebila, 2014)) A DAPS scheme is existentially
unforgeable, if for any probabilistic polynomial-time
adversary F with oracle access to signing oracle
OSign(·), the following game returns 1 with negligible
probability:

1. (sk, pk)← SKg(1k).
2. (sbj∗, msg∗, σ∗)← FOSign(·)(pk).
3. Return 1 if all the following conditions hold:

(1) SVrf(pk, sbj∗, msg∗, σ∗) = 1; (2) (sbj∗, msg∗) /∈
L, where L denotes the set of all pairs (sbj, msg)
which have been signed by oracle OSign(·); (3) for
any two pairs in L denoted by (sbj1, msg0) and (sbj1,
msg1), it holds that sbj0 �= sbj1.
Definition 4 (Double-signature forgeability,
double-authentication-preventing property) A
DAPS scheme is double-signature forgeable in the
untrusted setup model, if there exists an algorithm
SForge such that for any adversary A, the following
experiment returns 0 with negligible probability:

1. Untrusted setup: (sk, pk, (sbj, msg, σ), (sbj,
m̂sg, σ̂), (sbj∗, msg∗, σ∗), m̂sg

∗
) ← A(1λ). Trusted

setup: (sk, pk)← SKg(1k), ((sbj, msg, σ), (sbj, m̂sg,
σ̂), (sbj∗, msg∗, σ∗), m̂sg

∗
)← A(sk, pk). Here, it is

required that σ, σ̂, σ∗ should be valid signatures.
2. (sbj∗, m̂sg

∗, σ̂∗)← SForge(pk, (sbj, msg, σ),
(sbj, m̂sg, σ̂), (sbj∗, msg∗, σ∗), m̂sg∗).

3. Return 0 if SVrf(pk, sbj∗, m̂sg
∗, σ̂∗) = 0.

By contrast, in Poettering and Stebila (2017),
the DAP property was formalized by the algorithm
Forge for the double-signature forgeability or Extract
for the double-signature extractability as follows:

1. Forge(pk, (sbj, msg, σ), (sbj, m̂sg, σ̂),
sbj∗, msg∗) → (sbj∗, msg∗, σ∗). The inputs are two
valid subject/message/signature triples (sbj, msg,
σ), (sbj, m̂sg, σ̂), and any subject/message (sbj∗,
msg∗), and the output is a new valid triple (sbj∗,
msg∗, σ∗).

2. Extract(pk, (sbj, msg, σ), (sbj, m̂sg,
σ̂)) → sk. The inputs are two valid signa-
ture/subject/message triples (sbj, msg, σ), (sbj,
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m̂sg, σ̂) and the output is secret key sk.
Now we show some observations on these three

algorithms (Extract, Forge, and SForge) used for
capturing the DAP property:

1. Extract is functionally equivalent to Forge,
since they both mean that any forgery can be gen-
erated for any message and any subject, once two
different signatures on the same subject are known.

2. With respect to input parameters, SForge is
weaker than Forge, since SForge additionally needs
one signature for the attacked subject as inputs.

3. With respect to output parameters, SForge
remains strong enough to deter the double-signature
misbehavior or ensure the DAP property, although
it is weaker than Forge. For example, assume that
CA generates a legal certificate (DAPS) binding a
user identity (subject) with a public key (message)
and then generates a malicious certificate binding
this identity with a malicious public key. Accord-
ing to SForge, this malicious behavior will result in
that the certificate binding “any” identity with “any”
public key can be forged only if one certificate for
this identity has been issued. In other words, all
certificates, previous or future ones, will never worth
trusting. Of course, this is enough to make the CA
collapse.

As will be seen, this relaxed definition makes it
easier to construct DAPS and can be seen as the base
for our generic DAPS construction.

3 Invertible chameleon hash functions
with key exposure

In this section, we present the new notion of
invertible chameleon hash functions with key expo-
sure. In particular, motivated by the open prob-
lem of whether DAPS can be constructed from the
chameleon hash function (Poettering and Stebila,
2014), we discover that two significant properties are
very important for solving this problem. One is the
rarely mentioned property of invertibility. The other
is the well studied key exposure property.

The chameleon hash function (Krawczyk and
Rabin, 2000) is collision-resistant for the person
holding only the public key, and chameleon for
the owner of the trapdoor information who can
change the input to the function into any value of
his/her choice without changing the output. The
key exposure problem for chameleon hash functions

(Ateniese and de Medeiros, 2004b) means that two
different inputs with the same hash value can be used
to compute the trapdoor information. For practi-
cal applications, it is usually desirable to design the
chameleon hash function without key exposure.
Definition 5 (Invertible chameleon hash function
with key exposure) An invertible chameleon hash
function with key exposure is the tuple of five al-
gorithms ICHF = {ChKg, ChHash, ChCld, ChIvt,
ChExp}, where the chameleon property, key expo-
sure property, and invertible property are formal-
ized by the existence of ChCld, ChExp, and ChIvt,
respectively:

1. Key generation. ChKg(1k) outputs hash key
chk, collision trapdoor ctd, and inversion trapdoor
itd.

2. Hash evaluation. ChHash(chk, m, r) outputs
hash value h of message m with randomness r.

3. Chameleon property. ChCld(ctd, m, r, m̂)

outputs a randomness r̂ such that ChHash(chk, m,
r) = ChHash(chk, m̂, r̂), where m �= m̂.

