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Abstract:    Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). 
The development of such systems can significantly promote innovation in AI technologies. This paper introduces the trends in the 
development of intelligent unmanned autonomous systems by summarizing the main achievements in each technological platform. 
Furthermore, we classify the relevant technologies into seven areas, including AI technologies, unmanned vehicles, unmanned 
aerial vehicles, service robots, space robots, marine robots, and unmanned workshops/intelligent plants. Current trends and de-
velopments in each area are introduced. 
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1  Introduction 
 

Intelligent unmanned autonomous systems are 
systems that are man-made and capable of carrying 
out operations or management by means of advanced 
technologies without human intervention. Since an-
cient times, humans have created countless kinds of 
unmanned systems. The technological level of un-
manned systems has gradually increased with the 
growth of human knowledge. The recent remarkable 
advances in artificial intelligence (AI) have taken 
unmanned autonomous systems to a more advanced 
level (Pan, 2016). Therefore, there is a need for an 
extended and detailed discussion of the development 

trends in intelligent unmanned autonomous systems. 
Compared with traditional autonomous systems, 

the scope of advances in unmanned autonomous 
systems has greatly expanded. Various types of intel-
ligent unmanned autonomous systems are emerging 
and their impact on society and human life will be 
significant. Systems which may be developed into 
intelligent unmanned autonomous systems now or in 
the near future include unmanned vehicles, unmanned 
aerial vehicles, service robots, space robots, marine 
robots, and unmanned workshops/intelligent plants. 

Intelligent unmanned autonomous systems are 
complex systems created by the fusion of various 
technologies related to mechanics, control, computer, 
communication, and materials. AI is undoubtedly one 
of the key technologies for the development of intel-
ligent unmanned autonomous systems. Autonomy 
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and intelligence are the two most important features 
of intelligent unmanned systems. To realize and con-
tinuously improve these two features of the system, 
the most effective approaches are normally to use 
various technologies of AI, such as image recognition, 
human-machine interaction, intelligent decision 
making, reasoning, and learning. Due simply to the 
development of these AI technologies, we have found 
that humans can create much more intelligent un-
manned systems with a higher level of autonomy and 
intelligence, in some respects approaching human 
levels. 

In this paper, we introduce the development 
trends in intelligent unmanned autonomous systems 
by summarizing the main achievements in several 
areas. Sections 2 to 8 introduce the trends in the de-
velopment of AI technology applications for intelli-
gent unmanned autonomous systems, unmanned ve-
hicles, unmanned aerial vehicles, service robots, space 
robots, marine robots, and unmanned workshops/ 
intelligent plants. This forms the basis for an overall 
description of the current trends in the development of 
intelligent unmanned autonomous systems. 
 
 
2  Trends in the development of AI technol-
ogy applications for intelligent unmanned 
autonomous systems 
 

In recent decades, AI and machine learning have 
developed rapidly in computer vision, acoustics, and 
other learning problem domains, especially since the 
emergence of deep learning (LeCun et al., 2015). 
Many amazing unmanned autonomous applications 
have arisen thanks to more advanced models and the 
improved computing capabilities of hardware. For 
example, unmanned ground or aerial vehicles and 
medical robotics have been remarkably developed 
 

 
 
 
 
 
 
 
 
 

due to the evolving progress in AI and machine 
learning. In particular, deep learning has proved to 
have outstanding learning capacity in tasks with great 
complexity. Modern computing devices like graphics 
processing units (GPUs) (Chetlur et al., 2014) and 
computation frameworks like Caffe (Jia et al., 2014), 
Theano (Theano Development Team, 2016), and 
TensorFlow (Abadi et al., 2016), have helped de-
signers and engineers build novel and robust un-
manned autonomous systems. 

Machine learning has supported unmanned au-
tonomous systems in two ways: providing perception 
and control similar to human interaction with the 
outside world, by first receiving information and then 
analyzing and controlling it. Sensory perception such 
as vision, acoustics, and tactility represent infor-
mation sources from the outside world. Models are 
needed to transform the information into different 
levels of abstraction to describe the environment. 
When the information has been obtained, unmanned 
systems can learn to control actions using reinforce-
ment learning mechanisms (Sutton and Barto, 1998) 
by evaluating rewards from the environment with 
which they interact and then choosing the best policy. 
These methods can help create end-to-end systems 
with the ability to learn a specified task with the col-
lected data. 

In vision, abstractions can include object detec-
tion (Girshick et al., 2014; Girshick, 2015; Ren et al., 
2015), classification (Krizhevsky et al., 2012; Si-
monyan and Zisserman, 2014; Szegedy et al., 2015), 
and semantic understanding (Huang et al., 2013) 
using convolution neural networks (LeCun and Ben-
gio, 1995). Inspired by the hierarchical architecture of 
the human visual cortex (Hubel and Wiesel, 1962), 
architectures for multiple convolution-pooling layers 
have been proposed and are being used in different 
machine learning tasks. For vision tasks (Fig. 1),  
 

 
 
 
 
 
 
 
 

Fig. 1  Convolution neural network architecture and principles 
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convolution layers compute a feature map by con-
volving local windows and kernels; pooling layers 
compress the feature map by picking a maximum 
activation output or the average of a local window to 
one pixel, thus forming a hierarchical pyramid 
structure with the higher layer representing a higher 
level of abstraction. Convolution neural networks 
take advantage of existing local structures and share 
weights, which can dramatically reduce over-fitting 
problems that occur in fully connected networks. 

