
Wu et al. / Front Inform Technol Electron Eng   2017 18(9):1385-1395 1385

 

 

 

 

Using improved particle swarm optimization to tune PID 

controllers in cooperative collision avoidance systems* 

Xing-chen WU1, Gui-he QIN1,2, Ming-hui SUN†‡1,2, He YU3, Qian-yi XU1 
(1College of Computer Science and Technology, Jilin University, Changchun 130012, China) 

(2MOE Key Laboratory of Symbol Computation and Knowledge Engineering, Changchun 130012, China) 

(3Department of Measurement and Controlling Engineering, Changchun University, Changchun 130012, China) 
†E-mail: 511518984@qq.com 

Received July 20, 2016;  Revision accepted Jan. 23, 2017;  Crosschecked Sept. 6, 2017 

 

Abstract:    The introduction of proportional-integral-derivative (PID) controllers into cooperative collision avoidance systems 
(CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, 
comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm 
optimization (PSO) algorithm, and to better manipulate cooperative collision avoidance with other vehicles. First, we use 
PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, 
maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID 
controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the 
optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the 
two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using 
the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, 
riding comfort, and fuel economy. 
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1  Introduction 

With the increase in the number of automobiles, 
the number of road accidents exhibits an upward 
tendency. Hence, the study on how to improve traffic 
safety becomes significant. As a vehicle initiative 
safety technique that can be adopted to reduce the 
traffic accident rate, cooperative collision avoidance 
systems (CCASs) play an important role in cutting 
down rear-end chain collisions and forward collisions 
(Seo et al., 2014). The emergence of vehicle-to-  
vehicle (V2V) communication technology makes it 

possible for dynamic data interactions among auto-
mobiles (Lee et al., 2010). As CCAS, which is gen-
erated by combining V2V with collision avoidance 
systems (CAS), can be used to share location, kinetics, 
and other information of automobiles in real time, the 
accuracy of CAS is enhanced to a certain extent. 
Therefore, CCAS has a broad technical prospect and 
high practical value. Due to the features of a  
proportional-integral-derivative (PID) controller, 
such as structural simplicity, reliability, and conven-
ience for adjustment, it is rational to incorporate the 
PID controller in the control unit of CCAS (Wang et 
al., 1997). PID controller optimization in accordance 
with specific environments, as a typical multi-  
objective optimization problem, is the focus of this 
study. To solve such a problem, an evolutionary al-
gorithm, which is a global optimization algorithm 
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with high robustness and general applicability, is 
employed. 

A vast amount of literature on CCAS is available. 
Zardosht et al. (2013) presented a decision-making 
module for accident situations, which processes in-
formation from vehicular ad hoc network communi-
cation (VANET). The module can be implemented in 
each vehicle to assist the driver in certain situations. 
Wang and Phillips (2013) proposed a path-planning 
scheme for a multi-agent movement system. They 
used reinforcement learning to develop a maneuver-
ing decision sequence. Ong and Gerdes (2015) pro-
posed a proximal message passing algorithm to solve 
the simple model predictive control problems of 
CCAS. Intersection-collision warning systems that 
use vehicle-to-infrastructure (V2I) communication to 
avoid accidents at urban intersections face the prob-
lems of real-time information delivery and high cost. 
Cho and Kim (2014) proposed an intersec-
tion-collision warning system based on V2V com-
munication to solve such problems. Tan and Huang 
(2006) explored the feasibility of cooperative colli-
sion warning systems (CCWSs), where vehicles are 
equipped with a relatively simple differential global 
positioning system (DGPS) and motion sensors. Yan 
et al. (2010) derived analytical expressions for key 
CCWS metrics that rely on mobility information 
exchanged by various players. They analyzed mobil-
ity parameters and derived the conditional probability 
of a collision. To enhance the accuracy of CCWS, 
Huang and Lin (2014) proposed a vector-based 
CCWS (VCCW). 

