
Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 107

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Friendship-aware task planning inmobile crowdsourcing∗

Yuan LIANG, Wei-feng LV, Wen-jun WU‡, Ke XU
(State Key Laboratory of Software Development Environment, School of Computer Science,

Beihang University, Beijing 100191, China)

E-mail: liangyuan120@nlsde.buaa.edu.cn; lwf@nlsde.buaa.edu.cn; wwj@nlsde.buaa.edu.cn; kex@nlsde.buaa.edu.cn

Received Dec. 23, 2016; Revision accepted Jan. 9, 2017; Crosschecked Jan. 10, 2017

Abstract: Recently, crowdsourcing platforms have attracted a number of citizens to perform a variety of location-
specific tasks. However, most existing approaches consider the arrangement of a set of tasks for a set of crowd
workers, while few consider crowd workers arriving in a dynamic manner. Therefore, how to arrange suitable
location-specific tasks to a set of crowd workers such that the crowd workers obtain maximum satisfaction when
arriving sequentially represents a challenge. To address the limitation of existing approaches, we first identify a more
general and useful model that considers not only the arrangement of a set of tasks to a set of crowd workers, but also
all the dynamic arrivals of all crowd workers. Then, we present an effective crowd-task model which is applied to
offline and online settings, respectively. To solve the problem in an offline setting, we first observe the characteristics
of task planning (CTP) and devise a CTP algorithm to solve the problem. We also propose an effective greedy
method and integrated simulated annealing (ISA) techniques to improve the algorithm performance. To solve the
problem in an online setting, we develop a greedy algorithm for task planning. Finally, we verify the effectiveness
and efficiency of the proposed solutions through extensive experiments using real and synthetic datasets.

Key words: Mobile crowdsourcing; Task planning; Greedy algorithms; Simulated annealing
http://dx.doi.org/10.1631/FITEE.1601860 CLC number: TP3

1 Introduction

Research on crowd intelligence has attracted
much attention in the current artificial intelligence
(AI) 2.0 era (Pan, 2016). Along with the rapid
development of cloud computing and the mobile
Internet (Tong et al., 2015b; Cheng et al., 2016),
mobile crowdsourcing applications have become in-
creasingly popular. Many web applications, such as
Gigwalk, Uber, and Meetup, have been developed.
These applications provide tasks that allow crowd
workers to sign up online (using the Internet) and
accomplish tasks offline (in the real world), and have
attracted millions of crowd workers creating more

‡ Corresponding author
* Project supported by the National High-Tech R&D Program
(863) of China (No. 2014AA015203)

ORCID: Wen-jun WU, http://orcid.org/0000-0003-0953-0115
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2017

than 230 000 million events per month (Musthag and
Ganesan, 2013; Tong et al., 2016b).

Current mobile crowdsourcing platforms sim-
ply list the tasks to be undertaken and allow crowd
workers to choose the tasks they wish to accomplish.
Unfortunately, it is time-consuming for crowd work-
ers to check such a long task list and select their
preferences. It would be far more convenient if the
platform providers were able to make personalized
suggestions for each crowd worker on the tasks in
which they might be most interested. Imagine the
following scenario. Amy, Bob, and Cathy are friends
who are interested in programming. On a Friday
evening, Amy logs into the website and finds a pro-
gramming task that requires three skills: art, C++
language, and planning. She is good at art designing
and would like to take part in this task. She also
wants to accomplish this task with her two friends.



108 Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121

In addition, Bob is good at C++ language and Cathy
is good at planning. However, Bob does not want
to travel a long distance to accomplish the task.
The two other workers do not want to accomplish
the task with strangers. A crowd-task system often
encounters similar situations in which some crowd
workers would like to choose a task that requires
some given skills together and should also consider
the travel cost between the locations of workers and
tasks. Therefore, for task planning, it is necessary to
consider the following factors: (1) the distance be-
tween crowd workers and tasks, (2) the interest/skill
similarity between crowd workers and tasks, and (3)
the friendships among all crowd workers (Li et al.,
2014; Armenatzoglou et al., 2015; She et al., 2015a;
2015b; 2016; Tong et al., 2016c). Unfortunately, no
existing works consider all the above factors.

In addition to resolving task planning by consid-
ering the above three factors, a crowd-task arrange-
ment strategy should consider that crowd workers
may dynamically register into tasks online so that
the available worker quotas for the tasks change at
different times. Imagine the following scenario. Amy
would like to participate in a programming contest
and signs up. When she signs up to the contest web-
site, there are a lot of available spots. Later, Bob and
Cathy also decide to participate in this contest with
Amy. However, now the spots are taken up by oth-
ers. As a result, they cannot go to the same contest
together. Therefore, how to match newly arriving
crowd workers with tasks such that the crowd sourc-
ing system can offer its workers the maximized satis-
faction considering the friendships between workers
is an important problem. Unfortunately, no exist-
ing studies focus on this problem. Unlike the static
scenarios in which the crowd sourcing platform al-
ways knows all the crowd workers and tasks in the
platform, in dynamic scenarios, the platform can
never have complete information of the crowd work-
ers. Thus, existing methods developed for static sce-
narios cannot be used to address dynamic scenarios.

To further illustrate the motivation, we present
a small example as follows:
Example 1 Suppose that there are three
tasks (v1, v2, v3) and six workers (u1, u2, . . . , u6) in
a crowdsourcing platform. The locations of work-
ers/tasks are represented by their longitudes and lat-
itudes. We can calculate the distances between work-
ers and tasks using the Euclidean distance based on

the coordinates of workers and tasks. The distances
between all the workers and tasks are shown in Ta-
ble 1. When each worker registers in the crowdsourc-
ing platform, they are required to choose some labels
that represent the types of tasks they are interested
in, such as football games and hiking. For each task,
when it is created, the person creating this task is
required to choose labels for this task to describe the
category that it belongs to, such as lecture, concert,
and film. Then, we can use the similarity between
the worker-preference labels and the task labels to
represent the interest of each worker in each task.
The calculation method for this can be found in She
et al. (2015a). The similarity of workers and tasks in
this example is also shown in Table 1. Furthermore,
all crowd workers form a social graph that represents
the friendships among workers (Fig. 1). Finally, each
task has a capacity, which is the maximum number
of workers that are allowed to accomplish the task.
In this example, the capacities of tasks v1, v2, and v3
are 2, 4, and 3, respectively, as shown in the paren-
theses attached to each task in Table 1. The utility
function, which evaluates the satisfaction (or happi-
ness) of workers, should consider three factors: the
distances between workers and tasks (the smaller the
better), the similarities between workers and tasks
(the larger the better), and the friendships among
workers (friends are better than strangers). A fea-
sible task arrangement is 〈u1, v3〉, 〈u2, v1〉, 〈u3, v2〉,
〈u4, v1〉, 〈u5, v3〉, and 〈u6, v3〉.

Table 1 The distance and similarity between workers
and tasks

Worker
Distance Similarity

v1 (2) v2 (4) v3 (3) v1 (2) v2 (4) v3 (3)

u1 429.003 324.232 248.558 0.48 0.52 0.55
u2 385.754 780.134 653.009 0.69 0.66 0.58
u3 588.770 88.393 181.986 0.42 0.50 0.44
u4 635.756 781.092 700.514 0.59 0.39 0.46
u5 261.343 313.735 165.946 0.62 0.68 0.64
u6 353.734 265.025 145.121 0.39 0.61 0.43

The numeral in the parentheses represents the capacity of
the task

For the online setting, our example can be seen
as a bipartite graph G = (U, V ), in which the left
vertices are workers and the right vertices are tasks.
In this example, suppose that the order of arrival
of the workers is u6, u5, u4, u3, u2, and u1. When
u6 arrives, he/she chooses to attend v2 because it
is the closest and most desirable task. When u5



Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 109

0.1

0.2

0.4

0.80.1

0.4
0.6

0.3

u1v1

v2

v3

v5

u2

u3 u6

u4

Fig. 1 Social graph of all workers

arrives, because he/she has no friends that have been
matched to any task, he/she chooses to attend v3 by
considering the distance and similarity to each task.
Then, u4 arrives. He/She has a friend, u6, who has
already been matched to a task. Therefore, he/she
should consider three factors: the distance, the simi-
larity, and the friendship. Following the above steps,
a feasible arrangement is 〈u1, v3〉, 〈u2, v1〉, 〈u3, v2〉,
〈u4, v1〉, 〈u5, v3〉, and 〈u6, v2〉.