4. Key exposure property. ChExp(chk, m, r,
m̂, r̂) outputs collision trapdoor ctd, where m �= m̂,
ChHash(chk, m, r) = ChHash(chk, m̂, r̂).

5. Invertible property. ChIvt(itd, h, m) outputs
randomness r such that ChHash(chk, m, r) = h.
Definition 6 (Collision resistance (Krawczyk and
Rabin, 2000)) An invertible chameleon hash func-
tion with key exposure ICHF is collision resistant, if
for any probabilistic polynomial-time adversary A,
it always holds that for negligible ε, shown as

Pr

⎛

⎜

⎜

⎝

(chk, ctd, itd)← ChKg(1k);

((m, r), (m̂, r̂))← A(chk) :

ChHash(chk,m, r) = ChHash

(chk, m̂, r̂),∧(m, r) �= (m̂, r̂)

⎞

⎟

⎟

⎠

< ε. (1)

Now we further discuss the above new notion, by
taking it as the special chameleon hash function with
the two additional properties of invertibility and key
exposure.

First, we discuss the key exposure property.
Conceptually speaking, the key exposure property
is not a new notion and has been seen as undesirable
for chameleon hash functions, as first mentioned in
Ateniese and de Medeiros (2004a, 2004b). Many ef-
forts were made to design chameleon hash functions
without key exposure, just as done in Ateniese and
de Medeiros (2004a, 2004b), Chen et al. (2004, 2007,
2011, 2014), and Gao et al. (2007, 2009). On the
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other hand, many chameleon hash functions almost
have the key exposure property. In the above defini-
tion, this traditionally undesirable property is “pos-
itively” put forth and will play an important role in
designing DAPS schemes. For the above definition,
the collision pair ((m, r), (m̂, r̂)) does not expose the
inversion (main) trapdoor, but exposes the collision
(secondary) trapdoor. In other words, with respect
to the main trapdoor, they are exposure-free; with
respect to the secondary trapdoor, they have the key
exposure property.

Next, we turn to the invertibility. As far as we
know, it is the first time invertibility has been ex-
plicitly considered for chameleon hash functions. In
fact, it can be seen that the inverting function ChIvt
is the inverse function for ChHash. Formally speak-
ing, according to Bellare et al. (1998), function fam-
ily {ChHash(chk, ·) : (m, r) �→ ChHash(chk, ·)}chk
is just the many-to-one trapdoor one-way function.
In particular, if m is further fixed, function family
{ChHash(chk, m, ·) : r �→ ChHash(chk, m, ·)}chk,m
is just the trapdoor one-way permutation. Follow-
ing this observation, the invertible property can be
seen as one common notion in cryptography, de-
spite rarely being mentioned for chameleon hash
functions.

Third, we discuss the advantage of invert-
ible chameleon hash functions without key expo-
sure. Note that a cryptographic function is usu-
ally thought to be more desirable. The more diffi-
cult the task that the trapdoor holder can solve is,
the task that the entity without the trapdoor can-
not solve is easier. It thus follows that an invert-
ible chameleon hash function without key exposure
is stronger than a trapdoor one-way function, since
the task that the entity without the trapdoor cannot
solve for the former (to find a collision) is easier than
that for the latter (to invert one function image). On
the other hand, an invertible chameleon hash func-
tion without key exposure is stronger than a classi-
cal chameleon hash function, since the task that the
trapdoor holder can solve for the former (to invert
one function image) is more difficult than that for
the latter (to find a collision). Hence, as a fundamen-
tal cryptographic primitive, an invertible chameleon
hash function without key exposure has better cryp-
tographic properties than the classical notion of
trapdoor one-way functions and chameleon hash
functions. Furthermore, these better cryptographic

properties make it easier to design cryptographic
schemes. The current task to design a DAPS scheme
based on an invertible chameleon hash function with-
out key exposure is just one example.

At last, we claim that many (but not all) exist-
ing chameleon hash functions are invertible and with
key exposure. As will be shown in Section 6, three
existing chameleon hash functions based on IF, RSA,
and CDH “naturally” have the invertibility and key
exposure properties.