For the sequence data of acoustics (Sak et al., 
2014) and language (Mikolov et al., 2010; Vinyals et 
al., 2015), models with recurrent structures have 
brought significant improvements to state-of-the-art 
performance. They have introduced chain-like loop 
structures into recurrent neural networks (Funahashi 
and Nakamura, 1993) as shown in Figs. 2a and 2b, in 
which F(X, H) defines the mapping from sequence 
inputs X and hidden states H to sequential outputs. 
Simple recurrent neural network (RNN) architectures 
have problems with long-term dependencies, while 
sometimes we need only a few previous memories. 
Long short-term memory (LSTM) (Hochreiter and 
Schmidhuber, 1997) models solve this problem by 
introducing different gate functions that control the 
flow of information. This approach has been quite 
successful in tasks involving language models 
(Sutskever et al., 2014) and speech recognition 
(Graves et al., 2013). Meanwhile, breakthroughs in 
image captioning (Vinyals et al., 2015) have suc-
ceeded in transforming images into the language 
domain by combining the convolutional neural net-
work (CNN) and recurrent models. Inspired by re-
search in image recognition science (Rensink, 2000), 
recurrent attention models (Mnih et al., 2014) further 
contribute to tasks involving machine translation 
(Luong et al., 2015) and image captioning (Xu et al., 
2015). 

 
 
 
 
 
 
 
 
 
 

Unlike the models described above, deep rein-
forcement learning attempts to learn how to interact 
with the environment (Sutton and Barto, 1998). It 
concerns environment Σ, set of actions A, state S, and 
a value function V in the hope of learning a policy 
mapping π(s, a) to make sequential decisions for a 
larger cumulative reward, by optimizing the 
Q-function Q(s, a) as an objective function which 
defines the utility of an action at a certain state. It is 
usually optimized by dynamic optimization and 
Monte Carlo and temporal difference methods. The 
first deep reinforcement learning model is the deep Q 
network (DQN) (Mnih et al., 2013), which transforms 
the learning problem into a Q-learning problem using 
a neural network called the ‘Q-network’. The DQN 
learning parameters in the Q(s, a) function are defined 
by aligning the maximum expectations of the utilities, 
which may be biased in some stochastic environments 
and hence result in overestimation. The double 
Q-network (van Hasselt et al., 2015) reduces overes-
timation by combining Q-learning and deep models, 
and thus can be used to approximate large-scale 
functions. The deep deterministic policy gradient 
(DDPG) optimization method for deep reinforcement 
models has improved robustness gradient (Lillicrap et 
al., 2015) estimation in dealing with deep continuous 
control models. Results from experiments show its 
convergence speed and robustness. Much research in 
applied deep neural networks in reinforcement 
learning has led to applications in different domains, 
such as the introduction of game theory into deep 
models (Heinrich and Silver, 2016) processing high- 
dimensional vision information and dealing with 
active perception problems (Oh et al., 2016), and 
engineering frameworks like OpenAI (Brockman et 
al., 2016; O’Shea and Clancy, 2016). 

Many remarkable applications have appeared 
along with developments in the research areas of 
unmanned autonomous systems. Innovations in un-
manned ground/aerial vehicles for business and se-
curity uses have surprised the research community, 
and even come to life. For example, Google has re-
leased its unmanned car for sale in California, while 
Tesla and other manufacturers’ products are under-
going testing. Also, unmanned aerial vehicles (UAVs) 
are frequently used in search and rescue and battle-
field environments for different purposes. AI algo-
rithms are applied inside these systems on a large 

Fig. 2  A basic diagram of recurrent neural networks in 
rolled (a) and unrolled (a) form 
F(X, H) defines the inner network, within which models like 
LSTM and attention are implemented 
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scale for purposes including vision, radio/radar signal 
recognition, and trajectory planning (Guizzo, 2011). 
These inventions provide economic benefits and help 
save lives. In addition, advances in deep reinforce-
ment learning have brought games into a new era as 
humans start to pay attention to their robot competi-
tors: AlphaGo won against the famous Korean player 
Lee Sedol with a final score of 4:1. The game of Go is 
considered the most complicated game in human 
history. 
 
 
3  Trends in unmanned vehicle development 

 
Unmanned vehicles (UVs) have received sig-

nificant attention from both academics and industry 
over the last decade. UVs are a typical complex sys-
tem and have been involved in many technical fields 
in different disciplines such as cognitive science, AI, 
robotics, and vehicle engineering. They have been 
widely considered a universal experimental platform 
for verifying visual, auditory, cognitive, and AI 
technologies (Montemerlo et al., 2008). The devel-
opment of UVs can not only improve the safety of 
driving and the efficiency of current transportation 
systems, but also play a significant role in other ap-
plications such as unmanned military combat plat-
forms, polar and nuclear leak detection, and functions 
in other extreme environments. 

In the early 1950s, the American company Bar-
rett Electronics developed the world’s first automat-
ically guided vehicle system. From 2004 to 2007, the 
American Defense Advanced Research Projects 
Agency (DARPA) organized three UV challenges, 
which promoted the rapid development of UV tech-
nologies (Bacha et al., 2008; Montemerlo et al., 2008; 
Urmson et al., 2008). 

In China, the National University of Defense 
Technology of China developed the Hongqi CA7460 
autonomous driving car with an autopilot, reaching a 
speed of 130 km/h, and a maximum speed of up to 
170 km/h on the highway. The car also displayed 
passing ability on the road (Huang et al., 2010). 
Tsinghua University, Xi’an Jiaotong University, Hefei 
Institute of Physical Science of the Chinese Academy 
of Sciences, and other research institutes have also 
developed their own UVs (Zhao et al., 2012; Ma et al., 
2015). From 2008 to 2015, the National Natural 
Science Foundation of China organized seven China 

Smart Car Future Challenges against the background 
of road traffic needs (Huang et al., 2014). In 2014, the 
General Reserve Department of the People’s Libera-
tion Army (PLA) organized an unmanned ground 
vehicle challenge for off-road environments (Shi and 
Liu, 2014). The successes of these challenges have 
played a significant role in promoting the develop-
ment of UVs in China. 

