
Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1336

Automatic malware classification and new malware detection

using machine learning*

Liu LIU‡, Bao-sheng WANG, Bo YU, Qiu-xi ZHONG
(College of Computer, National University of Defense Technology, Changsha 410073, China)

E-mail: hotmailliuliu@163.com; wbshengnudt@163.com; BoYUnudt@sina.com; Qiuxizhong@163.com

Received June 12, 2016; Revision accepted Sept. 14, 2016; Crosschecked Sept. 15, 2017

Abstract: The explosive growth of malware variants poses a major threat to information security. Traditional anti-virus systems
based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware pro-
grams. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data
processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode
n-gram, and import functions, which are employed to extract the features of the malware. The decision-making module uses the
features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor
(SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances,
which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the un-
known malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware.

Key words: Malware classification; Machine learning; n-gram; Gray-scale image; Feature extraction; Malware detection
https://doi.org/10.1631/FITEE.1601325 CLC number: TP309.5

1 Introduction

Malware, also known as malicious software,
refers to any software that causes damage to users,
computers, or networks in some way. Malware
contains viruses, worms, backdoors, Trojan horses, or
other malicious programs (Gandotra et al., 2014).
Currently, malware is an important challenge in the
field of information security (Kong and Yan, 2013).
According to a report from Kaspersky Labs (2015), in
the past year, 58% of corporate computers were
attacked and 29% of companies suffered from
network attacks. Although there are hundreds of
thousands of new malware found every day, most of
them are derived from the known families of malware

(Egele et al., 2012). Malware obfuscation techniques
(Lee et al., 2010) include mainly packing,
metamorphosis, and virtual technologies. These
technologies have been used widely to evade the
detection of anti-virus software (Musale et al., 2015).
Most malware detection systems adopted by anti-
virus manufacturers are based on signatures and
anomaly detections. Although the signature technique
has a high accuracy, it cannot detect new malware
programs and has to update its feature library in real
time (Yan et al., 2013) manually. New malware can be
found by anomaly detection; however, the false alarm
rate is high.

Based on the state of the malware that has been
analyzed, malware analysis can be divided into static
and dynamic analysis (Damodaran et al., 2017). Static
analysis refers to the analysis of executable files
without executing the program (Jain and Meena,
2011). The advantages of static analysis are its ability
to find an author’s style and profile the code
flow. The disadvantage is that it is thwarted easily by

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (No. 61303264) and the National Basic Research Program (973)
of China (Nos. 2012CB315906 and 0800065111001)

 ORCID: Liu LIU, http://orcid.org/0000-0002-6523-1454
© Zhejiang University and Springer-Verlag GmbH Germany 2017

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1337

obfuscation techniques. Dynamic analysis, on the
other hand, enables the observation of the running
state of a program in a safe and controlled environ-
ment. This approach is able to reflect accurately the
behavioral characteristics of the program. It is not
affected by encryption, compression, metamorphosis,
etc. However, this method spends time not only on
debugging a program, but also in tracking and re-
cording the running process of the program. There-
fore, dynamic analysis is usually far more inefficient
than static analysis. In addition, it is subject to some
restrictions in the running environment (Russo and
Sabelfeld, 2010). Malware may contain activation
conditions; thus, some malicious actions may not be
observed correctly.

With the successful application of machine
learning in the fields of image processing, speech
recognition, and software engineering (Yu et al.,
2016), machine learning has become an important
method for analyzing malware in the last 10 years
(Wong and Stamp, 2006; Yao et al., 2012; Liu et al.,
2015). Generally, by machine learning the process for
detecting malware can be divided into three steps.
First, the features of the execution file, which are
extracted by static and dynamic analysis, are mapped
into the machine learning input (Shabtai et al., 2009).
Second, a forecasting model is trained using these
features, meaning that a type of higher-level signature
is obtained. Finally, the unknown software is pre-
dicted. Machine learning is able to probe and discover
the intrinsic properties of the software automatically;
thus, it can distinguish between benign software and
malware (Yan et al., 2013; Pascanu et al., 2015).
Machine learning can also be used to assign an un-
known malware to a known family (Tsyganok et al.,
2012; Kong and Yan, 2013). However, malware au-
thors can easily generate a large quantity and diversity
of malware variants using automatic tools. Therefore,
we are encouraged to use machine learning to solve
the following problems: (1) How to assign variants
quickly and effectively to corresponding families?
(2) How to detect new malware?

In this study, we propose an incremental mal-
ware detection system to classify malware families
and to detect new malware. This system is divided
into three main parts: feature extraction and selection,
decision making, and new malware detection. We
have made the following contributions: (1) We

propose a feature extraction method based on
gray-scale images, Opcode n-gram, and import func-
tions. The features are mapped into the feature vector
for machine learning. (2) We use an improved in-
formation gain to reduce the high-dimensional fea-
tures. (3) We create a decision-making system to
assign the unknown malware to a corresponding
family and to screen out suspicious software. The
advantage of this system is that it can probe the ca-
pabilities of different classifiers. (4) We apply shared
nearest neighbor (SNN) to find new malware. Com-
pared with previous clustering methods, SNN is more
suitable for dealing with high-dimensional data.
(5) We prove through experiments that the accuracy
and robustness of ensemble classifiers are better than
those of other classifiers.