4 Generic double-authentication-
preventing signature construction from
chameleon hash functions

Motivated by the open problem of whether
DAPS could be constructed from chameleon hash
functions (Poettering and Stebila, 2014), we try to
explore the theoretical relation between DAPS and
chameleon hash functions. On the one hand, to
make the construction task theoretically easier, we
try to relax the formal condition for capturing the
DAP property as demonstrated in Section 2. On the
other hand, to make the basic tool more powerful,
we explore additional properties for the chameleon
hash functions as outlined in Section 3. As a result,
we succeed in proposing the following general DAPS
construction, and hence solve the open problem (Po-
ettering and Stebila, 2014):

Given the invertible chameleon hash scheme
with key exposure ICHF = {ChKg, ChHash, ChCld,
ChExp, ChIvt}, the DAPS scheme and the asso-
ciated algorithm SForge are constructed as follows
(additionally, it needs two cryptographic hash func-
tions, H1(·) and H2(·), which respectively hash the
input value into the hash value space and the mes-
sage space of ICHF):

1. SKg(1k). Run (chk, ctd, itd) ← ChKg(1k),
and return public key pk = chk and secret key
sk = (ctd, itd). Additionally, we assume that the
random seed length l is commonly known and not
explicitly included in the public key.

2. SSign(pk, sk, sbj, msg). For sk = (ctd,
itd) and pk = chk, randomly select s ←R {0, 1}l,
compute h ← H1(sbj), m ← H2(sbj||msg||s), r ←
ChIvt(itd, h, m), and return signature σ ← (r, s).

3. SVrf(pk, sbj, msg, σ). For pk = chk, σ = (r,
s), compute h← H1(sbj),m← H2(sbj||msg||s), and
return 1 if h = ChHash(chk, m, r) or 0 otherwise.
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4. SForge(pk, (sbj, msg, σ), (sbj, m̂sg, σ̂), (sbj∗,
msg∗, σ∗), m̂sg∗). (1) For pk = chk, σ = (r, s), σ̂ =

(r̂, ŝ), and σ∗ = (r∗, s∗), select ŝ∗ ←R {0, 1}l ran-
domly, and set h ← H1(sbj), m ← H2(sbj||msg||s),
m̂ ← H2(sbj||m̂sg||ŝ), m∗ ← H2(sbj

∗||msg∗||s∗),
m̂∗ ← H2(sbj

∗||̂sbj∗||ŝ∗). (2) Compute ctd ←
ChExp(chk, h, m, r, m̂, r̂), r̂∗ ← ChCld(ctd, m∗, r∗,
m̂∗). (3) Return (sbj∗, m̂sg

∗
, σ̂∗), where σ̂∗ = (r̂∗, ŝ∗).

For this generic result, we present some obser-
vations as follows:

1. The generic DAPS scheme has provable se-
curity in the random oracle model as in Section 5.

2. The generic DAPS scheme has many instanti-
ations better than the previous one in terms of com-
putation efficiency, signature size, and cryptographic
assumptions as in Section 6.

3. The instantiations based on RSA and CDH
succeed in ensuring the untrusted setup model with-
out needing the complicated zero-knowledge proof as
in Section 7.

4. It is theoretically significant that the new
cryptographic primitive of DAPS is almost immedi-
ately related with the popular primitive of chameleon
hash functions.

5. As the new cryptographic primitive specially
developed here, the invertible chameleon hash func-
tion with key exposure may have more applications
in cryptographic theory and practice.

5 Security proof for generic double-
authentication-preventing signature
construction

In this section, we prove that the above
generic DAPS scheme is double-signature-preventing
(double-signature forgeable, as formalized in Defini-
tion 4) and existentially unforgeable (Definition 3) in
the random oracle model, only if the underlying in-
vertible chameleon hash function with key exposure
is secure as formalized in Section 3.
Theorem 1 Following the key exposure prop-
erty and the chameleon property of the underlying
chameleon hash scheme ICHF = {ChKg, ChHash,
ChCld, ChExp, ChIvt}, the DAPS scheme (SKg,
SSign, SVrf) from ICHF is double-signature forge-
able, with H1, H2 taken as random oracles.
Proof For the experiment in Definition 4, tu-
ples (sbj, msg, σ), (sbj, m̂sg, σ̂), (sbj∗, msg∗, σ∗)

provided by adversary A for SForge satisfy
⎧

⎪

⎪

⎨

⎪

⎪

⎩

SVrf(pk, σ, sbj, msg) = 1,

SVrf(pk, σ̂, sbj, m̂sg) = 1,

SVrf(pk, σ∗, sbj∗, msg∗) = 1.

(2)

Then by the description of SVrf in DAPS, we
have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h = ChHash(chk,m, r),

h = ChHash(chk, m̂ , r̂),

h∗ = ChHash(chk,m∗, r∗),

(3)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

chk = pk, σ = (r, s),

σ̂ = (r̂, ŝ), σ∗ = (r∗, s∗),

h = H1(sbj), h
∗ = H1(sbj

∗),

m = H2(sbj||msg||s),
m̂ = H2(sbj||m̂sg||ŝ),
m∗ = H2(sbj

∗||msg∗||s∗).