Due to the development of UVs, many derivative 
technologies have been applied to real applications. 
For example, the tactical UVs of the United States 
Marine Corps (USMC) can execute missions such as 
reconnaissance, nuclear biological chemical (NBC) 
detection, break down barriers, and direct anti-sniper 
shooting in any weather or in complex terrain. Car-
negie Mellon University has developed a new kind of 
UV ‘crusher’, which can drive in complex environ-
ments. Since the beginning of the wars in Iraq and 
Afghanistan, about 8000 unmanned ground vehicles 
of various types have been involved in the missions 
‘Operation Enduring Freedom’ and ‘Operation Iraqi 
Freedom’. Until September 2010, these unmanned 
ground vehicles had performed 125 000 tasks, in-
cluding suspicious target identification, road cleaning, 
and positioning and removal of improvised explosive 
devices (IEDs). The U.S. Army, Navy, and Marine 
Corps explosive demolition teams have used un-
manned ground vehicles to detect and destroy more 
than 11 000 IEDs. 

From 2010, the development of UVs entered a 
new phase because many automobile manufacturers 
and IT companies started to switch their attention to 
this field. Mercedes-Benz, BMW, Volkswagen, Ford, 
and independent prototype companies have launched 
new R&D programs for UVs. Google’s UVs (Markoff, 
2010), which are the representative models, are al-
ready on the road legally in California, Nevada, 
Florida, and Michigan, USA. On December 22, 2014, 
Google officially announced the completion of the 
first fully functional prototype of a UV, and started 
official road testing in 2015. Since then they have 
tested vehicles over 1.4 million miles. Tesla’s UV 
with wireless firmware upgraded to version 7.1.1, has 
accumulated 780 million miles of test data, and can 
collect one million miles of data every 10 h. Mobileye, 
an Israeli intelligent driving technology equipment 
manufacturer, announced early in 2013 that the 
company’s equipment would be available for auto-
matically driving a car on the road in 2016. Its C2-270 
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intelligent traffic warning systems, a successful ap-
plication of the company’s products, would be 
launched with its product upgrade. Apple also started 
an internal development program called ‘Titan’. 

Chinese companies have also been attracted to 
the boom in UVs. The Chinese search engine giant 
Baidu has released its first UV-related project. In 
cooperation with the Hefei Institutes of Physical 
Science, the Guangzhou Automobile Group has de-
veloped a renewable energy UV. Other native Chinese 
automobile manufacturers such as BYD, Yutong, and 
SAIC are also actively exploring the development and 
industrialization of UV technologies. 

Despite the progress in UVs, there are still con-
siderable problems that need to be solved, including 
situational awareness in real-time environments, in-
telligent decision making, high-speed motion control, 
precision driving maps, unmanned system evaluation 
and assessment methods, and system reliability. 
 
 
4  Trends in unmanned aerial vehicle devel-
opment 

4.1  Overview of unmanned aerial vehicles 

An unmanned aerial vehicle (UAV), commonly 
known as a drone, is an unmanned aircraft system 
(Wikipedia, 2016a). Therefore, it is a typical kind of 
advanced autonomous unmanned system. In general, 
UAVs can be used to collect data and perform moni-
toring, surveillance, investigation, and inspection 
(Nagaty et al., 2013). According to their different 
areas of applications, UAVs can be divided into two 
major categories, civilian and military (Valavanis, 
2007). 

Military UAVs, a kind of weapon, are used 
mainly for surveillance, reconnaissance, electronic 
countermeasures, and attack and damage assessment 
in battles. Compared with military uses, civilian 
UAVs have a wider range of application including 
environmental monitoring, resource exploration, ag-
ricultural surveying, traffic control, weather fore-
casting, aerial photography, disaster search and rescue, 
and transmission line and railway line inspections. 

4.2  Status of military unmanned aerial vehicles 

UAVs were first introduced by the U.S. military 
during World War I (1917) (OSD, 2002). Military 

requirements gave birth to a variety of UAVs. Many 
of them were involved in wars, such as the World War 
II, the Vietnam War, the Middle East Conflict, and the 
Kosovo War, in which they played important roles 
(Wikipedia, 2016b). These wars promoted the rapid 
development of UAV technologies. So far, the most 
advanced and well known military UAVs include the 
X47-B, Predator, Global Hawk, and Fire Scout, which 
are already capable of autonomous takeoff and land-
ing, and following autonomous flight routes. Some of 
them can partly adapt to flight faults or condition 
variations. However, according to the ‘Unmanned 
Aircraft System Roadmap 2005–2030’ published by 
the U.S. Defense Department in 2005, the current 
autonomous level of military UAVs is lower than 
level 3 (OSD, 2005). They do not have autonomous 
capabilities for route planning, decision-making, 
coordination, and cooperation. Compared with 
Western countries, military UAV technology devel-
opment started late in China, but is now in a stage of 
rapid growth. Considerable achievements have been 
made in recent years (Hsu et al., 2013; Chase et al., 
2015). 

4.3  Status of civilian unmanned aerial vehicles 

Military UAVs are technically more advanced 
than civilian UAVs, except with respect to autonomy. 
With improvement in UAV policies, civilian UAV 
technologies and industrial applications are growing 
rapidly (Canis, 2015). Currently, civilian UAV ap-
plications focus mainly on agricultural plant protec-
tion, aerial photography, and power line inspections. 
In the next few years, some investment organizations 
have predicted that the sales of civilian UAVs will 
maintain an annual growth rate of 50% or more.  

Civilian UAVs commonly fall into two catego-
ries: fixed wing types (Chao et al., 2010) or rotary 
wing types (Kendoul, 2012). As most aerial work 
requires low altitude and low speed operation, rotary 
wing UAVs are more popular in the field of civilian 
UAVs. With the development of such technologies as 
communications, sensors, and embedded systems, the 
autonomy of civilian UAVs has been significantly 
improved. Already, advanced civilian UAVs can not 
only take off, land, and fly along routes autonomously, 
but also detect and avoid obstacles in real time. In 
addition, some of them can fly in formation and co-
operate with each other autonomously (Wang et al., 
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2007). Therefore, when it comes to autonomous abil-
ities, civilian UAVs have outperformed military 
UAVs in some respects. 