Although the vehicle collision avoidance and 
emergency steering functions of CCAS have been 
implemented in previous studies, the stability, driving 
comfort, and fuel economy of vehicles have not been 
taken fully into account. In addition, when optimized 
PID controllers are introduced into CCAS, ideal PID 
controller optimization results cannot be acquired by 
common genetic algorithms, due to their defects such 
as prematurity and poor stability. Therefore, the pop-
ularization and development of CCAS have been 
restricted. 

To solve these problems, in this study we adopt 
an improved particle swarm optimization (PSO), 
which has the characteristics of high precision and 
ease of convergence, to optimize the performance of 
CCAS control units. To validate this method, two 

different types of vehicle equipped with CCAS were 
used in experiments related to their deceleration 
steering and braking at low and high cruising speeds, 
before and after the improved PSO was applied to the 
PID controller. During these experiments, vehicles 
kinetic data were acquired, including longitudinal and 
transverse speeds, accelerations, and longitudinal 
displacement of tires. Analysis of the data showed 
that the approach of setting a PID controller using the 
improved PSO can improve steering stability, driving 
comfort, and fuel economy of automobiles with 
CCAS. 
 
 
2  PID controller tuning based on improved 
PSO 

 
PID calibration is applicable to a CCAS as a 

lagging controlled object with inertia, because it has 
the ability to partly decrease system overshoot and 
rise time, and to improve system stability and rapidity 
(Feng et al., 2012). As PSO has fast convergence 
property and simple algorithm structure, and is ap-
propriate for value type processing, it satisfies the 
optimization requirements of a PID controller in this 
study. Thus, we adopt a PID controller to improve the 
dynamic behavior of the CCAS during regulation and 
PSO to adjust the parameter of the PID controller. 

2.1  Improved PSO 

During the optimization process of PSO, there 
can be problems such as being trapped into local 
optima and premature evolutionary stagnation. Jin et 
al. (2010) introduced the worst position for individual 
and spherical particles in standard PSO. This method 
not only accelerates the convergence of particles, but 
also increases the diversity of particles in a group, 
promoting the global optimality of convergence. Shi 
and Eberhart (1998; 2001) noted that the global 
search ability is stronger when ω is relatively large; 
otherwise, the local search ability is stronger. Based 
on this, they proposed the method of random inertia 
weighting, in which the value of ω decreases linearly. 
To increase the diversity of particles in the group, 
Zhang et al. (2008) introduced a random acceleration 
factor into standard PSO calculation. According to the 
test, this method improves the local search ability of 
PSO. In this study, when introducing the worst  
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positions of individual and spherical particles into 
standard PSO, we consider the positive effects of 
random inertia weighting and the random learning 
factor on the diversity of the particle swarm and on 
avoiding the trapping into local optima while keeping 
the convergence rate. To adjust the PID controller 
using the improved PSO, let k=[kv, kr, ka] represent an 
individual vector for the particle swarm, where kv, kr, 
and ka represent proportion, integration, and differ-
entiation, respectively. The particle swarm consisted 
of 10 particles. Therefore, the maximum search space 
d was 30. The velocity and position of particle i can 
be calculated by 
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where t corresponds to the iteration index, vi(t) the 
current velocity of particle i, and vi(t+1) the next stage 
velocity. Pi is the optimal position of particle i during 
the current search, and Pg is the optimal position of 
the particle swarm during the current search. To de-
scribe the effects of the individual and global worst 
values on the update process of a particle’s velocity, 
we introduce σ1 and σ2, which are uniformly distrib-
uted in [1.8,  2.0] as dynamic response factors (Jin et 

al., 2010). iP  and gP  correspond to the positions 

where particle i and the particle swarm have the worst 
solutions, respectively. According to Zhang et al. 
(2008), we introduce two random acceleration factors 
c1 and c2, which are random numbers uniformly dis-
tributed in [1.8, 2.0] and remain unchanged during the 
swarm initialization. r1 and r2 are random numbers 
distributed in [0, 1]. ki(t) and ki(t+1) represent the 
current and next locations of particle i, respectively. 
The inertia weight ω decreases linearly with the 
number of iterations (Eq. (3)). In this study, the 
maximum and minimum inertia weights ωmax and 
ωmin were 1.2 and 0.4, respectively. tmax stands for the 
maximum iteration number of PSO and was 100 in 
this study. 