(4)

Then by the key exposure property of ICHF,
if m �= m̂, then collision trapdoor key ctd can be
computed: ctd ← ChExp(chk, m, r, m̂, r̂).
Remark 1 Here, we discuss the untrusted/trusted
setup model with respect to ChExp. If ChExp can
extract the collision trapdoor with respect to the ar-
bitrarily generated hash key, the key exposure prop-
erty holds in the untrusted setup model. If ChExp
can extract the collision trapdoor with respect to
only the honestly generated hash key, the key ex-
posure property holds in the trusted setup model.
Furthermore, it can be seen that when the exposure
property for ICHF holds in the trusted (or untrusted)
model, the forgeability for DAPS accordingly holds
in the trusted (or untrusted) model.

Then by the chameleon property of ICHF, for
m̂∗ = H2(sbj

∗||m̂sg
∗||ŝ∗), where ŝ∗ ←R {0, 1}l,

corresponding randomness r̂∗ can be computed,
r̂∗ ← ChCld(ctd, m∗, r∗, m̂∗), such that h∗ =

ChHash(chk, m̂∗, r̂∗). By the description of SVrf in
DAPS, signature σ̂∗ = (r̂∗, ŝ∗) on subject/message
(sbj∗, m̂sg

∗
) is valid, since h∗ = ChHash(chk, m̂∗,

r̂∗).
All in all, if m �= m̂, SForge can generate valid

tuple (sbj∗, m̂sg
∗, σ̂∗). In the random oracle model,

we have Pr[H2(sbj||msg||s) = H2(sbj||m̂sg||ŝ)] ≤
q(q − 1)/2l+1, where l is the length of random seeds
and q is the number of queries to random oracle
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H2 during this game. Hence, SForge can gener-
ate valid tuple (sbj.000-0.∗, m̂sg∗, σ̂∗) with a prob-
ability greater than 1 − q(q − 1)/2l+1. Note that
q(q − 1)/2l+1 is negligible for an l large enough. The
proof is completed.
Theorem 2 Following the collision resistance
property of the underlying chameleon hash scheme
ICHF = {ChKg, ChHash, ChCld, ChExp, ChIvt},
the DAPS scheme (SKg, SSign, SVrf) from ICHF
is existentially unforgeable, with H1, H2 taken as
random oracles.
Proof Assume that there exists a forgery adver-
sary F , as defined in Definition 3, against the DAPS
scheme with success probability ε and running time
t. This proof constructs colliding adversary A, as
in Definition 6, against the chameleon hash scheme
ICHF as follows:

First, A obtains hash key chk from its chal-
lenger, sets signature public key pk = chk, and sends
pk to F . A sets f = 0 to record the current number
of non-reputed queries on oracle OH1 .

A simulates two random oracles OH1 , OH2 as
follows. To answer query OH1 (sbj), if this query has
been previously answered, A just returns the previ-
ous answer. Otherwise, A randomly chooses m, r,
sets H1(sbj)← ChHash(chk, m, r), f ← f + 1, and
returns H1(sbj). To answer random oracle query
OH2 (sbj||msg||s), if this query has been previously
answered, A just returns the previous answer. Oth-
erwise, A randomly chooses one element c from the
range of H2 and returns H2(sbj||msg||s) = c.

A simulates the signing oracle as follows: with-
out loss of generality, assume that the subjects whose
signatures are queried are all different. To simulate
signing query OSign(sbj, msg), A obtains H1(sbj)
by making random oracle query OH1(sbj). Accord-
ing to the simulation of OH1 , there must exist one
tuple (m, r) such that H1(sbj) = ChHash(chk, m,
r). A randomly chooses s ← {0, 1}l. For this s,
if H2(sbj||msg||s) has been queried, A just termi-
nates the game and outputs failure. Otherwise, it
sets H2(sbj||msg||s) = m and uses this value as a
simulation of OH2 . A sets signature σ ← (r, s) and
sends it to F .

At last, F returns signature σ∗ on subject
sbj∗ and message msg∗. If SVrf(pk, σ∗, sbj∗,
msg∗) �= 1, A terminates the game and declares
failure. If SVrf(pk, σ∗, sbj∗, msg∗) = 1, by
the description of SVrf in DAPS, it holds that

h∗ = ChHash(chk, m∗, r∗), for σ∗ = (r∗, s∗),
m∗ = H2(sbj

∗||msg∗||s∗), h∗ = H1(sbj
∗). By the

simulation of H1(sbj
∗), we have another pair (m̂∗,

r̂∗) such that ChHash(chk, m∗, r∗) = ChHash(chk,
m̂∗, r̂∗). Now A succeeds in resisting the collision
resistance against ICHF.