4.4  Trends in unmanned aerial vehicle develop-
ment 

With progress in all kinds of technologies, the 
future development of UAVs shows a trend towards 
diversification. However, as an advanced autonomous 
unmanned system, the UAV is destined to evolve in 
the direction of low manual intervention, high au-
tonomy, and high intellectualization, no matter 
whether it is for military or civilian use. The predicted 
trends in UAV development until 2030 are shown in 
Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Three main features underpinning these trends 
are as follows:  

1. Control systems  
The autonomous control level of UAV control 

systems can be divided into several grades. For ex-
ample, in 2005 the U.S. Department of Defense di-
vided the autonomous control system of military 
UAVs into 10 levels (OSD, 2005). Generally, we can 
divide such systems into three levels: remote control, 
automatic control, and autonomous control. Currently, 
most UAVs have reached the level of automatic con-
trol. In other words, altitude, speed, position, and 
flight path can be controlled automatically (Kendoul, 
2012). However, all of these controlled behaviors are 
pre-programmed with certainty, and do not demon-

strate autonomy of a UAV. With the development of 
sensor technologies and improvements in embedded 
computing capacity, the autonomous control capabil-
ity of UAVs will be significantly improved in the 
future. When collision risk is increased or mission 
conditions change during flight, the UAV will have 
the ability to control its flight state autonomously, 
instead of mechanically following a global flight path. 
When the abnormal condition disappears, it will re-
turn to its original flight path (Fang et al., 2017). 
Future UAVs with autonomous control levels will be 
characterized mainly by some flight uncertainties. 
Moreover, security and flexibility will be signifi-
cantly improved. 

2. Human-machine relationship 
Changing human-machine relationships (Hoc, 

2000) is another trend and area of future development 
for UAVs (Gupta et al., 2013). In the early period, 
UAVs were all in man-in-the-loop mode (Wikipedia, 
2016c), which means that operation of the UAV could 
not be carried out without operation and intervention 
by a person. Currently, human-machine interaction 
with UAVs is gradually turning toward man-on-the- 
loop mode. In this mode, UAVs execute tasks ac-
cording to preset programs while people perform only 
a monitoring role to check that the status is normal. 
With enhancements in hardware and software relia-
bility, manual intervention in UAV systems will be 
reduced further in the future. People will need only to 
act as a commander to assign tasks to UAVs, but not 
to monitor and control them in real time any more 
(Harris, 2012). We call this kind of operation man- 
off-the-loop mode. A UAV at this level should have a 
high level of safety and reliability. 

3. Intellectualization 
AI is a key technology for future UAV systems to 

improve their autonomous performance. Intellectu-
alization of UAVs is occurring mainly in terms of 
autonomous flight path planning ability (Rathbun  
et al., 2002; Tisdale et al., 2009), autonomous  
decision-making ability for tasks (Ren et al., 2010), 
and autonomous air fleet collaboration ability (Me-
rino et al., 2006; Maza et al., 2010). Among these 
abilities, autonomous path planning is the first intel-
ligent trend in UAVs. At present, most paths or tra-
jectories tracked by UAVs are preset by humans with 
low efficiency and flexibility. Future UAVs should be 
able to plan their flight path autonomously according 

Fig. 3  Predicted trends in the development of unmanned 
aerial vehicles 
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to their specific mission and corresponding constraint 
conditions. When constraint conditions change, the 
UAV will adjust the flight path autonomously. The 
second intelligent trend in UAVs is the capability for 
mission understanding and decomposition. When 
faced with a complex mission, they will not need 
people to assign tasks or make decisions, but will 
complete the mission autonomously. The advanced 
intelligent UAV stage will involve swarm intelligence. 
A team of UAVs may be composed of many homo-
geneous or heterogeneous UAVs. They should have 
the capability for autonomous cooperation with each 
other and to eliminate conflicts to maximize group 
performance. Thus, a feature of future intellectualized 
UAVs will be the ability to complete complicated 
tasks effectively by autonomous cooperation (Vala-
vanis and Vachtsevanos, 2014). 

With progress in science, technology, and policy, 
future UAV systems will become truly advanced au-
tonomous unmanned systems. In particular, it is pre-
dicted that UAVs will reach an autonomous level of 7 
or 8 within the 10-level system of the Unmanned 
Aircraft System Roadmap 2005–2030 published by 
the U.S. Defense Department, and will be widely used 
in many civilian applications by 2020. By 2030, the 
autonomy level will be further increased to 9 or 10, 
and the coverage of UAV applications in aerospace 
industry and some other industries will reach 50%. 
 
 
5  Trends in service robot development 
 

Robotics involves machinery, information, ma-
terials, intelligent control, and biomedicine. Not only 
does its own technology have high added value, and 
its applications have a wide scope, but also it has 
become an important radiation technology platform. 
It has great significance in enhancing the strength of 
military defense, improving emergency preparedness, 
promoting overall economic development, and im-
proving people’s living standards. 

In recent years, popular service robot products in 
domestic and foreign markets have continued to 
emerge. In social communication services, research 
has focused on applications for helping the elderly 
and the disabled, housekeeping, medical care, educa-
tion, entertainment, national defense, aviation, and 
transportation. There are three main areas of devel-

opment of service robots: intelligent materials and 
soft robots, AI technology and chips for perception 
and control technology, and human-computer inter-
action and security technology. 

5.1  Intelligent materials and soft robots 

From the point of view of bionics and intelligent 
materials, which provide the necessary technical 
support for realizing the function of a robot, service 
robots mimic biological system structures, materials, 
and other supports. At present, the main intelligent 
materials are shape memory alloys (SMAs), Li ion 
polymers (IPMCs), and silica gel. The application of 
intelligent materials makes soft robots safe, stable, oil 
resistant, corrosion resistant, and anti-electromagnetic. 
Given Imaging, an Israeli company, developed a 
PillCam capsule robot to replace the traditional 
painful endoscopy. The German robot company 
FESTO developed the trunk robot with many dy-
namic gas pipe-like link objects for muscle function, 
which has the flexibility to perform all kinds of pre-
cise actions. At the University of California, Berkeley, 
USA, Takei (Shepherd et al., 2011) made electronic 
skin with silicon, which can feel a 0–15 kPa pressure. 
At Harvard University, USA, George Whitesides led a 
research team (Yim et al., 2007; Martinez et al., 2012) 
that achieved a breakthrough in soft robots, using a 
different structure in the software allowing the device 
to grasp hands and have a bionic walking structure. 