2.2  PID controller tuning 

In this study, the outputs of the accelerating and 
decelerating pedals are used to indicate the final ob-
jective function. Based on Kreuzen (2012), we pro-
pose a corresponding PID control rate to apply the 
modified PSO to PID control: 
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where vept(K), aept(K), and rept(K) are the expected 
dynamic statuses of the vehicle. v(K), a(K), and r(K) 
are the actual dynamic statuses of the vehicle. r(K) 
and a(K) stand for the integration and differentiation 
of v(K), respectively. A controlled variable is set up 
from the linear combination of the deviation between 
the vehicle’s practical and expected dynamic states 
according to the above parameters, and the perfor-
mance of the CCAS control unit can be improved. 

The optimization of the PID controller involves 
determining appropriate ka, kv, and kr values to opti-
mize the performance of the CCAS control unit with 
the objective that all the integrated evaluation indi-
cators and certain rules are satisfied. To increase the 
optimization efficiency, we first confirm the upper 
and lower bounds for searching for the parameters of 
the PID controller using the Zieglar-Noeols (ZN) 
method. The introduced error property index J should 
be minimized for the stability and robustness of the 
optimized PID controller. Here, we introduce the 
integrated square error (ISE) as the error property 
index: 
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where e is the error function. 

Based on the conditions above, we initialize a 
10-particle swarm, in which each particle works as a 
feasible solution. The velocity, acceleration, and dis-
tance of the vehicle under the simulation environment 
are used as input. Based on the evaluation function, 
parameters ka, kv, and kr are optimized in the setting 
range using the modified PSO. The fitting parameters 
for the PID controller are found after 100 iterations. 

To test the effectiveness of the proposed method, 
we conducted a step response test using the original 
PID controller and the PID controller optimized by 
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the modified PSO (Fig. 1). The obtained optimal 
values of the PID controller are kv=1.8882, kr= 
−1.0281, and ka=0.5980. As shown in Fig. 1, the ris-
ing time of the PID controller optimized by the im-
proved PSO is shorter than those of the original PID 
controller and the PID controller optimized by 
standard PSO. Meanwhile, the overshoot of the PID 
controller optimized by the improved PSO is obvi-
ously smaller than those of the original PID controller 
and the PID controller optimized by standard PSO. 
Thus, we can infer that the PID controller optimized 
by the modified PSO can better access the state of 
stability. 

 
 
 
 
 
 
 
 
 
 
When the vehicle is driving at a relatively low or 

high speed, the methods of deceleration braking and 
deceleration steering maneuvering are the most ef-
fective in avoiding crashes with target vehicles. Based 
on Solyom and Bengtsson (2012), we used the vehicle 
velocity judgment threshold v in Eq. (6) to decide 
which maneuvering method to choose in the particu-
lar cases in our study: 
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where v is the vehicle velocity judgment threshold, w 
the lateral deviation for the vehicle to avoid crash 
with the target vehicles or barriers, and a and y″ the 
acceleration and lateral acceleration of the vehicle, 
respectively. 

When the vehicle avoids a crash with a target 
vehicle by adopting deceleration steering maneuver-
ing, an important component of the CCAS is a rea-
sonable turning path planning model to improve the 
dynamic stability and riding comfort of the vehicle. 
According to related studies, when the driver adopts 
steering crash maneuvering, the track of the con-
trolled vehicle resembles a quantic polynomial: 
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where x and y represent the vertical and lateral coor-
dinates of the vehicle riding on the planned path, 
respectively, and r the distance the vehicle needs to 
ride to avoid a crash with the target vehicle (Zhu et al., 
2015). 