According to the construction of our generic
DAPS scheme, the above simulation is completely
the same to the true game, only if A does not
terminate the game when H2(sbj||msg||s) has been
queried before signature query OSign(sbj, msg). The
random choice of s ensures that this case happens
with a probability less than

qs−1
∑

i=0

q2 + i

2l
=

qs(2q2 + qs − 1)

2l+1
, (5)

where q2 and qs are the numbers of queries to random
oracleOH2 and signing oracle OSign respectively dur-
ing this game. Additionally, we have just shown that
if F returns the valid signature forgery, then A can
obtain (m∗, r∗), (m̂∗, r̂∗) with the same hash value.
Hence, in this simulation, A succeeds in presenting
the collision with the probability Pr(A succeeds) >

Pr(F succeeds)−qs(2q2 + qs − 1)/2l+1. The proof is
completed.

6 Double-authentication-preventing
signature instantiation based on inte-
ger factorization (IF), Rivest-Shamir-
Adleman (RSA), and computational
Diffie-Hellman (CDH)

6.1 DAPS based on IF

Recall that the pair of permutations (f0(·),
f1(·)) over the same domain are said to be claw-free
trapdoor permutations (Goldwasser et al., 1988). If
given only f0(·), f1(·), it is computationally infeasi-
ble to find a “claw” which is one pair (x0, x1) such
that f0(x0) = f1(x1) and there exist two efficient
algorithms (f−1

0 , f−1
1 ) inverting f0(·), f1(·) respec-

tively. For formal details on this notion, refer to
Goldwasser et al. (1988). Let n = pq, where p, q are
two primes such that p = 3 mod 8, q = 7 mod 8.
We review the following results in Goldwasser et al.
(1988) and Krawczyk and Rabin (2000):

1. The two functions f0(x) = x2 mod n,
f1(x) = 4x2 mod n, x ∈ {x ∈ Z

∗
n|x/p = x/q = 1},

are a pair of claw-free trapdoor permutations. Here,
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{x ∈ Z
∗
n|x/p = x/q = 1} is the set of quadratic

residues modulo n.
2. With (p, q), the inverse permutations

f−1
0 (x) = x1/2 mod n, f−1

1 (x) = (x/4)1/2 mod n,
x ∈ {x ∈ Z

∗
n|x/p = x/q = 1} can be efficiently

computed.
3. Given one claw (x0, x1) such that x2

0 = 4x2
1

mod n, trapdoor (p, q) can be extracted by gcd(x0±
2x1, n).

Krawczyk and Rabin (2000) proposed one
chameleon hash function based on the above claw-
free trapdoor permutations (f0(·), f1(·)). This
chameleon hash function plus the two algorithms
(ChExp and ChIvt) which have been implicitly in-
cluded in Krawczyk and Rabin (2000), is just the fol-
lowing invertible chameleon hash function with key
exposure:

1. ChKg(1k). Choose two distinct primes p, q

such that p = 3 mod 8, q = 7 mod 8, and set
inversion trapdoor itd ← (p, q), collision trapdoor
ctd ← (p, q), and hash key chk ← n. Note that
itd = ctd.

2. ChHash(chk, m, r). For chk = n, r ←R Z
∗
q ,

parse the l-bit message m = m1,m2, . . . ,ml, set
initial value h ← r2 mod n, and then iteratively
compute hash value h ← 4mih2 mod n, for i =

1, 2, . . . , l. Hence, we have ChHash(chk, m, r) =

fml
(· · · (fm2(fm1(r

2))) · · · ) mod n.
3. ChCld(ctd, m, r, m̂). Parse ctd = (p, q)

and compute h ← ChHash(chk, m, r). For
i = l, l − 1, . . . , 1, use (p, q) to iteratively com-
pute value h ← (h/4m̂i)1/2 mod n. At last,
set r̂ ← h1/2 mod n. Hence, it holds that
f−1
m̂1

(· · · (f−1
m̂l−1

(f−1
m̂l

(ChHash(chk, m, r)))) · · · )1/2 =
ChCld(ctd, m, r, m̂).

4. ChExp(chk, m, r, m̂, r̂). Let h be the hash
value and i∗ the largest index such that mi∗ �= m̂i∗ .
Set initial value h ← r2 mod n, ĥ ← r̂2 mod n,
and then iteratively compute h ← 4mih2 mod n,
ĥ ← 4m̂i ĥ2 mod n, for i = 1, 2, . . . , i∗ − 1. Now it
holds that 4mi∗h2 = 4m̂i∗ ĥ2 and mi∗ �= m̂i∗ , h �=
ĥ. Hence, we obtain one claw (x0, x1) such that
x2
0 = 4x2

1 mod n, and then trapdoor (p, q) can be
extracted by gcd(x0 ± 2x1, n).

5. ChIvt(itd, h, m). Parse itd = (p, q),
and for i = l, l − 1, . . . , 1, use (p, q) to iteratively
compute value h ← (h/4mi)1/2 mod n. At last,
set r ← h1/2. Hence, we have ChIvt(itd, h,m) =
f−1
m̂1

(· · · (f−1
m̂l−1

(f−1
m̂l

(h))) · · · )1/2.