5.2  AI technology and chips for perception and 
control technology 

Sensing technology is the main way in which a 
machine obtains information from outside a device, 
and includes machine vision, hearing, touch, taste, 
electromyography (EMG) for brain cognition, pattern 
recognition, and natural language processing. AI im-
proves the ability of a robot to simulate human activ-
ities and study human knowledge. In 2016, Google 
launched Google Home (Wang, 2016), which can 
receive voice commands to control home appliances. 
The AI assistant software Siri, which is used in the 
iOS system, includes question answering and chat 
systems. In the USA, the iRobot robotic companies 
and the Massachusetts Institute of Technology jointly 
developed an automatic intelligent floor cleaner 
called the Roomba robot (Hong et al., 2014). It func-
tions with a navigation beacon, using simultaneous 
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visual localization and mapping technology to realize 
indoor autonomous cleaning. In 2013 at Macworld, 
Apple launched a smart toy called the Anki Overdrive 
(Feng, 2013) with development functions. This toy 
car uses AI algorithms to manipulate a robotic auto-
mobile body to implement autopilot and compete on a 
special track. The American MQ-9 Death unmanned 
aerial vehicle (Zhang, 2016) is equipped with elec-
tronic optical devices, infrared systems, low-light 
level television, and synthetic aperture radar. In 
Shenzhen City, China, the DJI-Innovations Company 
developed the Phantom 4 with sensing, automatic 
obstacle avoidance, and professional aerial ability. 
Google’s UV navigates using a camera, radar sensors, 
and laser range finder. In 2016, in Wuhu City, Anhui 
Province, China, Baidu built the country’s first UV 
operations area. In 2016, China’s first embedded 
neural processing unit (NPU) chip was born, which 
has been applied to the world’s first embedded video 
processing chip. 

5.3 Human-computer interaction and security 
technology 

As service robots become more closely related to 
human life and interaction, security technology is 
gaining wider attention. Deka Arm, funded by 
DARPA, was the first to obtain U.S. FDA attestation 
for an assistive robotic arm. It has a neural interface 
which will translate the neural activity of the brain 
cortex to a control signal manipulating an auxiliary 
device (Kuiken et al., 2009; Rebsamen et al., 2010). 
The bed and chair integration robot (Hu et al., 2013) 
researched and developed by the Robot Institute of 
Beihang University, China, is able to administer care 
and support for the elderly, thereby greatly reducing 
the burden on nursing staff. The American Intuitive 
company created the Da Vinci Xi operating system, 
which is committed to minimally invasive surgery. In 
2016, Boston Dynamics introduced SpotMini, a fam-
ily service robot. Assisted by many sensors, it can 
walk freely, and load the dishwasher in the laboratory 
by means of a mechanical arm. 

 
 

6  Trends in space robot development 
 

Space robots are one of the main means of au-
tonomous on-orbit service. In the past 20 years, the 

leading powers in space have carried out a great deal 
of fruitful research into autonomous on-orbit service. 
A series of ground tests, including on-orbit tests and 
applications, have shown that autonomous on-orbit 
service is a feasible technique, and it has captured 
wide attention in research and development (Sullivan 
and Akin, 2001; Long et al., 2007; Flores-Abad et al., 
2013). 

Generally, patterns in autonomous on-orbit ser-
vice are performed mainly through space robots. 
According to the number of space robots carrying out 
tasks, autonomous on-orbit service can be categorized 
into two types: on-orbit service using a single fully 
functional space robot, and on-orbit service using 
multiple space robots with relatively simple functions.  

6.1  Current research status of space robots 

6.1.1  USA 

The USA conducted research into on-orbit ser-
vicing early on and took a leading position interna-
tionally. Twelve projects were conducted, six of 
which proceeded to on-orbit demonstration. Currently, 
there are three projects: the FREND (Akin and 
Bowden, 2003; Obermark et al., 2007; Debus and 
Dougherty, 2009), a robot refuel task (Kandaswamy 
et al., 2014), and the Phoenix program. The FREND 
and Phoenix programs are aimed mainly at enabling 
GEO satellites to operate autonomous on-orbit ser-
vice, while the robot refuel task applies to interna-
tional space stations and has practical functions. The 
development of the American space robot has un-
dergone a complete technological progression from 
vision measurements, circle supervision, and ren-
dezvous and docking to autonomous capture. The 
robots are aimed at on-orbit servicing of targets which 
are high orbiting and non-cooperative. Through the 
research and on-orbit verification of autonomous 
on-orbit service projects, the USA has made good 
progress in space manipulation, vision measurement 
targeted at cooperative objects, circling, rendez-
vousing, and docking. 

6.1.2  Germany 

Germany attaches great importance to the study 
of space robots and automation. There have been six 
projects on space robots so far (Hirzinger et al., 1994; 
Settelmeyer et al., 1997; Cusumano et al., 2004;  
Albu-Schaffer et al., 2006; Landzettel et al., 2006; 
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Preusche et al., 2006), three of which conducted 
on-orbit demonstrations. At present, two representa-
tive projects are underway, the DOES project and the 
OLEV project. OLEV is aimed at providing service 
for GEO orbiting satellites while DOES targets 
mainly technical verification of low-orbiting, non- 
cooperative objects. The development of German 
on-orbit service progressed from cabin robots 
(ground-based verification teleoperation), outboard 
robot joint technical verification, to carrying out a 
study of free-drive space robots. Furthermore, they 
have comprehensive research and applications in 
teleoperation technology. 