To summarize, in this paper we propose the fol-
lowing:

1. We propose an offline planning problem that
considers all factors, i.e., distance, similarity, and
friendship.

2. We further propose an online planning prob-
lem based on the offline version.

3. We propose greedy algorithms to solve the of-
fline and online arrangement problems, respectively.

4. We conduct a comprehensive experimental
study on both synthetic and real datasets from
Meetup.

2 Problem statement

We first introduce some concepts and then for-
mally define two versions of task assignment for the
offline and online scenarios. In our problem, we as-
sume that there is a crowd-sourcing platform that
people can use to publish the task, and some defi-
nitions are similar to those in Tone et al. (2016a;
2016b) and She et al. (2016).
Definition 1 (Crowd worker) A worker is defined
as u(xu, yu), where xu and yu represent the longitude
and latitude of the worker, respectively. Each worker
has a set of attributes (e.g., au for worker u).
Definition 2 (Task) A task is defined as
v(xv , yv, δv), where xv represents the longitude, yv
represents the latitude, and δv represents the capac-
ity of task v. Each task also has a set of attributes
(e.g., av for task v).

Basically, we consider three factors during task
assignment: the distances between workers and
tasks, the similarity between workers and tasks, and
the friendships among all workers. Consequently, we
provide the following definitions:
Definition 3 (Distance) Because both workers
and tasks have physical locations, we use Euclidean
distance d =

√
(xu − xv)2 + (yu − yv)2 to compute

the distance between a worker and a task.
Definition 4 (Similarity) Each worker has at-
tributes that represent the attraction of task v for
worker u. Each task has attributes as well. We com-
pute the attribute similarity between workers and
tasks as follows:

s(u, v) =

∑n
i=1 au(i)av(i)√∑n

i=1 a
2
u(i)

√∑n
i=1 a

2
v(i)
∈ [0, 1],

where au(i) denotes the ith attribute of workers,
av(i) the ith attribute of tasks, and n the number
of attributes of workers and tasks.
Definition 5 (Social graph) Let G = (U,E,W )

represent the social graph, where U denotes the set of
workers, W denotes the set of edge weights (i.e., the
friendships among workers), and E denotes the set of
edges (i.e., the social connections between workers).
Definition 6 (Offline planning) We are given a set
of workers U , each of whom has a set of attributes
au, a longitude xu, and a latitude yu. We also have a
set of tasks V , each of which has a capacity δv, a set
of attributes av, and a longitude xv and latitude yv.
Using the Euclidean distance, a similarity function,
and a social graph, we need to find an arrangement
between workers and tasks that maximizes the total
utility μ(U, V, α, β, γ) and no task exceeds its capac-
ity, δv. The total utility is defined as

μ(U, V, α, β, γ) =
α

n∑

i=1

d(ui, vi)

+β
∑

u∈U

s(u, v)+γ
∑

e=(ui,uj)∈V,
i�=j

w(ui, uj),

where w(ui, uj) denotes the social relationship be-
tween ui and uj, α, β, γ ∈ (0, 1) are used to adjust
the relative importance of the three factors under
the condition α + β + γ = 1. The first term of
μ(·) evaluates the sum of all the distances between
each worker and the corresponding assigned tasks,
the second term of μ(·) evaluates the innate affinity
between workers and tasks, and the last term of μ(·)
evaluates the friendships among workers.



110 Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121

Definition 7 (Online planning) We are given a set
of tasks V , each of which has a capacity δv, attributes
av, longitude xv, and latitude yv, and a set of workers
U , each of whom arrives one by one and has a set
of attributes au, a longitude xu and a latitude yu.
Using the Euclidean distance formula, a similarity
function, and a social graph, online planning is to
find an arrangement between workers and tasks with
maximized total utility μ(U, V, α, β, γ), such that:

1. The three constraints of offline planning are
satisfied.

2. The planning for a newly arriving worker u

must be completed before the next worker appears,
and it must be irrevocable (Tong et al., 2016a; 2016b;
She et al., 2016).

3 Solution to the offline setting

In this section, we present a set of solutions to
the offline planning problem.

3.1 Characteristic of task planning

As defined in offline planning, friendship plays
an important role in crowd workers’ accomplishment
of tasks. Workers with closer friendship tend to work
together to accomplish a task. In contrast, workers
in different tasks are usually strangers. Based on
this characteristic of task assignment, the character-
istic of task planning (CTP) algorithm is proposed
as follows.

Given a set of workers and a set of tasks, we
want to find a collaboration such that each worker
gains maximum satisfaction. We first assign pairs of
workers and tasks to a heap H = 〈u, v, g〉, which rep-
resents the potential arrangements of pairs of workers
and tasks, by considering both the distances between
workers and tasks and their intrinsic similarity. H is
ordered by the non-decreasing potential gain g. If we
do not consider the social graph, the potential gain
is defined as

g(u, v|∅) =
α

d(u, v)
+ (1− α)s(u, v).

In contrast, if we consider the social graph, the po-
tential gain is defined as

g(u, v|Sv) =
α

d(u, v)
+ βs(u, v) + γ

∑

vu′=vu

w(u, u′),

where Sv represents the set of workers assigned to
task v. Then, we extract the worker-task pair with

the smallest g(u, v|∅) from heap H . If the task has
not exceeded its capacity, we will assign worker u to
task v. Let M(u) denote the arrangement of worker
u; then, if the neighbors of worker u (i.e., u′) have not
been assigned, we update g(u, v|Sv) based on heap
H . Finally, we extract worker u′ with the smallest
potential gain and assign u′ to task v that satisfies
|Sv| < δv. This process can be repeated as needed
until there are no more available tasks or until all
workers have been assigned to tasks.

Algorithm 1 illustrates the CTP procedure.
Here, M(u) ← ∅ denotes that worker u is not as-
signed. Lines 1–3 compute the potential arrange-
ment utility according to the pairs of workers and
tasks and put them into heap H . Lines 5–14 first ex-
tract the worker-task pair with the smallest potential
gain that contains worker u, task v, and gain value g

and then assign worker u to task v. Then, we com-
pute the potential arrangement utility of worker u’s
neighbors and update H . Finally, we find the mini-
mum potential gain that contains worker u’s neigh-
bors, task v, and the gain utility. Finally, we assign
worker u’s neighbors to task v.
Example 2 Here is the process of running our
CTP algorithm on Example 1. All distances are
normalized into range [0, 1]. Then, we calculate
g(u, v|∅) for all pairs of workers and tasks and
find that H has 18 potential gains and 18 pairs
of workers and tasks, i.e., 〈u1, v1, 1.33〉, 〈u1, v2, 1.11〉,
〈u1, v3, 0.97〉, 〈u2, v1, 1.01〉, 〈u2, v2, 1.53〉, 〈u2, v3, 1.45〉,
〈u3, v1, 1.75〉, 〈u3, v2, 0.82〉, 〈u3, v3, 1.04〉, 〈u4, v1, 1.41〉,

Algorithm 1 Characteristic of task planning (CTP)
Initialize: heap H , M(u)← ∅, ∀u, and Sv ← ∅, ∀v.
1: for all (u, v) ∈ U ×V s.t. αd(u, v)+

1− α

s(u, v)
> 0 do

2: Insert {u, v, g(u, v|∅)} into H

3: end for
4: Heapify H

5: while H �= ∅ do
6: Extract the worker-task pair with the minimum

potential gain ({u, v, g(u, v|Sv)}) from H

7: if |Sv| < δv and M(u)← ∅ then
8: Sv ← Sv ∪ {u}
9: for all u′: w(u, u′) > 0 and M(u′) = ∅ do

10: Update {u′, v, g(u′, v|Sv)} into H

11: end for
12: Heapify H

13: end if
14: end while
15: return final arrangement and the total utility



Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 111

〈u4, v2, 1.91〉, 〈u4, v3, 1.66〉, 〈u5, v1, 0.91〉, 〈u5, v2, 0.93〉,
〈u5, v3, 0.77〉, 〈u6, v1, 1.36〉, 〈u6, v2, 0.83〉, and 〈u6, v3,

1.02〉. From the above results, we find that 0.77 is
the smallest value of all the potential gains and that
the capacity of v3 is 3; therefore, u5 can be assigned
to task v3. Note that u5 has two friends: u1 and
u3. Next, we update heap H for all workers. This
process is repeated until each worker obtains the
minimum potential utility. The final arrangement
is 〈u1, v3〉, 〈u2, v2〉, 〈u3, v3〉, 〈u4, v1〉, 〈u5, v3〉, and
〈u6, v1〉, and the final total utility is 1.49.