Following the results in Krawczyk and Rabin
(2000), the above chameleon hash function is prov-
ably collision resistant based on IF. Then by our
generic DAPS construction, we immediately obtain
the following DAPS scheme.
Remark 2 Here, we assume that there exists
hash function H1 with range QRn = {x ∈ Z

∗
n|x/p =

x/q = 1}. In fact, for RSA modulus n, it is widely
believed that efficiently distinguishing elements in
QRn from elements in QRn is a hard problem. How-
ever, as done in Poettering and Stebila (2014), by
using the notion of sign-agnostic quadratic residues,
the DAPS scheme using the group of sign-agnostic
quadratic residues instead of the group of quadratic
residues can be similarly constructed.

1. SKg(1k). Choose two distinct primes p, q

such that p = 3 mod 8, q = 7 mod 8, and set
secret key sk← (p, q), and public key pk← n.

2. SSign(pk, sk, sbj, msg). For sk =
(p, q), pk = n, s ←R {0, 1}l, set h ←
H1(sbj), m ← H2(sbj||msg||s), compute r =

f−1
m1

(· · · (f−1
ml−1

(f−1
ml

(h))) · · · )1/2 mod n, and set sig-
nature σ ← (r, s).

3. SVrf(pk, sbj, msg, σ). For σ = (r, s) and
pk = n, if H1(sbj) = fml

(· · · (fm2(fm1(r
2))) · · · )

mod n, then signature σ is valid; otherwise, σ is
invalid.

4. SForge(pk, (sbj, msg, σ), (sbj, m̂sg, σ̂),
(sbj∗, msg∗, σ∗), m̂sg

∗
). For pk = n, σ = (r,

s), σ̂ = (r̂, ŝ), σ∗ = (r∗, s∗), ŝ∗ ←R {0, 1}l, set
m ← H2(sbj||msg||s), m̂ ← H2(sbj||m̂sg||ŝ), m̂∗ ←
H2(sbj

∗||m̂sg
∗||ŝ∗), and h∗ ← H1(sbj

∗), and com-
pute itd← ChExp(chk, m, r, m̂, r̂), r̂∗ ← ChIvt(ctd,
h∗, m̂∗), where itd = cdt = (p, q). At last, set signa-
ture σ̂∗ = (r̂∗, ŝ∗).

Finally, it can be seen that the above DAPS
scheme is double-signature forgeable in the trusted
setup model, since the condition that p = 3 mod 8,
q = 7 mod 8 is indispensable for algorithm ChExp.

6.2 DAPS based on RSA

First, we present the invertible chameleon
hash function with key exposure based on RSA.
Note that its variants or similar schemes have
been widely mentioned, such as trapdoor commit-
ment (Fischlin, 2001), the non-malleable commit-
ment scheme (Fischlin and Fischlin, 2000), identity-
based chameleon hash (Ateniese and de Medeiros,
2004a), multi-trapdoor commitment (Gennaro,
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2004), exposure-free chameleon hash function (Ate-
niese and de Medeiros, 2004b), and Σ-hash functions
(Bellare and Ristov, 2014).

1. ChKg(1τ , 1lm). Choose two distinct primes
p, q with τ -bit length and compute n = pq. Then
choose another prime e > 2lm , where lm is the pa-
rameter to ensure that e is large enough. Compute
d such that ed = 1 mod (p − 1)(q − 1). Choose
x ←R Z

∗
n and compute y = xe mod n. Set inver-

sion trapdoor itd ← d, collision trapdoor ctd ← x,
and hash key chk ← (n, e, y).

2. ChHash(chk, m, r). For chk = (n, e, y),
compute value h ← ymre mod n, where r ∈ Z

∗
n,

m ∈ {0, 1, . . . , 2lm − 1}.
3. ChCld(ctd, m, r, m̂). Parse ctd = x and

compute r̂ = xm−m̂r mod n.

4. ChExp(chk, m, r, m̂, r̂). By ymre = ym̂r̂e

mod n, we have r̂r−1 = xm−m̂ mod n. By the ex-
tended Euclid algorithm, compute two integers m̄,
ē such that ēe + m̄(m − m̂) = 1. Then compute
x← yē(r̂r−1)m̄ mod n.

5. ChIvt(itd, h, m). For itd = d, compute
r ← (h/ym)d mod n.

Following the result on the chameleon hash func-
tion based on RSA (Bellare and Ristov, 2014), the
above chameleon hash function is provably collision
resistant based on RSA. By applying our generic
DAPS construction, the following DAPS scheme is
immediately constructed:

1. SKg(1τ , 1lm). Choose two distinct primes p, q
with τ -bit length and compute n = pq. Then choose
another prime e > 2lm , and compute d such that
ed = 1 mod (p − 1)(q − 1). Choose x ←R Z

∗
n and

compute y = xe mod n. Set secret key sk ← (x, d)
and public key pk ← (n, e, y).