6.1.3  Japan 

On-orbit service technology in Japan is rela-
tively mature and has a high status internationally. 
Japan has launched three projects related to space 
robots (Masanori et al., 1998; Oda et al., 1999; Sato 
and Wakabayashi, 2001), all of which have been 
through on-orbit demonstration verification, espe-
cially the ETS-VII project which performed the first 
experiment in autonomous grasping. The Japanese 
approach to on-orbit service development has achieved 
a great leap forward in evolution from a robot arm to a 
free-drive flight robot. Through the demonstration of 
its on-orbit project, Japan has mastered the technol-
ogy of the space robot arm, rendezvous and docking, 
and space teleoperation, thereby contributing signif-
icantly to the development of space technology. 

6.1.4  Canada 

The projects conducted on space robots in 
Canada serve mainly the Shuttle Remote Manipulator 
System (SRMS) for the space shuttle and the Mobile 
Serving System (MSS) of the space station (Taylor 
and Ramakrishnan, 1992; Zimpfer and Spehar, 1996; 
Stieber et al., 1999). The primary function of the 
SRMS is to capture and relieve satellites, acting as 
auxiliary equipment. The MSS consists of a mobile 
base, Space Station Remote Manipulator System, and 
Specific Purpose Dexterous Mechanical Arm, and its 
primary function is to assist with the docking and 
transportation of cargo. Canadian On-Orbit Devel-
opment Center studies of large-scale space robot arm 
technology have progressed from basic arm tech-
niques, delicate operational arms to dexterous robot 
hands, accumulating abundant experience in design, 
manufacture, and application. 

6.2  Trends in space robot development 

Space robots are typical intelligent unmanned 
autonomous systems. The likely future trends in their 
development can be described as follows. 

6.2.1  Requirements 

1. In the future, there will be a strong demand for 
space robots in the fields of space station maintenance, 
on-orbit service for satellites, and on-orbit assembly 
of large-scale spacecraft.  

2. The operation of space robots will be more 
concerned with small-scale, generalized, and accurate 
operation.  

6.2.2  Mechanical structure 

1. Looking back on their history, space robots 
have followed a development route from single-arm 
robots, to dual-arm robots, then multi-arm robots. 
Thus, future space robots will become multi-armed 
and increasingly complicated. 

2. Given the diversity of tasks and environments, 
appropriate reconfigurable and compliant robots will 
be applied to each workspace. 

6.2.3  Manipulation by the end effector 

1. Generalized multi-fingered robot hands and 
customized replaceable tool sets are two major trends 
in the design of the end effector. 

2. There will be a strong demand for various 
kinds of sensing approaches, which will determine the 
manipulation capacity and intelligence of the robots. 

6.2.4  Dynamics and control 

1. With the increasing complexity of robotic 
systems, more attention will be paid to the coopera-
tive control of multi-arm, multi-robot systems. 

2. To ensure the safety of astronauts and ma-
chines during the human-machine collaborative pro-
cess, security will become an important aspect of the 
design of space robots. 

3. With the increased capacity for sensing and 
information processing, more emphasis will be placed 
on human-computer interaction, which will gradually 
evolve into semi-autonomous, and finally fully au-
tonomous control. 

6.2.5  Human-machine interaction 

1. To make full use of the intelligence of robots, 
the advantages of human-in-loop control should be 
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explored. A robot control system should be compati-
ble with various human-machine interaction ap-
proaches and multi-modal interactions. 

2. Natural and flexible are the characteristics of 
the new generation of human-computer interaction 
methods. This will promote human-oriented, flexible 
human-machine interaction methods, such as voice, 
wearable equipment, and EMG. 

6.2.6  Modeling and experimentation 

Because of the lower cost, experiments with 
space robots will be carried out on the ground with a 
gravity condition of 1g. Industrial robots will be used 
to verify key robotic techniques, taking into account 
the equivalence of space and ground robots. 

In space exploration, future research will focus 
on multi-robot coordinative control with autonomous 
decision making for on-orbit operation, deep learning 
for space robots with a large time delay and remote 
operation techniques by means of depth of immersion, 
as well as autonomous recognition and reconstruction 
techniques for next-generation modular and replace-
able intelligent aerospace systems. The above tech-
niques will provide invaluable support for construct-
ing autonomously operating unmanned scientific 
research stations on the lunar surface.  
 
 
7  Trends in marine robot development 
 

The trends in development for next-generation 
marine robots will be determined and influenced by 
application demands and related technical advances. 
In this paper, we will describe the trends in the de-
velopment of marine robots in terms of the platform 
and intelligence. 

7.1  Trends in marine robot platform development 

Given the advances in marine robots, their ap-
plications in various missions relating to ocean ex-
ploration and exploitation are booming. However, 
harsh ocean environments bring great challenges, and 
marine robot platforms need to be reliable enough to 
perform their tasks safely. With the advances in gen-
eral robotic techniques, the techniques relating to 
marine robots are becoming increasingly mature, and 
robot reliability is improving. The following four de-
velopment trends can be identified for marine robots. 

7.1.1  Long endurance marine robots 

A typical application for marine robots is to ob-
serve the ocean and collect all kinds of scientific data. 
This usually requires the robots to be able to survey 
the ocean in a large spatial scale and long temporal 
scale. Several types of long endurance marine robot 
platforms have been developing rapidly in recent 
years. The design of drive modes without a propeller 
is a hot topic. Underwater gliders have been devel-
oped recently. They use an engine to adjust their 
buoyancy and wings to generate lift force to enable 
their gliding motion in the ocean. Wave gliders are 
also undergoing rapid development. Unlike under-
water gliders, wave gliders use surface waves to drive 
their motion, giving them more endurance than un-
derwater gliders. Recently, mobile ocean sensor 
networks combined with multiple underwater gliders 
have received significant attention and have been 
used in a number of ocean observation missions 
around the world. Aside from decreasing on board 
power consumption, some new energy harvesting 
techniques such as thermal engines are being devel-
oped to further increase the endurance of marine ro-
bots. In the future, with advances in power supply 
technology, marine robots will have longer opera-
tional endurance, based partly on the use of envi-
ronmental energy such as solar, currents, waves, and 
biology. 