We analyze the computation complexity of the
CTP algorithm as follows: The CTP algorithm takes
at most O(|U ||V |) time to initialize heap H and
insert the utilities of all worker-task pairs into the
heap. In the following iterations, at most |U ||V |
worker-task pairs are extracted from H , but only |U |
pairs are inserted into the arrangement. Along with
each insertion operation, at most d elements in H

are updated, leading to O(D log(|U ||V |)) swapping-
element operations in H (D is the degree of u ∈ U).
The above analysis indicates that the final time com-
plexity is O(|U ||V |+ |U |Dmax log(|U ||V |)).

3.2 Greedy offline planning

The CTP algorithm observes only the charac-
teristics of collaboration to complete the task; many
workers do not attain better satisfaction (happiness).
To solve this problem, we propose a greedy algo-
rithm, which assigns workers to tasks by consider-
ing three factors: the distance between workers and
tasks, the similarities between workers and tasks,
and the friendship among workers. The details of
the greedy algorithm are as follows.

Let H contain a tuple 〈u, v, g〉 representing the
potential arrangements of pairs of workers and tasks.
If the potential arrangement utility does not consider
the friendship among workers, it is defined as

g(u, v|∅) =
α

d(u, v)
+ (1− α)s(u, v).

If the potential arrangement utility considers the
friendship among workers, it is defined as

g(u, v|Sv) =
α

d(u, v)
+ βs(u, v) + γ

∑

vu=vu′

w(u, u′).

First, we extract the pair with the largest g(u, v|∅)

from heap H . If the task has not exceeded its capac-
ity, we assign worker u to task v. If the neighbors

of worker u (i.e., u′) have not been assigned, we up-
date g(u, v|Sv) based on heap H . Finally, we extract
the largest potential arrangement utility of pairs of
worker u and task v that satisfy |Sv| < δv. This
process can be repeated as needed until either all
workers are assigned or there are no more available
tasks.

Algorithm 2 illustrates the procedure of greedy
offline planing. Lines 1–3 compute the potential gain
according to pairs of workers and tasks and place
them into heap H . Lines 4–12 first extract the pair
with the largest potential arrangement utility that
contains worker u, task v, and gain value g, and then
assign worker u to task v. Next, we compute the
potential gain of worker u’s neighbors and update
H . Finally, we find the maximum potential arrange-
ment utility that contains the neighbors of worker u,
task v, and the gain utility, and assign worker u’s
neighbors to task v.

Algorithm 2 Greedy offline planning
Initialize: heap H , M(u)← ∅, ∀u, and Sv ← ∅, ∀ v.
1: for all (u, v) ∈ U×V s.t.

α

d(u, v)
+(1−α)·s(u, v) > 0

do
2: Insert {u, v, g(u, v|∅)} into H

3: end for
4: while H �= ∅ do
5: Extract the worker-task pair with the largest po-

tential gain ({u, v, g(u, v|Sv)}) from H

6: if |Sv| < δv and M(u) = ∅ then
7: Sv ← Sv ∪ {u}
8: for all u′: w(u, u′) > 0 and M(u′) = ∅ do
9: Update {u′, v, g(u′, v|Sv)} into H

10: end for
11: end if
12: end while
13: return final matching and the total utility

Example 3 Here is the process of running our
greedy offline planning on Example 1. All distances
are normalized into range [0, 1] where, for each
division, the maximum possible distance is dmax.
Then, we compute g(u, v|∅) and find that H has
18 potential gains and 18 pairs of workers and
tasks, i.e., 〈u1, v1, 0.67〉, 〈u1, v2, 0.79〉, 〈u1, v3, 0.91〉,
〈u2, v1, 0.92〉, 〈u2, v2, 0.78〉, 〈u2, v3, 0.72〉, 〈u3, v1, 0.57〉,
〈u3, v2, 1.50〉, 〈u3, v3, 0.93〉, 〈u4, v1, 0.73〉, 〈u4, v2, 0.50〉,
〈u4, v3, 0.59〉, 〈u5, v1, 0.93〉, 〈u5, v2, 0.96〉, 〈u5, v3, 1.08〉,
〈u6, v1, 0.60〉, 〈u6, v2, 0.94〉, and 〈u6, v3, 1.04〉. From
the above results, we find that 1.50 is the largest



112 Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121

obtainable potential gain and that the capacity of v2
is 4; therefore, u3 can be assigned to v2. Note that u3

has four friends u1, u2, u5, and u6. We update heap
H for u3’s neighbors, which results in 〈u1, v2, 0.89〉,
〈u2, v2, 1.08〉, 〈u5, v2, 1.56〉, and 〈u6, v2, 1.34〉 in H ,
and delete 〈u3, v1, 0.57〉 and 〈u3, v3, 0.93〉 from H .
Now, 1.56 is the largest obtainable gain in this step;
therefore, we assign u5 to v2, which satisfies Sv2 ≤ 4,
and update heap H again. Now, we find that u5’s
neighbors are u1 and u3, but u3 has already been
assigned to a task. Therefore, we need to consider
only u1. In this step, we obtain 〈u1, v2, 0.99〉 in heap
H . Now, we find that 1.34 is the largest gain and
assign u6 to v1. However, u6 has two neighbors,
u2 and u4, who have not yet been matched to any
task. Therefore, we obtain only 〈u2, v1, 2.18〉 and
〈u4, v2, 0.90〉 in heap H . Then, we find that 2.18
is the largest gain in this step; therefore, we assign
u2 to v1, which satisfies the constraint that the
capacity of |Sv2 | is exactly 4. Note that u2 has a
friend, u1, who has not yet been matched. Thus, we
update 〈u1, v2, 1.19〉 in heap H . Finally, we would
like to assign u4 to v2, which provides the maximum
potential gain. However, the capacity of |Sv2 | is 4
and assigning u4 to v2 would violate the constraint
Sv2 ≤ 4. Therefore, we must choose the second
largest gain, 0.91, and assign u4 to v3. The final
arrangement is 〈u1, v2〉, 〈u2, v1〉, 〈u3, v2〉, 〈u4, v3〉,
〈u5, v2〉, and 〈u6, v1〉, and the final total utility is
1.61.

Similar to the CTP algorithm, the worst-case
time complexity of the greedy offline planning algo-
rithm is O(|U ||V |+ |U |Dmax log(|U ||V |)).

3.3 Improved simulated annealing

The simple greedy algorithm falls easily into lo-
cal optima. In this section, to address this limita-
tion, we propose a hybrid heuristic to optimize task
assignment. In addition, by combining the greedy al-
gorithm with another heuristic algorithm, we can ob-
tain a better solution. Therefore, we propose the im-
proved simulated annealing (ISA) approach to solve
our problem. Simulated annealing is a probabilistic
technique for approximating the global optimum of
a given function. Specifically, it is a metaheuristic
for approximating global optimization over a large
search space (Kirkpatrick et al., 1987).

For crowd-tasking, we first set constant R, tem-
perature T , and randomly assign a set of workers to

a set of tasks satisfying |Sv| ≤ δv. The total util-
ity of this current arrangement is oldf = f0. As the
temperature decreases, we randomly choose a worker
u and suppose that u is assigned to vi in this step.
Next, we randomly choose a task vj and assign u to
vj such that i �= j and |Svj | < δvj . The total utility
of this arrangement is newf . Let Δf = newf − oldf .
If Δf ≥ 0, we can assign u to vj with probability
p = 1; if Δf ≤ 0, we can assign u to vj with prob-
ability p = exp(−|Δf |/(RT )). When we find that
Δf ≤ 0 for |T/2| consecutive times, we increase the
temperature until a Δf ≥ 0 is found that satisfies
|Sv| ≤ δv. Finally, we reduce the temperature until
it decreases to zero, at which point the process stops.
Note that this approach to solving task assignment
does not guarantee an optimal solution. Although
we can find an optimal solution within the solutions
space, we cannot guarantee that no better solutions
exist. Therefore, to obtain better results, we con-
sider the total utility, which is the maximum value
of the entire solutions space. More details are shown
in Algorithm 3.