2 Related work

Lin et al. (2015) proposed a method to alleviate
the time-consuming training of the model for
malware classification. Support vector machines
(SVMs) were used to classify malicious software. The
high-dimensional aspects of the n-gram features were
constructed by dynamic analysis. Therefore, they put
forward a two-stage dimensionality reduction method.
First, they applied term frequency–inverse document
frequency (TF-IDF) (Salton and McGill, 1986) to
select the important features. Then, they used prin-
cipal component analysis (PAC) (Jolliffe, 2002) and
kernel PCA (KPAC) to extract features to reduce the
number of random variables. Multiple groups of ex-
periments showed the effectiveness and efficiency of
their method.

Lin and Stamp (2011) explored the vulne-
rabilities in hidden Markov model (HMM) based
malware detection approaches. They created a virus-
generating tool, which can produce metamorphic
copies. They also found that some of the copies can
evade HMM-based detection. Annachhatre et al.
(2015) demonstrated a novel method for malware
classification. It combines HMMs and an improved
k-means algorithm. The innovative feature is that
seven models of HMMs were generated by four
different compilers and handwritten assembly code,
as well as two metamorphic malware generators. The
seven models were GCC, MinGW, TurboC, Clang,

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1338

TASM, NGVCK, and MWOR. After the models were
trained by Opcode sequences, each malware sample
received a 7-tuple of scores from the HMM models. A
malware sample, which is more similar to the training
dataset, should obtain higher scores. Then, the 7
tuples were mapped into the input of k-means, which
separates the malware samples into clusters. Finally,
the experiment results demonstrate that their method
is an effective way to automate the classification of
malicious code. Visualization techniques have also
been applied widely in many fields of computer
science. In recent years, these techniques have also
been used to analyze malicious code. Han et al. (2013)
converted binary files into bitmap images. Then, the
bitmap image was employed to generate an entropy
graph by calculating the entropy values. They used
the entropy graph to calculate the similarity of the
malware. Nataraj et al. (2014) computed the texture
features of malware to find similarities using
generalized search trees (GIST), which uses a wavelet
decomposition of an image. The methods proposed by
Han et al. (2013) and Nataraj et al. (2014) apply
different image features, and their classification
accuracies are between 0.97 and 0.98. However, the
calculation time of the former is less than that of the
latter, meaning that the former is more efficient.

Previous studies have proved that Opcode
n-gram patterns can be used to extract the features of
malware effectively (Ding et al., 2014; Kapoor and
Dhavale, 2016). For example, Ding et al. (2014)
proposed the control flow graph (CFG) to find all the
execution paths that are Opcode sequences. Then,
n-grams are extracted from the Opcode stream, and
used as features which are the top n-grams, based on a
document frequency score. Kapoor and Dhavale
(2016) used a similar approach to extract n-gram
features. Bi-normal separation is used for feature
scaling. Meanwhile, they used information gain and
χ2 test to select features. Compared with the infor-
mation gain, a χ2 test can not only detect malware, but
also achieve an accuracy of muticlassification up to
0.972.

Many methods based on Windows application
programming interfaces (APIs) have been proposed
(Tian et al., 2010; Iwamoto and Wasaki, 2012). They
use API to extract knowledge about the behavior of
the executable file. Tian et al. (2010) used a trace tool
called ‘HookMe’ to collect all the trace reports of the

malware. Then, they dealt with all the API call strings
and parameters as separate strings. They set a list to
store all the strings in all the malware. Moreover, each
file receives a feature vector that has the same length
as the list. In the vector, ‘1’ denotes that a string is
contained in the list and ‘0’ means that a string is not
present. Their experiments showed that the random
forest (RF) classifier achieves the best result. Iwa-
moto and Wasaki (2012) created an API-sequence
graph for each sample. They compared the graphs to
calculate Dice’s coefficient, which is employed to
classify the samples. Although their accuracy is lower
than that reached by Tian et al. (2010), their dataset is
closer to the real situation.

Cheng et al. (2013) applied information retrieval
(IR) theory to classify malicious programs. They
employed a dynamic analysis method to extract the
sequences of API calls and system calls, providing the
discriminatory features from different layers. Com-
pared with previous methods, they recorded all pa-
rameters of the API calls and system calls stored in
documents. Then, TF-IDF weighting and IR theory
were applied to describe and retrieve malware fami-
lies. Experiments showed that the accuracy of their
method is better than those of other methods.

Besides dynamic and static analysis methods,
hybrid analysis has attracted attention in academia.
Roundy and Miller (2010) proposed a new method
which integrates static and dynamic techniques to
construct control- and data-flow analysis. To detect
the obfuscated malware, Islam et al. (2013) also in-
tegrated two features. Experiments proved that their
method has not only a high detection rate, but also a
very high robustness.

3 Our methods

3.1 System overview

As shown in Fig. 1, our system can be divided
into three parts: data processing, decision making,
and clustering. Data processing handles feature
extraction and selection. The system uses Opcode
n-gram, gray-scale images, and the import function to
extract malware features. The selection method
reduces the dimension of the feature space to prevent
a dimension disaster and to improve classifier
performance. In the decision-making system, several

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1339

classifiers are trained by a large number of instances
to predict the unknown samples. Meanwhile, they
decide jointly whether the detected samples are
questionable. In the clustering phase, the suspicious
samples are assigned to their corresponding family. If
a sample cannot be clustered as a known malware, it
will be stored in the database for the next clustering.