We can achieve vehicle turning path planning 
using Eqs. (7)–(9). In addition, according to Zhu et al. 
(2015), the riding stability of the vehicle can be 
guaranteed when the lateral acceleration |ay|7 m/s2. 
In this case, we chose this value as the limit of lateral  
acceleration. 

3  Experimental design and results 

3.1  Experimental design 

In this study, PRESCAN-MATLAB/SIMULINK 
joint simulation was used to construct a CCAS test 
environment. To reflect physical circumstances, a set 
of automobiles comprising two vehicles equipped 
with CCAS was used for the test (Kim et al., 2016). 
Parameters for the test vehicles are listed in Table 1. 

 

Table 1  Vehicle dynamics constraints 

Constraint Value 

Lateral acceleration limit, ay |ay|≤7 m/s2 

Minimum acceleration, gmin 0.30 m/s2 

Maximum acceleration, gmax 1.00 m/s2 

 

In the case where diverse initial cruising speeds 
were set for the two vehicles, kinetics control per-
formances of the CCAS were tested under states of 
high and low speeds. The corresponding test scenar-
ios are as follows: 
Scenario 1    The test vehicle cruised with different 
initial speeds of 11 and 22 m/s. Collision with a target 
vehicle traveling in the same direction was imitated. 
To avoid such a collision, the CCAS checked the 
brake state in line with the real-time kinetics data of 
the target vehicle acquired by the DSRC module 
(Mirfakhraie et al., 2014). 

Fig. 1  Step response of the closed-loop PID controller
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Scenario 2    The initial cruise speeds of the test ve-
hicle were changed to 14 and 26 m/s. If it is possible 
that a collision with the target vehicle traveling in the 
same direction occurs, only checking brake cannot 
avoid such a collision, because the speed of the test 
vehicle is far higher than that of the target vehicle. If 
adjacent lanes allow secure lane variation, a maneu-
vering of a lane change with deceleration should be 
taken to avoid collision. 

PID controllers with and without optimization 
were separately employed in the above scenarios to 
verify whether the improved PSO enables the CCAS 
to combine the braking intervention judgment module 
and turning path programming module in a more 
effective manner and achieve the goals of improved 
vehicle dynamic performance and fuel economy. To 
test the effects of the CCAS, a variable motion was set 
for the target vehicle during the experiments. 

In the case where the vehicle takes advantage of 
a checking brake to avoid colliding with the target 
vehicle, the major factor affecting the stability and 
comfort of vehicles is their longitudinal acceleration. 
On this basis, longitudinal velocity and acceleration 
were collected. In addition, tier longitudinal dis-
placement describing the behavior of the vehicle was 
recorded for scenario 1. When the vehicle undertakes 
a deceleration steering maneuver to avoid colliding 
with the target vehicle, its lateral acceleration is the 
primary factor affecting its dynamic stability. To 
portray the behavior of the vehicle in scenario 2, its 
transverse velocity and acceleration, wheel steering 
angle, and tier longitudinal displacement were col-
lected (Wang et al., 2015). Studies indicate that, on 
the premise of safety, a reduction in braking fre-
quency and pressure is beneficial for reducing fuel 
consumption. To show that the method presented in 
this study contributes to fuel economy improvement, 
data associated with the brake pedal were acquired in 
scenario 2. 