The details of each iteration are as follows. Let
the worker-task pair 〈u, vi〉 contain worker u and
task vi in the current iteration. If vj is another
task and vj satisfies |Svj | < δvj , assign u to vi in
the current step (i.e., u ∈ Svi). We then attempt to
change the arrangement of u by assigning u to vj (i.e.,
u ∈ Svj ). Otherwise, other workers cannot change
their current arrangements. More specifically, let
Mi denote the ith arrangement and Mj represent
the jth arrangement. If |Svj | can accommodate an
additional worker (i.e., Mi − (u, vi) = Mj − (u, vj)),
we can compute the total utility of Mi and Mj . For
each u in U , we know that the utility of arrangement
Mi is equal to the utility of arrangementMj . At each
iteration, we change one worker in an arrangement.
This process can be repeated for each temperature
decrease.

Algorithm 3 illustrates the procedure of ISA.
Line 1 randomly assigns a set of workers to a set of
tasks that satisfy |Sv| ≤ δv. Note that the current
utility value is f0. Line 5 randomly chooses a worker
u, where we suppose that u is matched to vi. In
addition, we randomly choose a task vj in which u

is matched to vj such that i �= j and |Svj | < δvj .
The total utility of this matching is newf . Lines 6–
10 compare the current solution and the neighboring
solution; we choose the neighboring solution with a



Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 113

Algorithm 3 Improved simulated annealing (ISA)
Initialize: Sv ← ∅, ∀ v, f−increasing−count = 0, R,

T0, ΔT , n.
1: Randomly assign all workers to tasks satisfying
|Sv| ≤ δv with total utility f0.

2: newf = f0, T = T0

3: while T ≥ 0 do
4: oldf = newf

5: Randomly choose a worker u, randomly change its
assigned task to an available task vj , and obtain
a new total utility newf with Δf = newf − oldf

6: if Δf ≥ 0 then
7: u with p = 1 matched to vj
8: else
9: u with p = exp

(
−|Δf |

RT

)
matched to vj

10: end if
11: if Δf is positive for n consecutive times then
12: while newf − oldf < 0 do
13: T = T +ΔT , oldf = newf

14: Randomly choose a worker u, randomly
change its assigned task to an available task
vj , and obtain a new total utility newf with
Δf = newf − oldf

15: end while
16: end if
17: T = T −ΔT

18: end while
19: return arrangement of workers and tasks

certain probability. In lines 11–16, if Δf ≤ 0 for
|T/2| consecutive times, we increase the tempera-
ture until Δf ≥ 0. Finally, when the temperature
decreases to zero, we select the maximum total util-
ity of all the solutions.
Example 4 To run our ISA algorithm for Ex-
ample 1, we randomly assign six workers to three
tasks. The current arrangement is 〈u1, v2〉, 〈u2, v1〉,
〈u3, v2〉, 〈u4, v2〉, 〈u5, v1〉, and 〈u6, v3〉, which satis-
fies |Sv| < δv, and the current arrangement utility
is 1.18. Then, we randomly select a worker. Sup-
pose that the worker selected is u3 and that the ar-
rangement of the current step is v2. We change the
arrangement of u3 from v2 to v3, but the other ar-
rangements unchanged. The total utility of this step
is 1.16. Because 1.16 < 1.18, u3 is assigned to v3 with
a probability p = 1, and u3 stays in v2 with a proba-
bility p = exp(−|Δf |/(RT )). Therefore, the current
arrangement is 〈u1, v2〉, 〈u2, v1〉, 〈u3, v2〉, 〈u4, v2〉,
〈u5, v1〉, and 〈u6, v3〉. Then, we randomly select an-
other worker u2. The arrangement of the current
step is v1, and we change the current arrangement of

u2 from v1 to v2, which satisfies |Sv| < δv. In this
step, the arrangement is 〈u1, v2〉, 〈u2, v2〉, 〈u3, v3〉,
〈u4, v2〉, 〈u5, v1〉, and 〈u6, v3〉, and the total utility
is 1.13. This process can be repeated as the tem-
perature decreases until it reaches zero. Finally, the
arrangement is 〈u1, v3〉, 〈u2, v2〉, 〈u3, v2〉, 〈u4, v1〉,
〈u5, v2〉, and 〈u6, v2〉, and the total utility is 1.90.

Here, we analyze the time complexity of ISA. In
the initialization step, a set of workers are randomly
assigned to a set of tasks, which takes O(|U |) time.
Due to the possible increment of the temperature in
the algorithm, there are at least T0/ΔT iterations
in the temperature decrement procedure. Therefore,
the overall time complexity of ISA is at least O(|U |+
T0/ΔT ).

4 Greedy algorithm for online planning

In this section, we present a solution to the on-
line scenario for task assignment. Note that the so-
lution to the offline scenario cannot be used to solve
the online setting because we do not have full infor-
mation about the workers in the online setting. In
the offline setting, we have full information of crowd
workers and tasks. However, in the online scenario,
the order in which workers appear cannot be known
in advance because workers arrive randomly.

To solve the problem in the online setting, we
propose a greedy solution (OnlineGreedy) in which
workers arrive sequentially and can arrive in a ran-
dom order. The input to this problem is regarded as
a bipartite graph G = (U, V ), in which the vertices in
U arrive in a random order but in which the vertices
in V are fixed. When a worker arrives, that worker
is matched to a task as soon as possible. Such a de-
cision, once made, is irrevocable. We first let N(u)

be the set of u’s neighbors who have been matched
to tasks. When a new worker u arrives and has no
friends matched to any task, then we compute the
potential arrangement utility

g(u, v) =
α

d(u, v)
+ (1− α)s(u, v)

and find the maximum g(u, v). If this task v satisfies
|Sv| < δv, we assign the newly arriving worker u to
task v. However, when the newly arriving worker u

has several friends who have already been matched
to tasks, we then compute the potential arrangement



114 Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121

utility

g(u, u′, v) =
α

d(u, v)
+ βs(u, v) + γw(u, u′)

and assign the newly arriving worker u to a task
v such that the arrangement obtains the maximum
g(u, u′, v) and that task v satisfies |Sv| < δv. This
process can be repeated as needed until there are
insufficient available tasks or until all crowd workers
have been assigned.

In the online planning case, from a practical
perspective, if many workers who have not attended
any tasks arrive together and there are no available
tasks to be assigned, these workers may be assigned
to new large-capacity tasks such as art exhibitions or
theatrical shows.

Algorithm 4 illustrates the procedure of the
greedy algorithm for online planning. In lines 1–
2, as each worker u arrives, we let N(u) represent
the set of u’s neighbors that have been matched to
task v satisfying |Sv| < δv. In lines 3–9, we deter-
mine whether the arriving workers have friends that
have been matched to tasks. When N(u) = ∅, we
compute potential gain g(u, v) and select the max-
imum potential gain that contains a pair of worker
and task. Next, we assign this worker to a task that
satisfies |Sv| < δv. In lines 11–15, if N(u) �= ∅,
we assume that u′ is a friend of the newly arriving
worker u and that u′ is participating in task v; con-
sequently, we compute g(u, u′, v). Then, we select
the maximum g(u, u′, v) in the current computation.
If the current task v satisfies |Sv| < δ, we assign the
newly arriving u to v.
Example 5 Here, we return to Example 1, but
in an online scenario. We assume that the order of
arriving workers is u5, u6, u2, u4, u3, and u1; i.e.,
the first arriving worker is u5. Then we find that
assigning u5 to v3 can obtain the maximum poten-
tial gain. The next arriving worker is u6, who has
no friends that have been matched to tasks; there-
fore, we compute the potential gain only according
to g(u, v) and assign u6 to v3. The next arriving
worker is u2, who also has no friends that have been
matched to tasks. We find that assigning u2 to v1
can obtain the maximum potential gain. The next
arriving worker is u4, whose friend u6 has already
been matched to a task. We compute the potential
gain g(u, u′, v) and assign u4 to v3. When u3 arrives,
he/she has three friends, u2, u5, and u6, who have
been matched to tasks. Then, we compute the po-

Algorithm 4 OnlineGreedy
Initialize: Sv ← ∅, ∀ v.
1: for arrival of vertex u of U do
2: Let N(u) be the set of u’s neighbors who have

been matched to tasks v satisfying |Sv| < δv
3: if N(u) = ∅ then
4: for each v ∈ V do
5: if |Sv| < δv then
6: Calculate {u, v, g(u, v)}
7: end if
8: end for
9: Assign worker u to task v with the maximum

g(u, v)

10: else
11: for each u′ ∈ N(u) do
12: v = V (u′) // v is the task assigned to u′

13: Calculate {u, v, g(u, u′, v)}
14: end for
15: Assign worker u to task v to obtain the maxi-

mum g(u, u′, v)
16: end if
17: end for
18: return final arrangement and the total utility

tential gain g(u, u′, v) and assign u3 to v3 to obtain
the maximum potential gain. However, the capacity
of v3 is 3, and that task already has three workers:
u5, u6, and u4. Therefore, u3 cannot be assigned to
v3; instead, we can assign u3 to v2 such that he/she
receives the maximum satisfaction. When u1 arrives,
he/she also has three friends (u2, u3, and u5) who
have been assigned to tasks; thus, u1 is assigned
to v1. Therefore, the final arrangement is 〈u1, v1〉,
〈u2, v1〉, 〈u3, v2〉, 〈u4, u3〉, 〈u5, v3〉, and 〈u6, v3〉, and
the total utility is 1.27.