3.2 Feature extraction

Malware classification based on gray-scale
imaging is a novel approach. It has been proved an
effective static analysis tool (Kancherla and Muk-
kamala, 2013; Nataraj et al., 2014). A gray-scale
image is an image that is expressed in gray scale. The
brightness of white to black is divided into 256 grades
according to a logarithmic relationship. The different
physical information from the graphs can cause a
corresponding gray-scale difference, and textures
confirm the reflection of the gray-scale difference in
the visual field. To exploit the texture difference of
malware, we first use the interactive disassembler
(IDA) to obtain binary files of the malware. Then, we
divide the content of the binary files into many small
units, each of which contains eight bits and is
converted to an unsigned integer in the range of
0–255. In a gray-scale image, 0 and 255 represent
black and white, respectively. Finally, the transformed
file is mapped to a matrix called the ‘gray-scale ma-
trix’. The width of the matrix is usually initialized to
2n. In our experiments, n=8.

In Fig. 2, four types of malware belonging to
three malware families are converted to gray-scale

images. The two types of malware in Figs. 2a and 2b,
whose textures are similar, belong to the same family.
The malware in Fig. 2c is from family Virus.Win32.
Afgan. The malware in Fig. 2d is from family Trojan-
Banker.Win32. From Fig. 2, we arrive at the follow-
ing conclusions: the textures of malware are different
for different families, and similar within the same
family. However, the matrix is not suitable to be used
as our feature expression. To adapt it for further use,
the gray-scale matrix is mapped into a 1D vector
called a ‘gray-scale vector’.

3.3 Opcode n-gram

We use IDA Pro to reverse the analysis of mal-
ware. IDA Pro is a powerful interactive disassembler
that Hex-Rays released (Tian et al., 2009; Ye et al.,
2010). It is not only applied to obtain the assembly
file from malware, but also used to identify the func-
tion blocks and describe the function flow chart, gain
import functions, etc.

Fig. 2 Malware textures: (a) and (b) belong to the same
family; (c) is from family Virus.Win32.Afgan; (d) is from
family Trojan-Banker.Win32

Fig. 1 Schematic of our system which is composed of three modules: data processing, decision making, and clustering
(SNN: shared nearest neighbor)

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1340

3.3.1 n-gram

In this study, we employ an n-gram model to
extract Opcode features from a malware program.
The model is an effective method for text feature
extraction. It is based on the hypothesis that the
appearance of the n words is related only to the pre-
vious n−1 words, wherein n represents the length of a
characteristic sequence. If we have a set that contains
L Opcodes, the set will be divided into L−n+1 feature
sequences. The model finds feature sequences in a
sliding window way. For example, a 3-gram model is
employed to obtain feature sequences from {push,
call, add, mov, xor, inc, pop}. As shown in Fig. 3, we
extract five short sequences, and each sequence in-
cludes three Opcodes.

3.3.2 Control flow graph

The programs, written by a high-level language,
are composed of conditional judgment, loop state-
ment, call function, etc.; thus, the relationship be-
tween the functions is very important in the analysis
of the program (Kinable and Kostakis, 2011). In-
structions cannot be limited to local relationships.
However, they should be put into the program flow.
Therefore, we analyze the malware by constructing a
CFG. Fig. 4 shows how we construct the CFG of
functions using IDA Pro. Functions are a part of
VIRUS.Wind32.Afgan.c. To express the function call
relationship, we need to count the times each function
is called. To describe the program features correctly,
we make the function block a basic unit, so we can
extract only feature sequences in the block.

3.3.3 Opcode 3-gram extraction

We combine CFG with 3-gram to extract the
Opcode features of the malware. Fig. 5 describes the
process of an Opcode feature extraction. First, we
distill a set of Opcodes with the CFG sequentially.

Fig. 3 Opcode 3-gram

Fig. 4 Control flow graph

Call sub_427934

Call sub_427810

Fig. 5 Opcode 3-gram extraction

{(cmp, jz, push), (jz, push, push), (push, push, push), (push,
push, call) , (push, call, add), (call, add, cmp), (add, cmp, jz),
(cmp, jz, push), (jz, push, mov), (push, mov, push), (mov, push,
mov) , (push, mov, push) , (mov, push, push) , (push, push,
push) , (push, push, call) , (push, call, add) , (call, add, mov) ,
(add, mov, xor), (mov, xor, inc), (xor, inc, pop), (inc, pop, mov),
(pop, mov, pop), (mov, pop, retn)}

{cmp, jz, push, push, push, call, add,
cmp, jz, push, mov, push, mov, push,
push, push, call, add, mov, xor, inc,
pop, mov, pop, retn}

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1341

The set contains 25 Opcodes. Then we apply 3-gram
to extract 23 feature sequences. There are two func-
tions named ‘sub_427934’ and ‘sub_427810’, which
are called in sub_40107B. The counters are added to a
unit automatically. This means that a function is
called m times, and its characteristic sequences will
be counted m times.