2. SSign(pk, sk, sbj, msg). Parse sk = (x, d),
pk = (n, e, y), randomly choose s ←R {0, 1}l, and
compute h ← H1(sbj), m ← H2(sbj||msg||s). Com-
pute r ← (h/ym)d mod n and set signature σ ← (r,
s).

3. SVrf(pk, sbj, msg, σ). Parse σ = (r, s) and
pk = (n, e, y). If H1(sbj) = ymre mod n, where
m ← H2(sbj||msg||s), then signature σ is valid;
otherwise, σ is invalid.

4. SForge(pk, (sbj, msg, σ), (sbj, m̂sg, σ̂), (sbj∗,
msg∗, σ∗), m̂sg

∗
). For pk = (n, e, y), σ = (r, s), σ̂ =

(r̂, ŝ), σ∗ = (r∗, s∗), ŝ∗ ←R {0, 1}l, set h← H1(sbj),
m ← H2(sbj||msg||s), m̂ ← H2(sbj||m̂sg||ŝ), m∗ ←
H2(sbj

∗||msg∗||s∗), and m̂∗ ← H2(sbj
∗||m̂sg

∗||ŝ∗).

Compute x ← yē(r̂r−1)m̄ mod n, r̂∗ = xm∗−m̂∗
r∗

mod n, where ēe + m̄(m − m̂) = 1. At last, set
signature σ̂∗=(r̂∗, ŝ∗).

At last, recall that the above algorithm ChExp
proceeds well for any public key (n, e, y) and any col-
lision pair (m, r), (m̂, r̂), only if e is a prime and (e,
φ(n)) = 1 where φ(n) = |{x|1 < x < n, (x, n) = 1}|
is the Euler function of n. In fact, on the one hand,
since the prime testing algorithm is well known in
cryptography, the case that e is not a prime will not
happen even in the untrusted setup model. On the
other hand, if (e, φ(n)) �= 1 and e is large enough,
then φ(n) and n will become significantly factoriz-
able. Note that it is now required that e > 2lm .
Hence, the above DAPS scheme is double-signature
forgeable in the untrusted setup model.

6.3 DAPS based on CDH in the gap Diffie-
Hellman group

Based on the chameleon hash function (Chen
et al., 2011), we construct the invertible chameleon
hash function with key exposure as follows:

1. ChKg(1k). Choose the gap Diffie-Hellman
(GDH) groupG = 〈g〉with prime order q and genera-
tor g, where GDH (Chen et al., 2011) means that the
computational Diffie-Hellman problem is hard, while
the decisional Diffie-Hellman (DDH) problem is easy
in this group. Then randomly choose x ←R Z

∗
q and

set y ← gx, inversion trapdoor itd ← x. Randomly
choose ȳ ←R G and compute collision trapdoor ctd
← ȳx. Lastly, set hash key chk← (g, y, ȳ).

2. ChHash(chk, m, r). Randomly choose
a ←R Zq, compute r ← (ga, ya), and compute hash
value h← gaȳm.

3. ChCld(ctd, m, r, m̂). Parse r = (ga, ya),
ctd = ȳx, compute gâ ← gaȳm−m̂, yâ ← yaȳx(m−m̂),
and set r̂ ← (gâ, yâ).

4. ChExp(chk, m, r, m̂, r̂). Parse r = (ga, ya),
r̂ = (gâ, yâ), chk = (g, y, ȳ), and compute collision
trapdoor ȳx ← (yâ/ya)(m−m̂)−1

.
5. ChIvt(itd, h, m). Parse itd = x, compute

ga ← h/ȳm, ya ← (ga)x, and set r ← (ga, ya).
Following the result (Chen et al., 2011), the

above chameleon hash function is provably collision
resistant. Then by our generic DAPS construction,
we immediately obtain the following DAPS scheme:

1. SKg(1k). Choose the GDH group G = 〈g〉
with prime order q and generator g. Then randomly
choose x ←R Z

∗
q , ȳ ←R G. Set secret key sk ← x
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and public key y ← gx, pk ← (g, y, ȳ).
2. SSign(pk, sk, sbj, msg). Parse sk = x, pk =

(g, y, ȳ), randomly choose s ←R {0, 1}l, and com-
pute h ← H1(sbj), m ← H2(sbj||msg||s). Compute
r ← (h/ȳm, (h/ȳm)x) and set signature σ ← (r, s).