3.2  Results 

Fig. 2 shows the velocity changes of the two 
vehicles in scenario 1. For convenience of analysis, 
velocities between 0 and 5500 s were shown. Figs. 2a 
and 2b show the results from the test vehicle operat-
ing at high and low speeds, respectively. Fig. 3 shows 
the acceleration of the test vehicle under low-speed 
cruising corresponding to Fig. 2a. A comparison be-

tween these two figures shows similar trends in vari-
ation, confirming the validity of our method (Yu et al., 
2016). Fig. 4 shows the longitudinal displacements of 
the wheels during deceleration to avoid colliding with 
the target vehicle in scenario 1, when the vehicle was 
cruising at an initial velocity of 11 m/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
To prove that the optimized PID controller in this 

study can improve the fuel economy performance of a 
vehicle equipped with CCAS, the pedal braking 
pressures of the vehicle during high- and low-speed 
cruising were recorded (Fig. 5). The blue curves 
represent the pressures of the test vehicle’s brake 
pedal with the controller optimized by the proposed 
method, and the red curves represent the pressures of 
the test vehicle’s brake pedal with the original con-
troller. Clearly, the overall values of the red curves are 

Fig. 2  Vehicle velocities for scenario 1: (a) low initial 
speed; (b) high initial speed (Reference to color refer to 
the online version of this figure) 

(a) 

(b) 

Fig. 3  Acceleration of the test vehicle in scenario 1 with a 
low initial speed (References to color refer to the online 
version of this figure) 
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higher than those of the blue curves, except for some 
particular time points. In addition, the slopes of the 
blue curves are smaller than those of the red curves. 

Fig. 6 shows the in-situ distance between the test 
vehicle and the target vehicle when using deceleration 
braking to avoid collision in test scenario 1. As shown, 
the test vehicle in our simulation can avoid collision 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Vertical displacements of wheels in scenario 1 
with a low initial speed: (a) left front wheel; (b) right 
front wheel; (c) left rear wheel; (d) right read wheel 
(References to color refer to the online version of this 
figure) 

(d) 

(c) 

(b) 

(a) 

Fig. 5  Scale of the brake power of the test vehicle in 
scenario (longitudinal running): (a) low initial speed; 
(b) high initial speed (References to color refer to the 
online version of this figure) 

(b) 

(a) 

Fig. 6  Vehicle spacing in scenario 1: (a) low initial speed; 
(b) high initial speed (References to color refer to the 
online version of this figure) 

(a) 

(b) 
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with the target vehicle to different degrees with and 
without the optimization of the CCAS. 

If a vehicle traveling at a high speed has passed 
the last possible point where braking would have an 
effect, it may still be possible to avoid an accident 
through steering, or taking evasive action (CAN 
Newsletter Online, 2014). In scenario 2, the velocity 
of the test vehicle was much higher than that of the 
target vehicle. Therefore, deceleration steering ma-
neuvering was adopted to avoid collision. In this case, 
the main factor influencing vehicle stability is the 
transverse acceleration of the vehicle. We collected 
transverse velocity (Fig. 7) and acceleration (Fig. 8) 
of the test vehicle to assess its dynamic stability 
(Konstantinidis et al., 2010). 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
The change in the angle of the steering wheel can 

influence and describe the dynamic stability of a ve-
hicle during steering maneuvering to a certain degree. 
Therefore, the steering wheel angle of the vehicle 
during high speed cruising at an initial speed of 
26 m/s was recorded (Fig. 9). The blue curve in 
Fig. 10 represents the steering wheel angle generated 
when the controller was optimized by the proposed 
method, and the red curve represents the steering 
wheel angle generated when the controller was not 

 
 
 
 
 
 
 
 
 
 
 
optimized. The trend in the variation of the blue curve 
was more stable than that of the red curve. 

For quantitative analysis of the dynamic stability 
of the test vehicle when adopting deceleration steer-
ing maneuvering during high-speed cruising, we 
collected the longitudinal displacement of the wheels 
in scenario 2 (Fig. 10). 

 
 

4  Discussion 
 
In this study, we focused on improving the dy-

namic stability of a vehicle equipped with a CCAS. In 
this section we emphasize the experimental results 
which show that the optimized PID controller can 
better match the maneuver strategy judgement mod-
ule and the turning path planning module, eventually 
improving the performance of CCAS. 