7.1.2  Hybrid marine robots 

Marine environments are very complex, and 
marine robot missions are varied. There is no one type 
of marine robot that can accomplish all kinds of mis-
sions. Each type of marine robot platform has its 
specific application field and limitations. Therefore, 
hybrid marine robots, which combine the features and 
capabilities of different types of robots, have become 
a new development trend. The Nereus is a hybrid 
marine robot used to explore the Mariana Trench. It 
was developed by the Woods Hole Oceanographic 
Institute, MA, USA. It is a hybrid remotely operated 
vehicle (ROV), which combines the advantages of a 
ROV and an autonomous underwater vehicle (AUV) 
through changing its operating mode. Based on the 
AUV mode, it can carry out light interventions with 
the manipulator and optical fibres. In China, the 
Shenyang Institute of Automation at the Chinese 
Academy of Sciences has also developed a hybrid 
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marine robot for polar exploration. The Arctic ARV 
(Autonomous and Remotely Operated Underwater 
Vehicle) can move under the sea ice as an AUV ac-
cording to the mission program. When something of 
interest is found, it can be switched to ROV mode to 
operate remotely by optical fibre. Thus, in one dive, 
the Arctic ARV can execute a task in a hybrid manner. 
Recently, in addition to the hybrid AUV and ROV, 
other marine robots combining an unmanned surface 
vehicle (USV) and an AUV, a UAV and an AUV, and 
gliders and AUVs have been developed. In the near 
future, there will be more types of hybrid marine 
robots developed to meet the requirements of ocean 
survey. 

7.1.3  Fine intervention marine robot 

A number of missions such as underwater in-
tervention or construction require marine robots to 
perform complicated and fine tasks in complex un-
derwater structures. These require marine robot 
platforms to be able to resist various types of dis-
turbances and have good manoeuvrability. Some ad-
vanced techniques such as dexterous fingers with 
force and tactile sensing, which have been employed 
by other field robotic systems, will be integrated into 
marine robots to make them ‘skilled workers’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.1.4  Biomimetic marine robots 

The development of biomimetic marine robots 
that imitate the behavior or mechanisms of marine 
animals, has always been a trend in the development 
of marine robots. A variety of biomimetic marine 
robot platforms such as robotic fish, crabs, snakes, 
and turtles have been developed. However, most have 
not been applied because their capabilities are not 
good enough to satisfy the requirements of practical 
applications. In the future, biomimetic marine robots 
will be employed in many practical applications, 
following advancements in techniques in areas of new 
materials, new energy, and new sensors.  

7.2  Trends in marine robot intelligence develop-
ment 

Generally, the autonomous performance of a 
robot depends on cognition, control, and swarm in-
telligence. This holds true for marine robots. In Fig. 4, 
these three evaluation metrics are further divided into 
several levels according to the development of marine 
robots and the history of AI.  

Scientists and engineers working on marine ro-
bots have focused on the capabilities in autonomous 
control in recent decades and great progress has been 
made along the ‘autonomous control’ axis (Fig. 4). 
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Fig. 4  Evaluation metrics for marine robots (SLAM: simultaneous localization and mapping) 
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Though manned submarines were proposed by 
Bourne in 1578 and brought into service by van 
Drebbel in 1620, it was soon recognized that un-
manned marine robots would be more appropriate for 
many underwater tasks. The first ROV project was 
launched by the U.S. Navy in 1958, with the goal of 
building an underwater salvage device that could be 
controlled through a tether cable. The first AUV, 
SPURV, was developed by the Applied Physics La-
boratory, University of Washington, USA in 1957. 
The SPURV AUV was built for studying the diffusion 
and acoustic transmission of submarines. Though the 
AUV was proposed at almost the same time as the 
ROV, progress in its level of autonomy has largely 
been blocked by the limitations of AI, control tech-
nology, and sensing. The outcome of this is that 
ROVs and AUVs always coexist in the sea, yet they 
work in different situations. For example, an ROV is 
appropriate for local and precise field operations such 
as underwater engineering, while an AUV is usually 
more appropriate for large-scale survey tasks such as 
long-range search and detection. The relative inde-
pendence of AUVs and ROVs will last a long time 
before the essential breakthrough occurs in the areas 
of autonomous cognition and control.  

The autonomous environmental cognition ability 
of marine robots can be ranked according to the fol-
lowing six levels: basic data collection and mechan-
ical collision avoidance, object classification, recog-
nition, simultaneous localization and mapping 
(SLAM), inference and semantic understanding. 
Almost all marine robots, no matter whether they are 
ROVs or AUVs, are equipped with several kinds of 
sensors to collect environmental data, such as forward 
sonar, side scan sonar, and altimeters. However, not 
all are capable of extracting valuable information 
from the data. It is reported that the REMUS and the 
Bluefin, which have been adopted by the U.S. Navy, 
are able to avoid possible collisions and to recognize 
specific objects. However, even with typical mine 
detection tasks, there are still many problems needing 
to be solved. In future, marine robots should be able 
to infer the existence of unknown objects based on 
other known environmental information and prior 
knowledge. 

Swarm intelligence depends on communication 
networks. In the case of ground or air, wireless 
communication networks lead to problems of opti-

mization such as formation and cooperation. However, 
it is different in the case of marine robots, because of 
the rapid signal degradation in acoustic communica-
tions. The ranking standards listed along the ‘swarm 
intelligence’ axis in Fig. 4 are common for other field 
robots. For example, the problems of formation con-
trol, task planning, cooperation, task re-planning, and 
cooperative exploration apply to both ground vehicles 
and unmanned air vehicles. ‘Duty’ means that the 
marine robots understand the tasks, allocate them to 
each member autonomously, and solve the problem 
by themselves. As discussed above, the key problem 
with marine robots is acoustic signal degradation and 
delay. Even formation control and cooperation under 
such weak communication conditions are still at the 
academic research stage. 