3.4 Import functions

Import functions for a program are contained
mainly in dynamic link libraries. If a malware pro-
gram hopes to achieve a specific function, it needs to
call a specific library function. For example,
wsock32.dl can perform the relevant network task,
and Kernel32.dll contains access and memory opera-
tions, files, hardware, and other functions. Adva-
pi32.dll provides functions which can access core
Windows components. Thus, the information for
these import functions can help us analyze the mal-
ware’s purpose. Therefore, we count the times each
DLL appears in the import functions, and the statis-
tical values will be a part of the malware features.
Fig. 6 shows the import functions for VIRUS.Wind32.
Afgan.c, where the ‘Name’ column contains names of
the call functions, and the ‘Library’ column is the
dynamic link library (DLL) of the corresponding
function. The frequency of each import function will
be an important part of malware features.

3.5 Feature selection

It is important to choose features that have the
ability to distinguish malware families. The features
are extracted by the n-gram model as high-
dimensional data. To improve classification accuracy
and reduce time consumption, a novel method is
applied to reduce the dimensionality of the data. To

assist in the description, we review a few concepts.
Y={0, 1, …} represents the label of the malware
family. si refers to the feature sequence. The fre-
quency of the sequence is

sum(|) sum() | ,()
j

i i ij j
i n

y yf s s s


  (1)

where sum(si|yj) denotes the quantity of the sequence
belonging to family yj, and F(si) is the frequency of
the sequence in Y:

sum(|)

.
s (

)
m |)

(
u

j

j
j n

j
j

i

i
i

n i n

s

F s
s

y

y


 





 (2)

The information gain of the sequence is

w

(,)
() log .

() ()
(;)

i i

i
i

s S i

i
i

y Y i

sp y
p y

p p y
I S Y s

s 


 (3)

p(si, y) stands for the joint probability distribution of si
and y, and p(si) and p(y) are the marginal probability
distribution functions of S and Y, respectively. The
information gain is used to measure the ability of a
sequence to distinguish the malware. We employ a
two-step strategy to reduce the dimensionality.

If feature si satisfies condition |1−F(si)/fj(si)|≤ζ, si
is deleted. This shows that the feature does not have
the ability to discriminate the malware family. Define
a new information gain as

w

(,)
() lo

1
(;) g .

()
,

) () (
ii

i
i

y Y Y i

i
i

s i

s
I S Y s

F

p y
p

S ps
y

p y 


 (4)

The expression has a weight term. This term is aimed
at enhancing the importance of certain features that
have low frequency and high discrimination. By
calculating the information gain, we retain 500 fea-
tures with larger values.

4 Decision-making system

We propose a decision-making system to capture
suspicious software, which may belong to a known
family or be a new malware program. This system

Fig. 6 Import functions

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1342

determines the label of a sample through integrating
results of multiple classifiers. Compared with previ-
ous ensemble systems (Hu et al., 2007; Tao et al.,
2013), we design a weight vector for each classifier.
The weight vector contains n weight values, where n
denotes the quantity of the sample family. In Fig. 7,
there are N classifiers and N weight vectors. Each
classifier is trained by a training set, which is sampled
by Bootstrap. Testing set T1 is used to verify the ca-
pability of each classifier. The capability is not only to
gain a higher accuracy rate, but also to classify the
special family precisely. Different classifiers may
have different effects on different families. Therefore,
each classifier is able to provide a higher degree of
confidence for the specific classification results.

Fig. 8 refers to weight vectors. C and F represent
the classifier and the sample family, respectively, W
indicates the ability of classifier Ci to identify family
Fj, and Wij=TP/Nj, where TP is the number of samples
that are classified correctly into Fj, and Nj is the
quantity of samples included in Fj. In the voting phase,
the system combines all Wij’s to decide the result.

The voting result is max
max

,l
l

R W W


   where

1
,

N

l ijj
W a W


  max max(),lW W and l[1, N].

When l=i, a=1; otherwise, a=0. If the result satisfies
|R|≥ƞ, the sample belongs to the target label; other-
wise, it is a suspicious malware. Threshold ƞ is cho-
sen based on our experience.

5 Shared nearest neighbor

Although we have designed an effective method
that can reduce attributes, there are still thousands of
dimensions. The performance of classical clusters is
low in the high-dimensional space, because the
Euclidean distance fails in the high-dimensional
space, and the triangle inequality does not hold (Jarvis
and Patrick, 1973). Consider the similarities of the
three samples listed in Table 1.

We calculate the Euclidean distance: D(P1,

P2)=2, D(P2, P3)=2, and D(P1, P3)= 6. Two conclu-
sions can be obtained: (1) P1 and P3 have the same
similarity for P2; i.e., they have the same distance to
P2. (2) P1 and P3 are close to P2; thus, P1 is close to P3.
Assume that these three points are malware samples.
If the attribute value is not zero, it is contained in this
sample. Table 1 demonstrates that P1 and P2 have no
common properties, while P2 and P3 have two shared
properties. This explains why the Euclidean distance
does not exactly depict the similarity of the samples in
a high-dimensional space.

In view of the above problems, we adopt the
SNN method, which has good performance in the
high-dimensional space. The method was first pro-
posed by Jarvis and Patrick (1973). The similarity of
two points is defined in that they jointly have a large
neighborhood C which includes at least k points. The

Table 1 Similarities of three samples

Sample A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

P1 1 1 0 0 0 0 0 0 0 0

P2 0 0 0 0 0 0 0 0 1 1

P3 0 0 0 0 1 1 1 1 1 1

Fig. 7 Decision-making system

Classifier 1 Classifier 2 Classifier N

R1(X) R2(X) RN(X)

. . .

Training
set S1

Training
set S2

Training
set S3

Testing
set T1

Voting
result

W1

Bootstrap

WNW2

. . .