Braking is effective for preventing a collision 
with the target vehicle when the test vehicle ap-
proaches with a speed slightly higher than that of the 
target vehicle. In this scenario, the main factors in-
fluencing the dynamic stability of the vehicle are its 
speed and acceleration. In Fig. 2a, the velocity of the 
target vehicle (black curve) remains constant between 
0 and 100 s, while that of the test vehicle (blue and red 
curves) decreases. However, the slope of the red 
curve (test vehicle without optimization) is larger than 
that of the blue curve (test vehicle with optimization). 
In addition, the red curve shows a larger drop than the 
blue curve. These results indicate that, when a possi-
ble collision with the target vehicle is detected, CCAS 
can decelerate the vehicle no matter whether its PID 
controller is optimized or not. However, the opti-
mized PID controller can better control the change of 
the test vehicle speed. In Fig. 2b, the rising trend of 
the blue curve is gentler than that of the red curve 

Fig. 7  Lateral velocity of steering travel in scenario 2 with 
a low initial speed (References to color refer to the online 
version of this figure) 

Fig. 9  Steering wheel angle of steering travel in scenario 2 
with a high initial speed (References to color refer to the 
online version of this figure) 

Fig. 8  Lateral acceleration of steering travel in scenario 2 
with a low initial speed (References to color refer to the 
online version of this figure) 
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between 500 and 1000 s. Both the blue and red curves 
decline as the black curve declines between 1000 and 
1500 s, but the blue curve has clearly a smaller slope 
(Zhang et al., 2012). A similar effect can be observed 
between 2000 and 3000 s. These results indicate that 
the PID controller of a CCAS, after being optimized, 

can better control the velocity of a vehicle based on 
the speed of the target vehicle, thereby to some extent 
improving the riding stability and comfort of the 
vehicle equipped with CCAS. 

As shown in Fig. 3, both the blue and red curves 
underwent a rapid drop followed by a rapid rise 
between 0 and 200 s, which is consistent with the 
situation in Fig. 2a. In addition, the drop and rise of 
the blue curve are significantly smaller than those of 
the red curve. In comparison with Fig. 2a, both the 
blue and red curves fluctuate between 1000 and 3000 
s, but the amplitude of fluctuation of the blue curve is 
significantly smaller than that of the red curve. In 
Fig. 2a, the blue curve and red curve show a 
continuous change of speed between 3500 and 4800 s. 
The two curves show similar fluctuations in Fig. 3, 
but it is obvious that the change in the blue curve is 
more gentle than that in the red curve. These results 
indicate that the PID controller optimized by the 
proposed method can help a CCAS better control the 
change in a vehicle’s acceleration and improve its 
riding stability while preventing a collision with the 
target vehicle. The appendix shows the relationship 
between vehicle acceleration and the passangers’ 
comfort reported by Wu and Lu (2009). Accordingly, 
in Fig. 3, the peak value of the blue curve is smaller 
than 1 m/s2, and the peak value of the red curve is 
larger than 1.5 m/s2. These results indicate that the 
PID controller optimized by the proposed method can 
significantly improve the riding comfort of a vehicle 
with a CCAS. Furthermore, the results in Figs. 2 and 3 
are consistent with those of Wu and Lu (2009). 

In Fig. 4a, both the blue and red curves fluctuate 
significantly between 0 and 400 s, but the peak value 
of the blue curve is significantly smaller than that of 
the red curve. This result is consistent with the 
situation in Fig. 3. Compared with the red curve, the 
blue curve changes in a more linear way, but within a 
narrower range between 1000 and 1500 s. Similar to 
Fig. 3, five consecutive fluctuations occur between 
3400 and 5000 s in Fig. 4a (Khan et al., 2015). Note 
that the range of variation in the blue curve is always 
smaller than that in the red curve. These results 
indicate that the optimized PID controller of CCAS 
can achieve the objective of this study, i.e., to improve 
the riding stability and comfort of a vehicle with a 
CCAS, since it can better control the vehicle’s change 
of acceleration. 