During each new worker’s arrival, the online
planning algorithm first chooses one of the two can-
didate loops to follow. This selection process takes
O(D) time (D is the degree of the new arrival). Then,
the algorithm will take O(|V |) time to address the
first loop or O(D) time to address the second loop.
All these operations contribute to a time complexity
of O(|U |(Dmax + |V |)).

5 Experiments

5.1 Experimental setup

In this section, we describe the experiment setup
for evaluating our proposed algorithms. We use both
real and synthetic datasets for the experiments.



Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 115

We used the Meetup dataset (Liu et al., 2012)
as the real dataset. In the Meetup dataset, each
worker is associated with some tags and a location.
The tasks in this dataset are not explicitly associated
with tags, but we used the tags of the group that
created the task as the tags of the task itself. We also
used preprocessed datasets from She et al. (2015b).
Similar to She et al. (2015b), we used three datasets
from VA, Auckland, and Singapore, which consist
of 225 tasks and 2012 workers, 37 tasks and 569
workers, and 87 tasks and 1500 workers, respectively.
Because the task capacities were not provided in the
datasets, we generated capacities for the tasks by
following normal and uniform distributions.

For the synthetic data, we generated attribute
values and locations following a normal distribution
and generated the task capacities by following nor-
mal and uniform distributions. The statistics and
configuration of the synthetic data are listed in Ta-
ble 2. Default settings are denoted in bold font.

Table 2 Synthetic dataset settings

Factor Setting

|V | 10, 20, 50, 100, 200, 500
|U | 100, 200, 500, 1000, 2000, 5000

α, β, γ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

δv
Normal: μ ∈ {25, 50, 75, 100, 125}, σ = 50

Uniform: [1, 200]

|D| 0.1, 0.3, 0.5, 0.7, 0.9
Scalability (|U |) 10 000, 20 000, 30 000, 40 000, 50 000

For the online setting, because workers’ arrivals
are unknown, we randomly tested 50 different arrival
sequences for each setting. The synthetic datasets
were created in Python, and all algorithms were im-
plemented in C++ and executed under the Linux
Ubuntu operating system. The experiments were
performed on a computer with a 2.40 GHz 16-core
Intel Xeon E5620 CPU and 12 GB memory.

5.2 Evaluation for task planning

In this section, we evaluated the proposed algo-
rithms in terms of arrangement utility, running time,
and memory cost. We tested the performances of the
proposed algorithms by varying the following param-
eters: the size of U , the social degree d, the size of
V , the capacity of V , the distribution of δv, and the
balance parameters α, β, and γ.

5.2.1 Results on synthetic data

1. Effect of |V |. Figs. 2a–2c show the arrange-
ment utility, running time, and memory cost, re-
spectively, when varying |V | in task planning while
the other parameters are set to default values. We
can make the following observations. First, the ar-
rangement utility decreases as |V | increases. This
is because when |V | increases, workers have more
options and will choose a task that results in a util-
ity most acceptable to them. Second, the running
time decreases as |V | varies, because as |V | increases,
workers require less time to choose tasks. Third, the
memory usage increases as |V | increases, which is
natural, because the data becomes larger.

2. Effect of |U |. Figs. 2d–2f show the arrange-
ment utility, running time, and memory cost, re-
spectively, when varying |U |. We can make the fol-
lowing observations. First, the arrangement utility
increases when |U | increases, because we must com-
pute the arrangement utilities for more workers when
|U | increases. Second, the running time increases as
|U | increases. This is because when |U | is larger and
|V | is fixed, more workers must be calculated. Third,
the memory cost increases as |U | increases, because
as |U | increases, it requires more memory.

3. Effect of capacity. We first evaluated the re-
sults when δv varies following a normal distribution.
When δv increases, the total capacity of v increases
as well. The arrangement utility, running time, and
memory cost are shown in Figs. 2g–2i, respectively.
We can find that: (1) The arrangement utility gener-
ally increases as δv increases. This is reasonable, be-
cause tasks can accommodate more interested work-
ers when their capacity increases. (2) The running
time changes little among all the algorithms. (3)
Varying δv has little effect on the memory cost of
any of the algorithms.

Next, we studied the results obtained when |δv|
was generated by a uniform distribution. Figs. 2j–2l
show the results of arrangement utility, running time,
and memory cost, respectively. The values of δv were
generated uniformly ([1, 20], [1, 50], [1, 100], [1, 150],
and [1, 200]) and the other parameters were set to
default values. When δv increases, the total capacity
of v increases as well. We can make the following ob-
servations. First, the arrangement utility increases
as |δv| increases. Second, varying δv causes no ob-
vious changes in running time. However, the greedy



116 Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121

CTP

OnlineGreedy
ISA
Greedy

5

10

15

20

25

30

0

U
til

ity
 (×

10
3 )

U
til

ity
 (×

10
3 )

R
un

ni
ng

 ti
m

e 
(s

)

CTP

OnlineGreedy
ISA
Greedy

2

4

6

8

10

12

0

M
em

or
y 

(M
B

)
M

em
or

y 
(M

B
)

CTP

OnlineGreedy
ISA
Greedy

50

55

60

65

70

CTP

OnlineGreedy
ISA
Greedy

0

5

10

15

20

25

|U| (×103)

 U
til

ity
 (×

10
4 )

CTP

OnlineGreedy
ISA
Greedy

0

100

200

300

400

500
R

un
ni

ng
 ti

m
e 

(s
)

R
un

ni
ng

 ti
m

e 
(s

)

CTP

OnlineGreedy
ISA
Greedy

0

200

400

600

800

1000

CTP

OnlineGreedy
ISA
Greedy

2

4

6

8

10

12

0

CTP

OnlineGreedy
ISA
Greedy

0.5

1.0

1.5

2.0

2.5

3.0

0

CTP

OnlineGreedy
ISA
Greedy

30
35

40

45

50

55

25

20

M
em

or
y 

(M
B

)

0 100 200 300
|V|

400 500

0 1 2 3 4 5

Mean δv
20 40 8060 100 120 140

Mean δv
20 40 8060 100 120 140

Mean δv
20 40 8060 100 120 140

|U| (×103)
0 1 2 3 4 5

|U| (×103)
0 1 2 3 4 5

0 100 200 300
|V|

400 500 0 100 200 300
|V|

400 500

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

U
til

ity
 (×

10
3 )

CTP

OnlineGreedy
ISA
Greedy

2

4

6

8

10

12

0

0.5

1.0

1.5

2.0

2.5

3.0

0

R
un

ni
ng

 ti
m

e 
(s

)

M
em

or
y 

(M
B

)

CTP

OnlineGreedy
ISA
Greedy

CTP

OnlineGreedy
ISA
Greedy

53.0

55.0

52.0

54.0

Mean δv
25 50 75 100

Mean δv
25 50 75 100

Mean δv
25 50 75 100

(j) (k) (l)

Fig. 2 Results on a synthetic dataset using the proposed algorithms: (a) utility, (b) running time, and (c)
memory when varying task size |V |; (d) utility, (e) running time, and (f) memory when varying worker size
|U |; (g) utility, (h) running time, and (i) memory when varying capacity δv following a normal distribution;
(j) utility, (k) running time, and (l) memory when varying capacity δv following a uniform distribution

algorithm takes the least time of all the algorithms.
This is because when δv increases, a task requires
more workers. Crowd workers accomplish tasks in a
greedy fashion. Third, varying δv has little effect on
the memory costs of any of the algorithms.