. . .

. . .

Fig. 8 Weight table, where Ci and Fj represent the clas-
sifier and the sample family, respectively, and Wij indi-
cates the ability of classifier Ci to identify family Fj (i=1,
2, …, N; j=1, 2, …, n)

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1343

advantage of this method is that it is able to cluster
points with different densities. As shown in Fig. 9,
circles of different sizes describe the clustering with
different densities.

The position relationship M between two points

is stored in each row of a similarity matrix. M(A, B)=1
denotes that point B is the closest to point A. Each row
saves only k minimum values, and other values are set
to 0. The matrix is used to construct the K-nearest
neighbor (K-NN) graph. In Fig. 10, points O and P are
noise or outliers, which, however, are not separated
by the graph. To address the problem, the link
strength is calculated by

str(,) (1) (1).O P k m k n      (5)

If the strength of a point is less than the special

threshold, all of its edges are removed. In Fig. 10,
points O and P are classified as outliers. Ertoz et al.
(2002) adopted the link strength to select the core
points that have larger link strength in each clustering.
In each clustering, a point is either one of the core
points or connected to the core points.

The SNN model can be described as follows:
(1) calculate the similarity matrix; (2) construct the

K-NN graph; (3) compute the link strength and set the
threshold to find the noises and outliers with a low
strength; (4) select the core points that have a high
strength; (5) assign a new point to the clustering, or
mark it as an outlier.

6 Experiment

6.1 Dataset

A large amount of malware information has been
collected using ESET NOD32, VX Heavens, and
Threat Trace Security from our campus network. We
capture 21 740 malware instances which belong to
nine families (viruses, worms, Trojan horses, back-
doors, etc.). They are detected mainly from Windows
7. The data set is divided into a training set and a test
set which have 19 740 and 2000 samples, respectively.
IDA Pro transforms each malware instance into a
binary file and assembly file. The features of each
malware program are extracted in the third part of our
method. We use the Oracle database, Python 2.7, and
Scikit-learn, where Scikit-learn is the machine
learning module for Python containing most of the
classification algorithms. In the experiments, the RF,
K-NN, gradient-boosting (GB), Naïve Bayes (NB),
logistic regression (LR), SVM-poly (SP), and deci-
sion tree (DT) algorithms are used.

6.2 Classification

6.2.1 n-gram (n=2, 3, …, 9)

n-gram is an efficient method for text feature
extraction, where n denotes the length of the feature
sequence. The length determines the performance of
the algorithm. Therefore, we employ nine different
lengths to abstract features, which are applied in
seven classification algorithms. As shown in Table 2,
the accuracies of all the algorithms show that the one
that uses n-gram (n=2, 3) is the best. We find that the
performance of classifiers may be worse when em-
ploying n-gram (n>4).

6.2.2 Combination of three features

We have an integration feature that combines the
gray-scale image, n-gram (n=3), and the frequencies
of import functions. Table 3 shows the results of
seven classifiers based on different feature extraction
methods. RF and GB algorithms have the best

Fig. 9 Clustering with five neighborhoods of each point

x

y

Fig. 10 Near neighbor graph (a) and weighted shared
near neighbor graph (b)

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1344

performance. In addition, they represent ensemble
learning. RF is made up of many DTs, but its average
performance is 7.4% higher than that of DT. Specif-
ically, in applying the 3-gram, its accuracy is 16.7%
higher than that of DT. The reason is that ensemble
learning is able to improve the classification ability of
a single classifier by integrating multiple weak clas-
sifiers (Zhou et al., 2002). Our experiments prove that
the gray-scale image is the Opcode n-gram, and the
accuracy of the combined method is higher than those
of the others. In Fig. 11, we find that the performances
of NB and DT achieve the greatest improvement.

To evaluate our method effectively, we present a

comparison with that proposed by Nataraj et al.
(2014). We use the LMgist module (Oliva and
Torralba, 2001) based on Matlab R2012b to extract
the GIST feature from our gray-scale images. We use
seven classifiers to test its accuracy for malware
classification. The results show that the average ac-
curacy is 0.914, and the best accuracy is 0.965 based
on RF. Although their method is better than the

gray-scale method, the accuracy of our combined
method is 4.3% higher than that of their method.
Opcode n-gram is similar to the method proposed by
Ding et al. (2014). Our experiments show that when n
is equal to three, our combined method achieves a
best accuracy of 0.853.

6.3 New malware

In this experiment, our dataset is divided into
known and unknown malware. Assume that the un-
known malware is regarded as a new family belong-
ing to the Trojan family. Then, the classifiers are
trained using the known malware. The test results of
these classifiers are shown in Table 4, where each
element represents the accuracy of a classifier on a
particular family. The expression for accuracy is
TP/Ni.