Fig. 10  Vertical displacement of wheels during steering 
travel in scenario 2 with a high initial speed: (a) left front 
wheel; (b) right front wheel; (c) left rear wheel; (d) right 
rear wheel (References to color refer to the online ver-
sion of this figure) 

(b) 

(a) 

(c) 

(d) 
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Braking is a process in which the vehicle’s 
kinetic energy is converted into heat energy and 
consumed when the wheels rub against the ground 
and brake pads. Therefore, energy consumption can 
be reduced by reducing the brake pressure and 
frequency of braking, when not sacrificing safety. In 
Fig. 5a, the peak value and slope of the blue curve are 
smaller than their counterpart of the red curve, 
suggesting that the optimized PID controller can 
better control the change in the vehicle’s travel speed. 
Therefore, the vehicle can keep a safety distance from 
the target vehicle by exerting a smaller brake pressure. 
When the blue curve and red curve in Fig. 2b start to 
drop at some point, their counterparts in Fig. 5b start 
to rise, thus proving the validity of the data analyzed 
by Zhang et al. (2013). These results indicate that the 
PID controller of a CCAS, after being optimized by 
the proposed method, can control brake pressure in a 
more effective way to improve the vehicle’s riding 
stability and fuel economy, without sacrificing safety.  

For convenience of description, the distances 
between vehicles in the first 1600 s were extracted for 
analysis in Fig. 6. In Fig. 6a, both the blue and red 
curves drop between 0 and 100 s, since the initial 
speed of the test vehicle is larger than that of the target 
vehicle. The two curves show a rising trend between 
100 and 250 s, indicating that the CCAS brakes the 
vehicle when it detects the possibility of a collision 
with the target vehicle, and the distance between the 
test vehicle and the target vehicle is thus increased. 
The red curve rises significantly, suggesting that the 
CCAS cannot control the change in travel speed well 
with its PID controller unoptimized. Moreover, the 
rapidly decreasing speed not only extends its distance 
from the target vehicle, but also influences the riding 
stability and comfort of the test vehicle. Compared 
with the red curve, the blue curve drops in a more 
linear way between 550 and 750 s. This shows that the 
optimized PID controller can not only prevent 
collision, but also manipulate the travel speed to drop 
linearly, thereby achieving the objective of the present 
study. In Fig. 6b, both the blue curve and red curve 
rise after a drop between 20 and 220 s, but it is 
obvious that the red curve continues to rise while the 
blue curve starts to drop after 200 s. Compared with 
the red curve, the blue curve drops more gently 
between 220 and 1000 s. These results indicate that 
the PID controller of a CCAS can prevent collision 

with the target vehicle no matter whether it is 
optimized or not. However, the travel speed changes 
in a more linear way after the PID controller is 
optimized by the proposed method. 

For ease of analysis, Fig. 7 presents the lateral 
velocity of the test vehicle in the initial 500 s during 
cruising at an initial speed of 14 m/s. Clearly, between 
340 and 500 s, the peak of the blue curve is lower than 
that of the red curve. In addition, the blue curve has a 
smaller slope than the red curve during the descent. 
As discussed above, the optimized PID controller 
offers better control of velocity changes. Therefore, 
the transverse stability of the vehicle is improved. 