4. Effect of degree. Figs. 3a–3c show the results
of the arrangement utility, running time, and mem-
ory cost, respectively, when varying the degree of

the social graph. As shown, the arrangement utility,
running time, and memory costs all increase as |d|
increases, because an increase in |d| requires more
computations.

5. Varying the contributions of spatial distance,
similarities, and social graph. Figs. 3d–3f show
the results of the arrangement utility, running time,
and memory cost, respectively, with 〈α, β = γ =



Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 117
U

til
ity

 (×
10

3 )
U

til
ity

 (×
10

3 )

M
em

or
y 

(M
B

)
M

em
or

y 
(M

B
)

R
un

ni
ng

 ti
m

e 
(s

)
R

un
ni

ng
 ti

m
e 

(s
)

CTP

OnlineGreedy
ISA
Greedy

1.0

1.5

2.0

2.5

3.0
3.5

0.5

0

CTP

OnlineGreedy
ISA
Greedy

0.5

1.0

1.5

2.0

2.5

3.0

0

3.5
CTP

OnlineGreedy
ISA
Greedy

30

35

40

45

50

55

25

1.5
2.0
2.5
3.0
3.5
4.0

1.0
0.5

4.5

0

CTP(α)

OnlineGreedy(α)
ISA(α)
Greedy(α)

0.5

1.0

1.5

2.0

2.5

3.0

0

CTP(α)

OnlineGreedy(α)
ISA(α)
Greedy(α)

51

52

53

54

55

CTP(α)

OnlineGreedy(α)
ISA(α)
Greedy(α)

|D|
0 0.2 0.4 0.6 0.8 1.0

|D|
0 0.2 0.4 0.6 0.8 1.0

|D|
0 0.2 0.4 0.6 0.8 1.0

α
0 0.2 0.4 0.6 0.8 1.0

α
0 0.2 0.4 0.6 0.8 1.0

α
0 0.2 0.4 0.6 0.8 1.0

(a) (b) (c)

(d) (e) (f)

3
4
5
6
7
8

2
1

9

0

0.5

1.0

1.5

2.0

2.5

3.0

0

R
un

ni
ng

 ti
m

e 
(s

)

M
em

or
y 

(M
B

)

3.5

51

52

53

54

55

CTP(γ)

OnlineGreedy(γ)
ISA(γ)
Greedy(γ)

CTP(γ)

OnlineGreedy(γ)
ISA(γ)
Greedy(γ)

CTP(γ)

OnlineGreedy(γ)
ISA(γ)
Greedy(γ)

U
til

ity
 (×

10
3 )

γ
0 0.2 0.4 0.6 0.8 1.0

γ
0 0.2 0.4 0.6 0.8 1.0

γ
0 0.2 0.4 0.6 0.8 1.0

(g) (h) (i)

Fig. 3 Results on a real dataset using the proposed algorithms: (a) utility, (b) running time, and (c) memory
when varying social graph degree d; (d) utility, (e) running time, and (f) memory when varying α; (g) utility,
(h) running time, and (i) memory when varying γ

(1 − α)/2〉 or 〈β, α = γ = (1 − β)/2〉. In addition,
Figs. 3g–3i show the results of the arrangement util-
ity, running time, and memory cost, respectively, as
α, β, γ vary by 〈γ, α = β = (1− γ)/2〉. We can
make the following observations. First, the arrange-
ment utility decreases when α or β increases. Second,
the arrangement utility increases when γ increases.
Third, running time and memory cost have the same
trends when we choose one of the three combinations.

5.2.2 Results on real dataset

1. Effect of capacity. Figs. 4a–4c show the re-
sults of the arrangement utility, running time, and
memory cost, respectively, on the real dataset Auck-
land, which consists of 2012 workers and 225 tasks,
when the capacity values were generated by follow-
ing a normal distribution. The task capacities were
not given; we generated the task capacities by fol-

lowing a normal distribution. The results on this
real dataset present patterns similar to the results
with synthetic data. The results of the arrangement
utility, running time, and memory cost are shown in
Figs. 4d–4f, respectively, when the capacity values
were generated by following a uniform distribution.
Similar result patterns were obtained for the other
two datasets when capacity values were generated by
following normal and uniform distributions.

2. Varying the contribution of spatial distance,
similarities, and social graph. Figs. 4g–4i show the
arrangement utility, running time, and memory, re-
spectively, when α, β, and γ are set as follows:
〈α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, β = γ =

(1− α)/2〉, or 〈β = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, α = γ = (1− β)/2〉. Figs. 4j–4l show the
results of the arrangement utility, running time,
and memory, respectively, when varying γ =



118 Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121

M
em

or
y 

(M
B

)
M

em
or

y 
(M

B
)

R
un

ni
ng

 ti
m

e 
(s

)
R

un
ni

ng
 ti

m
e 

(s
)

CTP

OnlineGreedy
ISA
Greedy

0.8

1.0

1.2

1.4

1.6

1.8

0.6

0.4

CTP

OnlineGreedy
ISA
Greedy

0.8

1.2

1.6

0.4

0.0

CTP

OnlineGreedy
ISA
Greedy

21.0

21.5

22.0

22.5

23.0

CTP

OnlineGreedy
ISA
Greedy

2

3

4

1

0

CTP

OnlineGreedy
ISA
Greedy

0.8

1.2

1.6

0.4

0.0

CTP

OnlineGreedy
ISA
Greedy

21.6

21.8

22.0

22.2

22.4

U
til

ity
 (×

10
3 )

U
til

ity
 (×

10
3 )

Mean δv
20 40 8060 100 120 140

20 60 140100 180 20 60 140100 180 20 60 140100 180

Mean δv
20 40 8060 100 120 140

Mean δv

Mean δv Mean δv Mean δv

20 40 8060 100 120 140

(a) (b) (c)

(d) (e) (f)

U
til

ity
 (×

10
3 )

U
til

ity
 (×

10
3 )

1.0

1.5

2.0

2.5

3.0
3.5

0.5

0

M
em

or
y 

(M
B

)
M

em
or

y 
(×

10
−3

 M
B

)

0.5

1.0

1.5

2.0

2.5

0 21.0

21.5

22.0

22.5

23.0

2.0

3.0

4.0

5.0

6.0
7.0

1.0

0

R
un

ni
ng

 ti
m

e 
(s

)
R

un
ni

ng
 ti

m
e 

(s
)

0.5

1.0

1.5

2.0

2.5

0

3.0

21.0

21.5

22.0

22.5

23.0

CTP(α)

OnlineGreedy(α)
ISA(α)
Greedy(α)

CTP(α)

OnlineGreedy(α)
ISA(α)
Greedy(α)

CTP(α)

OnlineGreedy(α)
ISA(α)
Greedy(α)

CTP(γ)

OnlineGreedy(γ)
ISA(γ)
Greedy(γ)

CTP(γ)

OnlineGreedy(γ)
ISA(γ)
Greedy(γ)

CTP(γ)

OnlineGreedy(γ)
ISA(γ)
Greedy(γ)

(g) (h) (i)

(j) (k) (l)

α
0 0.2 0.4 0.6 0.8 1.0

α
0 0.2 0.4 0.6 0.8 1.0

α
0 0.2 0.4 0.6 0.8 1.0

γ
0 0.2 0.4 0.6 0.8 1.0

γ
0 0.2 0.4 0.6 0.8 1.0

γ
0 0.2 0.4 0.6 0.8 1.0

Fig. 4 Results on a real dataset using the proposed algorithms: (a) utility, (b) running time, and (c) memory
when varying capacity δv following a normal distribution; (d) utility, (e) running time, and (f) memory when
varying δv following a uniform distribution; (g) utility, (h) running time, and (i) memory when varying α; (j)
utility, (k) running time, and (l) memory when varying γ

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and α = β =

(1 − γ)/2. The results show similar patterns to the
results with synthetic data. Note that the arrange-
ment utility increases when γ increases.