To discover new malware, we construct a
decision-making system which is composed of mul-
tiple classifiers. Because the performance of classifi-
ers is different, they have different effects on the

Table 3 Accuracy rates of different features based on
different classifiers

Classifier
Accuracy

Image 3-gram Combined Average
RF 0.958 0.936 0.989 0.961
K-NN 0.872 0.831 0.881 0.861
GBC 0.961 0.922 0.975 0.953
NB 0.775 0.772 0.953 0.833
LR 0.928 0.872 0.958 0.919
SP 0.936 0.800 0.969 0.902
DT 0.917 0.769 0.975 0.887
Average 0.907 0.843 0.957 –

RF: random forest; K-NN: K-nearest neighbor; GB: gradient-
boosting; NB: Naïve Bayes; LR: logistic regression; SP: support
vector machine-poly; DT: decision tree

Table 2 The n-gram comparisons among different classifiers

Classifier
Accuracy

2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram 9-gram Average
RF 0.928 0.947 0.936 0.925 0.922 0.883 0.878 0.769 0.899

K-NN 0.883 0.881 0.850 0.811 0.797 0.781 0.742 0.706 0.806
GB 0.925 0.928 0.914 0.911 0.900 0.878 0.858 0.794 0.889
NB 0.725 0.747 0.714 0.719 0.675 0.686 0.669 0.622 0.695
LR 0.900 0.900 0.892 0.856 0.867 0.831 0.786 0.744 0.847
SP 0.819 0.803 0.792 0.733 0.689 0.667 0.639 0.553 0.712
DT 0.738 0.767 0.743 0.645 0.677 0.638 0.629 0.602 0.680

Average 0.845 0.853 0.834 0.800 0.790 0.766 0.743 0.684 0.790

RF: random forest; K-NN: K-nearest neighbor; GB: gradient-boosting; NB: Naïve Bayes; LR: logistic regression; SP: support vector
machine-poly; DT: decision tree

Fig. 11 Improved accuracies of different classifiers
RF: random forest; K-NN: K-nearest neighbor; GB:
gradient-boosting; NB: Naïve Bayes; LR: logistic regression;
SP: support vector machine-poly; DT: decision tree

A
cc

ur
ac

y
(%

)

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1345

result of the decision. Therefore, a scoring method is
used to combine the different results of the classifiers.

In the experiment, we use S={S1, S2, …, S10, …,
SN} as the sample set, where S′={S1, S2, …, S10}
belongs to the new malware and the other samples
belong to the known families. We train seven models
to validate the samples. For example, the labels for S′
are {(4, 4, 1, 8, 1, 4, 5, 1, 1, 4), (5, 6, 2, 4, 4, 4, 1, 6, 1,
4), (5, 4, 4, 5, 6, 4, 4, 4, 1, 6), (8, 1, 1, 1, 8, 1, 8, 1, 1, 1),
(1, 4, 5, 6, 5, 8, 5, 8, 5, 5), (6, 1, 6, 2, 2, 6, 2, 2, 2, 6),
(8, 5, 1, 7, 5, 4, 1, 5, 6, 7)}, where label(Si)={si1, si2, …,
si10}. Then, we employ the scoring method to calcu-
late the scoring table of labels. Table 5 is the scoring
table, which denotes the weights of classifiers for the
decision results.

In the decision phase, we select the target label
which has the most votes. If the result of sample Si
satisfies |Ri|≥0.16, Si belongs to the target label. If
|Ri|<0.16, Si is the suspicious malware. By calculating
|Ri|, 10 samples are the suspicious malware. We
employ the SNN method to cluster the suspicious
malware. In Fig. 12, the suspicious samples are con-
sidered to be outliers. The samples are too far away
from the core points to be clustered. Moreover, there
are few outliers to form a new group. Then, these
samples are stored in the database.

We reselect 900 samples which contain nine la-
beled samples. The samples include 810 known
samples and 90 new samples which are from the same
family as the suspicious samples. The results of the
experiment are shown in Fig. 13. A new group ap-
pears in the lower right corner of the figure. The
group is composed of 78 samples from the unknown
malware. There are 12 samples assigned wrongly to
other categories. Therefore, the accuracy of this
experiment is 0.867.

Table 4 Accuracies of different classifiers on different malware families

Classifier
Accuracy

F1 F2 F3 F4 F5 F6 F7 F8 F9

RF 1.00 1.00 1.00 1.00 1.00 0.97 0.98 1.00 0.96

K-NN 0.74 1.00 0.96 0.89 0.63 0.85 1.00 1.00 0.92

GB 1.00 1.00 1.00 0.96 0.94 0.97 0.97 0.96 1.00

NB 1.00 1.00 0.95 1.00 0.86 0.88 0.95 1.00 0.95

LR 0.97 0.98 0.98 1.00 0.89 0.86 1.00 0.97 0.97

SP 1.00 1.00 1.00 0.96 0.93 0.89 1.00 1.00 0.97

DT 1.00 1.00 1.00 0.96 0.90 0.87 1.00 1.00 0.98

Table 5 Scoring table

Classifier
Accuracy

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

RF 0.149 0.149 0.146 0.149 0.150 0.150 0.152 0.150 0.154 0.151

K-NN 0.126 0.127 0.146 0.133 0.134 0.133 0.112 0.126 0.113 0.134

GB 0.144 0.143 0.140 0.142 0.146 0.144 0.146 0.144 0.154 0.146

NB 0.140 0.149 0.146 0.149 0.150 0.150 0.152 0.150 0.154 0.150

LR 0.146 0.149 0.130 0.129 0.134 0.146 0.134 0.145 0.137 0.134

SP 0.149 0.149 0.146 0.149 0.150 0.133 0.152 0.150 0.154 0.134

DT 0.146 0.134 0.146 0.149 0.136 0.144 0.152 0.135 0.134 0.151

Fig. 12 Unknown malware detection with eight esti-
mated clusters

x

y

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1346

7 Conclusions

The system is composed mainly of three parts:
data processing, decision making, and clustering. The
system can detect accurately not only known malware,
but also unknown malware. In the data processing
phase, we presented a combined feature extraction
method, which is based on a gray-scale image, Op-
code n-gram, and the import function. The method
uses the texture of the malware to effectively describe
the features of the different programs. In the decision-
making system, we proposed a decision-making sys-
tem applied to find the suspicious malware. Due to the
high dimensionality of the malware, SNN is used to
cluster the samples. Finally, experiment results
showed that our system not only improves the accu-
racy of malware classification effectively, but also
discovers new malware effectively.