The hope is that a marine robot’s actions will be 
as swift as those of a fish, and its intelligence com-
parable to that of a human. We are sure that marine 
robots will achieve practical status in the near future 
with advances in control, cognition, and swarm  
intelligence. 

 
 

8  Trends in the development of unmanned 
workshops/intelligent plants  
 

In the past 30 years, China’s industrialization has 
made remarkable progress and contributed greatly to 
global economic growth. Because the industrializa-
tion process has been accompanied by progress in 
informatization (Fig. 5), it is neither feasible nor 
necessary for China to follow a traditional develop-
ment pattern, i.e., realizing industrialization first and 
then informatization. China should grasp the tre-
mendous historic opportunity brought about by the 
rapid development in information and communication 
technology (ICT). Two historical processes (in-
formatization and industrialization) are progressing 
together in China. 

With the progress in world trade and globaliza-
tion and the development of ICT and industrial 
technology, manufacturing patterns and technology 
are facing a turning point. Many developed or de-
veloping countries have published their national 
strategies supporting their economic transformation, 
including: (1) integration of Industrialization & In-
formatization (iI&I) and Manufacturing 2025 in 
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China; (2) Industry 4.0 for Germany; (3) re- 
industrialization and industrial Internet for the USA. 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Faced with the current complicated international 

and domestic economic situations and trends, iI&I 
with smart manufacturing is a strategy critical for the 
survival and long-term sustainability of Chinese en-
terprises. The iI&I in Chinese enterprises has its own 
characteristics. According to China’s industrialization 
and ICT application status and shortcomings, in-depth 
exploration and practices should be initiated. To sup-
port transformation, standardization is an important 
part of China’s manufacturing and technology de-
velopment strategy, which includes several activities: 
(1) introducing and translating ISO/IEC standards 
into Chinese, (2) developing sets of technical stand-
ards, (3) developing standard frameworks for indus-
trial enterprises, and (4) developing management 
architecture and related management standards. 

To identify developing trends in smart manu-
facturing, classifying and positioning all related 
standards, and describing relationships among stand-
ards clusters, three reports have been introduced into 
the reference models. 

As shown in Fig. 6a, based on the ARC Advisory 
Group’s model for collaboration manufacturing 
management (ARC Advisory Group, 2002) and 
ISA95’s Enterprise-Control System Integration hier-
archical model (Barkmeyer, 1996), NIST describes a 
smart manufacturing ecosystem (Lu et al., 2016). The 
reference architecture model for Industry 4.0 is shown 
in Fig. 6b (DIN, 2016). To realize the Chinese Man-

ufacturing 2025 national strategy, the Ministry of 
Industry and Information Technology of China (MIIT) 
and the Standardization Administration of China 
(SAC) published a joint report entitled ‘National 
Smart Manufacturing Standards Architecture Con-
struction Guidance’. In this report, based on the Smart 
Manufacturing Standardization Reference Model of 
China (MIIT and SAC, 2015) (Fig. 6c), to realize the 
Chinese Manufacturing 2025 national strategy, the 
unmanned workshop/intelligent plant will become the 
most important carrier. In each plant, all processes are 
predicted to be operated by computer-controlled ro-
bots, computer numerical control machining equip-
ment, unmanned transport trucks, and automated 
warehouse equipment. 

Although the three reports share some common 
ideas and similar concepts and elements, it is neces-
sary to develop a general reference model for smart 
manufacturing standardization:  

1. A generalized reference model is needed to 
link these reference models together to realize in-
teroperation among them. 

2. In these reference models, standards are lo-
cated in every dimension. Developing and using these 
standards covers two or three dimensions, which have 
not been discussed in detail, especially in the NIST 
report. 

3. There are different viewpoints for standards 
development and implementation, so combining them 
is a significant challenge. 

4. For a manufacturing company, it is necessary 
to accept and apply a standard framework as a whole 
to support its smart manufacturing program. Thus, a 
system is required to describe standard clusters. 

The biggest changes to the factory of the future 
will also come from information technology. The 
unmanned workshop/intelligent plant will strengthen 
information management services by using the In-
ternet of Things technology and monitoring tech-
nology, improving production process controllability, 
reducing the production line of human intervention, 
as well as introducing reasonable planning scheduling. 
At the same time, a set of intelligent instruments and 
systems and other technologies will continue to ap-
pear with continuous developments in industry and 
technology, such as computer-aided design. Simula-
tion technologies will reduce the time and cost of 
bringing new products to market and advanced 

Fig. 5  The process of industrialization and technology 
development in different parts of the world 
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robotics technology will make automation cheaper 
and more flexible. 

From the above discussion we have created a 
high-level architecture for the unmanned workshops/ 
intelligent plants (Fig. 7). The components of this 
architecture are identified as man-machine fusion, 
hybrid virtual and reality technique, distribution and 
centralization, and defining common terminology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

used throughout this section. The proposed theoreti-
cal model can be divided into four spaces: de-
vice-level manufacturing space, unit-level manufac-
turing space, cross-layer manufacturing space, and 
cross-domain production cyberspace. The focus of 
the technologies in each space reflects the important 
problems to be solved for unmanned workshops/ 
intelligent plants in that space. 

(a) 

Fig. 6  Smart manufacturing reference architectures: (a) smart manufacturing ecosystem of NIST (Lu et al., 2016);  
(b) reference architecture model for Industry 4.0 (DIN, 2016); (c) smart manufacturing standardization reference 
model of China (MIIT and SAC, 2015) 
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9  Conclusions 
 

In this paper, we have described the trends in the 
development of intelligent unmanned autonomous 
systems with regard to seven aspects: technology 
applications of AI for intelligent unmanned autono-
mous systems, unmanned vehicles, unmanned aerial 
vehicles, service robots, space robots, marine robots, 
and unmanned workshops/intelligent plants. We hope 
these trends and predictions will be realized in the 
near future. The world will be changed for the better 
and human life will be improved by means of intel-
ligent unmanned autonomous systems. 
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