3. Scalability. We studied the scalability of all
the algorithms under both the offline and online set-
tings. Specifically, we set |V | to 100 and |U | to
10 000, 20 000, 30 000, 40 000, and 50 000. Because
|U | is relatively large, we set the total capacity of

tasks to 1.2 times the number of workers; the other
parameters were set to default values. The results
are shown in Figs. 5a–5c in terms of arrangement
utility, running time, and memory cost, respectively.
We can observe that the arrangement utility, run-
ning time, and memory cost of all algorithms grow
linearly with the size of the data. In addition, the
results show that all the algorithms are scalable in
terms of both time and memory cost.



Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 119
U

til
ity

 (×
10

4 )

M
em

or
y 

(M
B

)

R
un

ni
ng

 ti
m

e 
(×

10
4  s

)CTP

OnlineGreedy
ISA
Greedy

0

1000

500

1500

2000
CTP

OnlineGreedy
ISA
Greedy

0

2

4

6

8

10
CTP

OnlineGreedy
ISA
Greedy

0

2

4

6

8

10(a) (b) (c)

10 20 30 40 50
|U| (×103)

10 20 30 40 50
|U| (×103)

10 20 30 40 50
|U| (×103)

Fig. 5 Results of utility (a), running time (b), and memory (c) for scalability test

5.2.3 Summary

The CTP, Greedy, and ISA algorithms are ef-
ficient for offline task planning. The ISA algorithm
performs better than other algorithms in calculat-
ing the arrangement utility, but it is less efficient
with regard to running time in more cases. The
OnlineGreedy algorithm is quite effective for online
planning, even when compared with the offline al-
gorithms, which have complete information about
workers and tasks.

6 Related work

In this section, we review the related work in
three categories: mobile crowdsourcing, event-based
social networks (EBSNs), and online matching.

1. Mobile crowdsourcing. Recently, as a
novel human-machine collaborative computation
paradigm (Zhang et al., 2014a), data-driven crowd-
sourcing has already attracted much attention in
the computer science community. In particular,
some fundamental issues of crowdsourcing have been
widely studied, for example, data cleaning (Tong
et al., 2014b; Zhang et al., 2015), topic discovery
(Tong et al., 2014a), taxonomy construction (Meng
et al., 2015), and expert discovery (Cao et al., 2012;
2013).

With the development of the mobile Internet
and distributed systems (Tong et al., 2016d), more
and more real applications of mobile crowdsourcing
are emerging, e.g., Uber and Gigwalk. Note that
mobile crowdsourcing is also called spatial crowd-
sourcing or spatio-temporal crowdsourcing (Kazemi
and Shahabi, 2012). The existing research on mobile
crowdsourcing focuses mainly on two types of prob-
lems: task assignment and quality control. For task
assignment, Tong et al. (2016b) proposed a general

bipartite-matching-based framework to address dy-
namic task allocation in online mobile crowdsourcing
platforms. The problem of collaborative task recom-
mendation in mobile crowdsourcing has also been
proposed recently (Gao et al., 2016). For the qual-
ity control problem, different from the traditional
web-based crowdsourcing that usually adopts uncer-
tain data processing techniques to control the cor-
rect ratio of crowd workers (Cao et al., 2012; Tong
et al., 2012a; 2012b; 2012c; 2015a; Yang et al., 2012;
Sun and Chen, 2013), the goal of quality control in
mobile crowdsourcing changes to minimize the to-
tal waiting time that the crowd workers experience
in arriving at the specific location of tasks (Zhang
et al., 2014b; Tong et al., 2016a). Although the afore-
mentioned works study various problems of mobile
crowdsourcing, most of them do not address the task
planning problem based on the friendship among dif-
ferent crowd workers.

2. Event-based social networks. Many existing
studies have been performed on EBSNs (Liu et al.,
2012). The unique features of ESBNs were first con-
sidered by Liu et al. (2012). However, research in this
field did not consider the effects of dynamic worker
arrivals. Recently, Li et al. (2014) introduced the
social event organization (SEO) problem, assigning
workers to tasks in such a way that their overall in-
nate and social affinities are maximized. However,
the solution in Li et al. (2014) considers only two
factors: attribute similarities and friendships among
workers. They neglected the spatial influences of
tasks and workers. They also neglected how to rec-
ommend a task to a newly arriving worker in real
time to obtain the greatest satisfaction. A novel ap-
proach for EBSNs was developed in Armenatzoglou
et al. (2015), which introduced multi-criterion so-
cial graph partitioning—a game-theoretic approach
for EBSNs—that considers two factors: the distance



120 Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121

between workers and tasks and the friendships
among workers. In Armenatzoglou et al. (2015),
the model was based on graph partitioning. A so-
cial graph is partitioned into a set of tasks such that
workers at the same task have a high social connec-
tivity. Their solution is based on a game-theoretic
framework and each worker is considered as a player.
Players were first randomly assigned to tasks; then,
they began changing tasks according to their best
responses until they reached a Nash equilibrium. Ar-
menatzoglou et al. (2015) did not consider situations
in which tasks have limited capacities and in which
workers arrive sequentially. She et al. (2015b) intro-
duced a global event-participant arrangement with
a conflict and capacity (GEACC) problem, focusing
on the conflicts between different tasks and on gen-
erating task planning from a global view. However,
they also failed to consider newly arriving workers.
Tong et al. (2016c) introduced a general model to
recommend suitable social tasks to potential work-
ers according to the following three factors: the lo-
cation influence of tasks and workers, attribute sim-
ilarities between tasks and workers, and friendships
among workers. However, they did not consider dy-
namic worker arrivals or how to recommend tasks to
them such that they would gain maximum satisfac-
tion. Consequently, all these studies differ from our
research.

3. Online matching. In recent years, there have
been a series of studies on online matching, such
as Karp et al. (1990), Mehta (2012), Ting and Xi-
ang (2015), and Tong et al. (2016b). The input
of online matching is a weighted bipartite graph
G = (L,R,E, U), whose left-hand vertices L are
known beforehand, but the right-hand vertices R are
unknown and arrive one by one. Once a right-hand
vertex r ∈ R arrives, the edges (l, r) ∈ E incident
to r and their corresponding weights U(l, r) ∈ U

are revealed, and r must either match a left-hand
vertex l or remain unmatched thereafter (Burkard
et al., 2009; Tong et al., 2016b). In particular, Ting
and Xiang (2015) introduced weighted online bipar-
tite matching problems. Bipartite graph matching
and assignment problems have been widely studied
for decades. Related research has been surveyed by
Burkard et al. (2009) and West (2001). Besides clas-
sical bipartite graph matching, another closely re-
lated work is the assignment problem (Burkard et al.,
2009). However, the original assignment problem

does not consider the capacity and social friend-
ship constraints proposed in our problem. Thus,
our problem differs from previous works in that it
is more difficult (NP-hard) due to the social graph.
These works also did not consider the social graphs of
workers.

7 Conclusions

In this paper, we identified offline and online
task planning variants for mobile crowdsourcing. For
the offline planning problem, we devised three algo-
rithms to solve it, named CTP, Greedy, and ISA. For
online planning, we also proposed an OnlineGreedy
algorithm, which resolves the problem scenario in
which the full information is unknown. Finally, we
verified the effectiveness and efficiency of the pro-
posed solutions through extensive experiments on
both real and synthetic datasets.

While these results are quite promising, there
are significant opportunities for further improve-
ment. In real applications, tasks and workers ap-
pear dynamically and their spatio-temporal infor-
mation cannot be known in advance. However, this
scenario requires immediate responses from mobile
crowdscourcing platforms. There is a challenging
problem: How to assign the tasks to suitable work-
ers in real-time dynamic environments and model the
two-online scenario?

References
Armenatzoglou, N., Pham, H., Ntranos, V., et al., 2015.

Real-time multi-criteria social graph partitioning: a
game theoretic approach. Proc. ACM SIGMOD Int.
Conf. on Management of Data, p.1617-1628.
http://dx.doi.org/10.1145/2723372.2749450

Burkard, R.E., Dell’Amico, M., Martello, S., 2009. Assign-
ment Problems. Society for Industrial and Applied
Mathematics, Philadelphia.