References
Annachhatre, C., Austin, T.H., Stamp, M., 2015. Hidden

Markov models for malware classification. J. Comput.
Virol. Hack. Tech., 11(2):59-73.

 https://doi.org/10.1007/s11416-014-0215-x
Cheng, J.Y.C., Tsai, T.S., Yang, C.S., 2013. An information

retrieval approach for malware classification based on
Windows API calls. Int. Conf. on Machine Learning and
Cybernetics, p.1678-1683.

 https://doi.org/10.1109/ICMLC.2013.6890868
Damodaran, A., di Troia, F., Visaggio, C.A., et al., 2017. A

comparison of static, dynamic, and hybrid analysis for
malware detection. J. Comput. Virol. Hack. Tech., 13(1):
1-12. https://doi.org/10.1007/s11416-015-0261-z

Ding, Y.X., Dai, W., Yan, S.L., et al., 2014. Control flow-
based Opcode behavior analysis for malware detection.

Comput. Secur., 44:65-74.
 https://doi.org/10.1016/j.cose.2014.04.003
Egele, M., Scholte, T., Kirda, E., et al., 2012. A survey on

automated dynamic malware-analysis techniques and
tools. ACM Comput. Surv., 44(2): Article 6.

 https://doi.org/10.1145/2089125.2089126
Ertoz, L., Steinbach, M., Kumar, V., 2002. A new shared

nearest neighbor clustering algorithm and its applications.
Workshop on Clustering High Dimensional Data and Its
Applications at the 2nd SIAM Int. Conf. on Data Mining,
p.105-115.

Gandotra, E., Bansal, D., Sofat, S., 2014. Malware analysis
and classification: a survey. J. Inform. Secur., 5(2):44440.

 https://doi.org/10.4236/jis.2014.52006
Han, K.S., Lim, J.H., Im, E.G., 2013. Malware analysis

method using visualization of binary files. Proc. on Re-
search in Adaptive and Convergent Systems, p.317-321.
https://doi.org/10.1145/2513228.2513294

Hu, Q.H., Yu, D.R., Xie, Z.X., et al., 2007. EROS: ensemble
rough subspaces. Patt. Recogn., 40(12):3728-3739.

 https://doi.org/10.1016/j.patcog.2007.04.022
Islam, R., Tian, R.H., Batten, L.M., et al., 2013. Classification

of malware based on integrated static and dynamic fea-
tures. J. Netw. Comput. Appl., 36(2):646-656.

 https://doi.org/10.1016/j.jnca.2012.10.004
Iwamoto, K., Wasaki, K., 2012. Malware classification based

on extracted API sequences using static analysis. Proc.
Asian Internet Engineering Conf., p.31-38.

 https://doi.org/10.1145/2402599.2402604
Jain, S., Meena, Y.K., 2011. Byte level n-gram analysis for

malware detection. In: Venugopal, K.R., Patnaik, L.M.
(Eds.), Computer Networks and Intelligent Computing.
Springer, Berlin, p.51-59.

 https://doi.org/10.1007/978-3-642-22786-8_6
Jarvis, R.A., Patrick, E.A., 1973. Clustering using a similarity

measure based on shared near neighbors. IEEE Trans.
Comput., C-22(11):1025-1034.

 https://doi.org/10.1109/T-C.1973.223640
Jolliffe, I.T., 2002. Principal Component Analysis (2nd Ed.).

Springer, New York. https://doi.org/10.1007/b98835
Kancherla, K., Mukkamala, S., 2013. Image visualization

based malware detection. IEEE Symp. on Computational
Intelligence in Cyber Security, p.40-44.

 https://doi.org/10.1109/CICYBS.2013.6597204
Kapoor, A., Dhavale, S., 2016. Control flow graph based

multiclass malware detection using bi-normal separation.
Defen. Sci. J., 66(2):138-145.

 https://doi.org/10.14429/dsj.66.9701
Kaspersky Labs, 2015. Security Bulletin 2015. https://securelist.
 com/files/2015/12/KSB_2015_Statistics_FINAL_EN.
 pdf
Kinable, J., Kostakis, O., 2011. Malware classification based

on call graph clustering. J. Comput. Virol., 7(4):233-245.
 https://doi.org/10.1007/s11416-011-0151-y
Kong, D.G., Yan, G.H., 2013. Discriminant malware distance

learning on structural information for automated malware

Fig. 13 Unknown malware clustering with nine esti-
mated clusters

y

Liu et al. / Front Inform Technol Electron Eng 2017 18(9):1336-1347 1347

classification. Proc. 19th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, p.1357-1365.

 https://doi.org/10.1145/2487575.2488219
Lee, J., Jeong, K., Lee, H., 2010. Detecting metamorphic

malwares using code graphs. Proc. ACM Symp. on Ap-
plied Computing, p.1970-1977.