In Fig. 8, the rising trend of the blue curve is 
gentler than that of the red curve between 300 and 350 
s. In addition, the peak of the blue curve is lower than 
that of the red curve at 350 s. The two curves start to 
drop after 350 s. It is obvious that the blue curve drops 
more gently than the red curve. The literature reveals 
that occupants feel almost nothing during a normal 
acceleration of an≤1.8 m/s2; they feel tolerably 
discomfortable when an=3.6 m/s2, and intolerably 
discomfortable when an≥5.0 m/s2. Fig. 8 shows that 
the change of the blue curve is always within the 
range that is acceptable for occupants, while the 
change in the red curve exceeds that range. The 
results indicate that the PID controller of a CCAS can 
effectively control the change in traveling speed and 
improve the vehicle’s lateral stability and riding 
comfort after being optimized by the proposed 
method. 

In Fig. 9, the peak of the blue curve is higher 
than that of the red curve between 150 and 220 s, but 
lower than that of the red curve after 220 s. In addition, 
the amplitude of fluctuation of the blue curve is 
significantly smaller than that of the red curve 
between 300 and 500 s. These results indicate that the 
PID controller of a CCAS can better control the 
change in travel speed after it is optimized by the 
proposed method. The change in the steering wheel 
angle reflects better stability and linearity. 

In Fig. 10, the blue and red curves fluctuate 
significantly in the first 40 s. In Figs. 10a and 10b, the 
peak of the blue curve is lower than that of the red 
curve; in Figs. 10c and 10d, the extreme value of the 
blue curve is larger than that of the red curve. 
Moreover, the slope where the blue curve reaches its 
extreme point is smaller than that of the red curve. 
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The curves in Fig. 10 fluctuate continuously between 
30 and 150 s, but the blue curve changes more gently 
than the red curve. After 440 s, the two curves 
approach zero, but the blue curve changes more 
gently than the red curve. These results indicate that, 
under the condition in which collision can be avoided, 
the optimized CCAS control unit can partly optimize 
the vehicle’s riding stability and thereby improve its 
riding comfort (Chen and Chou, 2013). 

 
 

5  Conclusions 
 
The introduction of PID controllers into CCAS 

has some inherent problems. For example, the PID 
controller cannot be optimized rationally, and our 
understanding of its possible effects on stability, 
comfort, and fuel economy for vehicles is insufficient. 
In response to these issues, an improved PSO 
algorithm was adopted in this study to optimize a PID 
controller. With this method, a CCAS can fulfill the 
dynamic control over vehicles in a more favorable 
way. To improve the convergence property of the 
algorithm and obtain the global optimum of the 
problem, a stochastic inertia weight and an incidental 
learning factor are incorporated in the improved PSO 
with worst positions for individual particles and the 
swam. On one hand, the diversity of the particle 
swarm is enriched; on the other hand, the algorithm 
can be prevented from falling into local optima. To 
verify that the proposed method can enhance the 
stability under transport conditions and can improve 
the comfort and fuel economy of vehicles equipped 
with CCAS, two experimental scenarios were 
simulated and the required automobile dynamics data 
collected. Through analysis of the relevant data, the 
PID controller optimized by the proposed method was 
shown to be able to match the braking intervention 
judgment module and the turning path programming 
module, and finally to intensify the handling 
performance of CCAS. In the future, we will focus on 
finding solutions to hysteretic responses and other 
problems of CCAS. 
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Appendix: Relationship between vehicle ac-
celeration and human subjective comfort 
 

According to Wu and Lu (2009), when a 
vehicle’s acceleration is between 0.315 and 1 m/s2, an 
occupant feels basically comfortable, whereas when 
the acceleration is larger than 1.5 m/s2, an occupant 
feels very uncomfortable. The relationship between 
vehicle acceleration and human subjective comfort is 
shown in Table A1. 
 
Table A1  Relationship between vehicle acceleration and 
human subjective comfort (Wu and Lu, 2009) 

Weighted acceleration (m/s2) Passenger subjective feeling

         <0.315 Not discomfortable 

0.315–0.630 Slightly discomfortable 

0.500–1.000 Somewhat discomfortable 

0.800–1.600 Discomfortable 

1.250–2.500 Very discomfortable 

         >2.000 Extremely discomfortable 

 