Cao, C.C., She, J., Tong, Y., et al., 2012. Whom to ask?
Jury selection for decision making tasks on micro-blog
services. Proc. VLDB Endow., 5(11):1495-1506.
http://dx.doi.org/10.14778/2350229.2350264

Cao, C.C., Tong, Y., Chen, L., et al., 2013. WiseMarket:
a new paradigm for managing wisdom of online social
users. Proc. ACM SIGGKDD Int. Conf. on Knowledge
Discovery and Data Mining, p.455-463.
http://dx.doi.org/10.1145/2487575.2487642

Cheng, Y., Yuan, Y., Chen, L., et al., 2016. DistR: a
distributed method for the reachability query over large
uncertain graphs. IEEE Trans. Parall. Distr. Syst.,
27(11):3172-3185.
http://dx.doi.org/10.1109/TPDS.2016.2535444

Gao, D., Tong, Y., She, J., et al., 2016. Top-k team recom-
mendation in spatial crowdsourcing. Proc. Int. Conf.



Liang et al. / Front Inform Technol Electron Eng 2017 18(1):107-121 121

on Web-Age Information Management, p.191-204.
http://dx.doi.org/10.1007/978-3-319-39937-9_15

Karp, R.M., Vazirani, U.V., Vazirani, V.V., 1990. An op-
timal algorithm for on-line bipartite matching. Proc.
22nd Annual ACM Symp. on Theory of Computing,
p.352-358. http://dx.doi.org/10.1145/100216.100262

Kazemi, L., Shahabi, C., 2012. GeoCrowd: enabling query
answering with spatial crowdsourcing. Proc. 20th Int.
Conf. on Advances in Geographic Information Systems,
p.189-198. http://dx.doi.org/10.1145/2424321.2424346

Kirkpatrick, S., Gelatt, J.C.D., Vecchi, M.P., 1987. Opti-
mization by simulated annealing. Science, 220(4598):
671-680.
http://dx.doi.org/10.1126/science.220.4598.671

Li, K., Lu, W., Bhagat, S., et al., 2014. On social event
organization. Proc. 20th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, p.1206-1215.
http://dx.doi.org/10.1145/2623330.2623724

Liu, X., He, Q., Tian, Y., et al., 2012. Event-based social
networks: linking the online and offline social worlds.
Proc. 18th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, p.1032-1040.
http://dx.doi.org/10.1145/2339530.2339693

Mehta, A., 2012. Online matching and ad allocation. Found.
Trends Theor. Comput. Sci., 8(4):265-368.
http://dx.doi.org/10.1561/0400000057

Meng, R., Tong, Y., Chen, L., et al., 2015. CrowdTC:
crowdsourced taxonomy construction. Proc. IEEE Int.
Conf. on Data Mining, p.913-918.
http://dx.doi.org/10.1109/ICDM.2015.77

Musthag, M., Ganesan, D., 2013. Labor dynamics in a
mobile micro-task market. Proc. SIGCHI Conf. on
Human Factors in Computing Systems, p.641-650.
http://dx.doi.org/10.1145/2470654.2470745

Pan, Y.H., 2016. Heading toward artificial intelligence 2.0.
Engineering, 2(4):409-413.
http://dx.doi.org/10.1016/J.ENG.2016.04.018

She, J., Tong, Y., Chen, L., 2015a. Utility-aware social
event-participant planning. Proc. ACM SIGMOD Int.
Conf. on Management of Data, p.1629-1643.
http://dx.doi.org/10.1145/2723372.2749446

She, J., Tong, Y., Chen, L., et al., 2015b. Conflict-aware
event-participant arrangement. Proc. 31st IEEE Int.
Conf. on Data Engineering, p.735-746.
http://dx.doi.org/10.1109/ICDE.2015.7113329

She, J., Tong, Y., Chen, L., et al., 2016. Conflict-aware
event-participant arrangement and its variant for online
setting. IEEE Trans. Knowl. Data Eng., 28(9):2281-
2295. http://dx.doi.org/10.1109/TKDE.2016.2565468

Sun, Y., Chen, C.C., 2013. A novel social event recom-
mendation method based on social and collaborative
friendships. Int. Conf. on Social Informatics, p.109-
118. http://dx.doi.org/10.1007/978-3-319-03260-3_10

Ting, H.F., Xiang, X.Z., 2015. Near optimal algorithms
for online maximum edge-weighted b-matching and two-
sided vertex-weighted b-matching. Theor. Comput. Sci.,
607(2):247-256.
http://dx.doi.org/10.1016/j.tcs.2015.05.032

Tong, Y., Chen, L., Cheng, Y., et al., 2012a. Mining fre-
quent itemsets over uncertain databases. Proc. VLDB
Endow., 5(11):1650-1661.
http://dx.doi.org/10.14778/2350229.2350277

Tong, Y., Chen, L., Ding, B., 2012b. Discovering threshold-
based frequent closed itemsets over probabilistic data.
Proc. IEEE 28th Int. Conf. on Data Engineering,
p.270-281. http://dx.doi.org/10.1109/ICDE.2012.51

Tong, Y., Chen, L., Yu, P.S., 2012c. UFIMT: an uncertain
frequent itemset mining toolbox. Proc. 18th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, p.1508-1511.
http://dx.doi.org/10.1145/2339530.2339767

Tong, Y., Cao, C.C., Chen, L., 2014a. TCS: efficient topic
discovery over crowd-oriented service data. Proc. 20th
ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, p.861-870.
http://dx.doi.org/10.1145/2623330.2623647

Tong, Y., Cao, C.C., Zhang, C.J., et al., 2014b. Crowd-
Cleaner: data cleaning for multi-version data on the
web via crowdsourcing. Proc. IEEE 30th Int. Conf.
on Data Engineering, p.1182-1185.
http://dx.doi.org/10.1109/ICDE.2014.6816736

Tong, Y., Chen, L., She, J., 2015a. Mining frequent itemsets
in correlated uncertain databases. J. Comput. Sci.
Technol., 30(4):696-712.
http://dx.doi.org/10.1007/s11390-015-1555-9

Tong, Y., She, J., Chen, L., 2015b. Towards better under-
standing of App functions. J. Comput. Sci. Technol.,
30(5):1130-1140.
http://dx.doi.org/10.1007/s11390-015-1588-0

Tong, Y., She, J., Ding, B., et al., 2016a. Online minimum
matching in real-time spatial data: experiments and
analysis. Proc. VLDB Endow., 9(12):1053-1064.
http://dx.doi.org/10.14778/2994509.2994523

Tong, Y., She, J., Ding, B., et al., 2016b. Online mobile
micro-task allocation in spatial crowdsourcing. Proc.
32nd IEEE Int. Conf. on Data Engineering, p.49-60.
http://dx.doi.org/10.1109/ICDE.2016.7498228

Tong, Y., She, J., Meng, R., 2016c. Bottleneck-aware ar-
rangement over event-based social networks: the max-
min approach. World Wide Web J., 19(6):1151-1177.
http://dx.doi.org/10.1007/s11280-015-0377-6

Tong, Y., Zhang, X., Chen, L., 2016d. Tracking frequent
items over distributed probabilistic data. World Wide
Web J., 19(4):579-604.
http://dx.doi.org/10.1007/s11280-015-0341-5

West, D.B., 2001. Introduction to Graph Theory. Pearson.
Yang, D., Shen, C., Lee, W., et al., 2012. On socio-spatial

group query for location-based social networks. Proc.
18th ACM SIGKDD Int. Conf. on Knowledge Discov-
ery and Data Mining, p.949-957.
http://dx.doi.org/10.1145/2339530.2339679

Zhang, C.J., Chen, L., Tong, Y., 2014a. MaC: a probabilistic
framework for query answering with machine-crowd col-
laboration. Proc. 23rd ACM Int. Conf. on Information
and Knowledge Management, p.11-20.
http://dx.doi.org/10.1145/2661829.2661880

Zhang, C.J., Tong, Y., Chen, L., 2014b. Where to: crowd-
aided path selection. Proc. VLDB Endow., 7(14):
2005-2016.
http://dx.doi.org/10.14778/2733085.2733105

Zhang, C.J., Chen, L., Tong, Y., et al., 2015. Cleaning
uncertain data with a noisy crowd. Proc. 31st IEEE
Int. Conf. on Data Engineering, p.6-17.
http://dx.doi.org/10.1109/ICDE.2015.7113268


	Introduction
	Problem statement
	Solution to the offline setting
	Characteristic of task planning
	Greedy offline planning
	Improved simulated annealing

	Greedy algorithm for online planning
	Experiments
	Experimental setup
	Evaluation for task planning
	Results on synthetic data
	Results on real dataset
	Summary


	Related work
	Conclusions