 https://doi.org/10.1145/1774088.1774505
Lin, C.T., Wang, N.J., Xiao, H., et al., 2015. Feature selection

and extraction for malware classification. J. Inform. Sci.
Eng., 31(3):965-992.

 https://doi.org/10.6688/JISE.2015.31.3.11
Lin, D., Stamp, M., 2011. Hunting for undetectable meta-

morphic viruses. J. Comput. Virol., 7(3):201-214.
 https://doi.org/10.1007/s11416-010-0148-y
Liu, X.W., Wang, L., Huang, G.B., et al., 2015. Multiple

kernel extreme learning machine. Neurocomputing, 149:
253-264. https://doi.org/10.1016/j.neucom.2013.09.072

Musale, M., Austin, T.H., Stamp, M., 2015. Hunting for
metamorphic JavaScript malware. J. Comput. Virol. Hack.
Tech., 11(2):89-102.

 https://doi.org/10.1007/s11416-014-0225-8
Nataraj, L., Karthikeyan, S., Jacob, G., et al., 2014. Malware

images: visualization and automatic classification. Proc.
8th Int. Symp. on Visualization for Cyber Security.
https://doi.org/10.1145/2016904.2016908

Oliva, A., Torralba, A., 2001. Modeling the shape of the scene:
a holistic representation of the spatial envelope. Int. J.
Comput. Vis., 42(3):145-175.

 https://doi.org/10.1023/A:1011139631724
Pascanu, R., Stokes, J.W., Sanossian, H., et al., 2015. Malware

classification with recurrent networks. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing, p.1916-1920.

 https://doi.org/10.1109/ICASSP.2015.7178304
Roundy, K.A., Miller, B.P., 2010. Hybrid analysis and control

of malware. In: Jha, S., Sommer, R., Kreibich, C. (Eds.),
Recent Advances in Intrusion Detection. Springer Berlin
Heidelberg, p.317-338.

 https://doi.org/10.1007/978-3-642-15512-3_17
Russo, A., Sabelfeld, A., 2010. Dynamic vs. static flow-

sensitive security analysis. 23rd IEEE Computer Security
Foundations Symp., p.186-199.

 https://doi.org/10.1109/CSF.2010.20
Salton, G., McGill, M.J., 1986. Introduction to Modern In-

formation Retrieval. McGraw-Hill, Inc., New York,
USA.

Shabtai, A., Moskovitch, R., Elovici, Y., et al., 2009. Detec-
tion of malicious code by applying machine learning

classifiers on static features: a state-of-the-art survey.
Inform. Secur. Tech. Rep., 14(1):16-29.

 https://doi.org/10.1016/j.istr.2009.03.003
Tao, H., Ma, X., Qiao, M., 2013. Subspace selective ensemble

algorithm based on feature clustering. J. Comput., 8(2):
509-516.

Tian, R.H., Batten, L., Islam, R., et al., 2009. An automated
classification system based on the strings of Trojan and
virus families. 4th Int. Conf. on Malicious and Unwanted
Software, p.23-30.

 https://doi.org/10.1109/MALWARE.2009.5403021
Tian, R.H., Islam, R., Batten, L., et al., 2010. Differentiating

malware from cleanware using behavioural analysis. 5th
Int. Conf. on Malicious and Unwanted Software, p.23-30.

 https://doi.org/10.1109/MALWARE.2010.5665796
Tsyganok, K., Tumoyan, E., Babenko, L., et al., 2012. Classi-

fication of polymorphic and metamorphic malware sam-
ples based on their behavior. Proc. 5th Int. Conf. on Se-
curity of Information and Networks, p.111-116.

 https://doi.org/10.1145/2388576.2388591
Wong, W., Stamp, M., 2006. Hunting for metamorphic en-

gines. J. Comput. Virol., 2(3):211-229.
 https://doi.org/10.1007/s11416-006-0028-7
Yan, G.H., Brown, N., Kong, D.G., 2013. Exploring discrim-

inatory features for automated malware classification. In:
Rieck, K., Stewin, P., Seifert, J.P. (Eds.), Detection of
Intrusions and Malware, and Vulnerability Assessment.
Springer Berlin Heidelberg, p.41-61.

 https://doi.org/10.1007/978-3-642-39235-1_3
Yao, W., Chen, X.Q., Zhao, Y., et al., 2012. Concurrent sub-

space width optimization method for RBF neural network
modeling. IEEE Trans. Neur. Netw. Learn. Syst., 23(2):
247-259. https://doi.org/10.1109/TNNLS.2011.2178560

Ye, Y.F., Li, T., Chen, Y., et al., 2010. Automatic malware
categorization using cluster ensemble. Proc. 16th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, p.95-104.

 https://doi.org/10.1145/1835804.1835820
Yu, Y., Wang, H.M., Yin, G., et al., 2016. Reviewer recom-

mendation for pull-requests in GitHub: what can we learn
from code review and bug assignment? Inform. Softw.
Technol., 74:204-218.

 https://doi.org/10.1016/j.infsof.2016.01.004
Zhou, Z.H., Wu, J.X., Tang, W., 2002. Ensembling neural

networks: many could be better than all. Artif. Intell.,
137(1-2):239-263.

 https://doi.org/10.1016/S0004-3702(02)00190-X