3. SVrf(pk, sbj, msg, σ). Parse σ = (r1, r2,
s) and pk = (g, y, ȳ). If (g, y, r1, r2) is a valid
Diffie-Hellman tuple (i.e., r2 = rx1 ) and H1(sbj) =

r1ȳ
H2(sbj||msg||s), then signature σ is valid; otherwise,

σ is invalid.
4. SForge(pk, (sbj, msg, σ), (sbj, m̂sg, σ̂),

(sbj∗, msg∗, σ∗), m̂sg∗). For pk = (y, ȳ),
σ = (ga, ya, s), σ̂ = (gâ, yâ, ŝ), σ∗ =
(ga

∗
, ya

∗
, s∗), and ŝ∗ ←R {0, 1}l, set h ←

H1(sbj), m←H2(sbj||msg||s), m̂←H2(sbj||m̂sg||ŝ),
m∗←H2(sbj

∗||msg∗||s∗), m̂∗←H2(sbj
∗||m̂sg

∗||ŝ∗),
and compute ȳx ← (yâ/ya)(m−m̂)−1

, gâ
∗ ←

ga
∗
ȳm

∗−m̂∗
, yâ

∗ ← ya
∗
ȳx(m

∗−m̂∗). Finally, set sig-
nature σ̂∗ = (gâ

∗
, yâ

∗
, ŝ∗).

At last, recall that the above algorithm ChExp
proceeds well no matter how public key (g, y, ȳ)

is arbitrarily generated. Hence, the above DAPS
scheme is double-signature forgeable in the untrusted
setup model.

7 Comparison

We present Table 1, which compares the effi-
ciency and security of the above three DAPS schemes
with that proposed in Poettering and Stebila (2014).
For Table 1, we further present some comments:

1. For the DAPS scheme IF-DAPS, as shown
in Remark 2, we consider its variant version which
uses the group of sign-agnostic quadratic residues
instead of the group of quadratic residues. Hence,
the computation Jac is counted for the signing and
verifying algorithms in Table 1.

2. PS-DAPS and IF-DAPS cannot ensure the
DAP property in the untrusted setup model, unless
the zero-knowledge techniques are involved (Poetter-
ing and Stebila, 2014), while RSA-DAPS and CDH-
DAPS can directly ensure the DAP property in the
untrusted setup model.

3. In Section 2, three algorithms that formalize
the DAP property are compared. Although Forge
is functionally weaker than SForge and Extract, in
practice it is still strong enough to collapse the sign-
ing system. Additionally, it is the main reason why
more efficient DAPS schemes such as RSA-DAPS
and CDH-DAPS can be constructed.

4. Our generic DAPS scheme depends upon
chameleon hash functions, while that in Poetter-
ing and Stebila (2014) is based on the so-called
extractable 2 : 1 trapdoor functions. As a crypto-
graphic primitive, a chameleon hash function (or
trapdoor commitment) appears much more exten-
sively in theory and practice than an extractable 2 : 1
trapdoor function. Hence, our generic framework is
more general than the previous one.

8 Conclusions and future work

In this paper, we have revisited some ba-
sic issues concerning the recent notion of double-
authentication-preventing signature. We have pro-
posed a new formalization of the double-signature
forgeability, which captures the DAP property with
looser conditions. The property of invertibility was
explicitly proposed for the chameleon hash function
with key exposure. Then we have succeeded in con-
structing the new generic DAPS scheme based on an
invertible chameleon hash function with key expo-
sure. Three DAPS schemes based on the common
assumptions of IF, RSA, and CDH, respectively,

Table 1 Comparison of different double-authentication-preventing signature schemes

Item
PS-DAPS IF-DAPS RSA-DAPS CDH-DAPS

(Poettering and Stebila, 2014) (Section 6.1) (Section 6.2) (Section 6.3)

Secret key p, q p, q d : 1 < d < φ(n) x : 1 < x < |〈G〉|
Public key (n, t) : t ∈ Z

∗
n n (n, e, y) : y ∈ Z

∗
n, e > 2l (g, y, ȳ) : g, y, ȳ ∈ G

Signature (s, a1, a2 . . . , al) : (r, s) : r ∈ Zn, (r, s) : r ∈ Zn, (r1, r2, s) : ri ∈ G,

s, ai ∈ Zn s ∈ {0, 1}l s ∈ {0, 1}l s ∈ {0, 1}l
Signing (l + 1)(Jac + Sqrt) (l + 1)(Jac + Sqrt) 2Exp 3Exp′

Verifying (l + 1)(Jac + Sqr) (l + 1)(Jac + Sqr) 2Exp 1Exp′ + 1DDH

Setup model Trusted Trusted Untrusted Untrusted
DAP (Section 2) Extract Extract SForge SForge

Jac: computation of Jacobi symbol modulo n; Sqrt: square root modulo n; Sqr: squaring modulo n; Exp: exponentiation modulo
n; Exp′: exponentiation in group G; DDH: verifying the decisional Diffie-Hellman tuple
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were instantiated. These results on DAPS are better
than those in Poettering and Stebila (2014) in both
theory and practice. Due to the rich cryptographic
and algebraic properties of the new cryptographic
primitive of invertible chameleon hash function, we
expect to discover more applications for other rel-
ative cryptographic schemes (Chaum et al., 1988;
Chor et al., 2000; Goyal, 2007; Mohassel, 2010; Fu
et al., 2016).
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