
Liu et al. / Front Inform Technol Electron Eng   2017 18(9):1336-1347 1336

 

 

 

 

Automatic malware classification and new malware detection  

using machine learning* 

Liu LIU‡, Bao-sheng WANG, Bo YU, Qiu-xi ZHONG 
(College of Computer, National University of Defense Technology, Changsha 410073, China) 

E-mail: hotmailliuliu@163.com; wbshengnudt@163.com; BoYUnudt@sina.com; Qiuxizhong@163.com 

Received June 12, 2016;  Revision accepted Sept. 14, 2016;  Crosschecked Sept. 15, 2017 

 

Abstract:    The explosive growth of malware variants poses a major threat to information security. Traditional anti-virus systems 
based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware pro-
grams. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data 
processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode 
n-gram, and import functions, which are employed to extract the features of the malware. The decision-making module uses the 
features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor 
(SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, 
which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the un-
known malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware. 
 
Key words:  Malware classification; Machine learning; n-gram; Gray-scale image; Feature extraction; Malware detection 
https://doi.org/10.1631/FITEE.1601325 CLC number:  TP309.5 
 
 

1 Introduction 
 

Malware, also known as malicious software, 
refers to any software that causes damage to users, 
computers, or networks in some way. Malware 
contains viruses, worms, backdoors, Trojan horses, or 
other malicious programs (Gandotra et al., 2014). 
Currently, malware is an important challenge in the 
field of information security (Kong and Yan, 2013). 
According to a report from Kaspersky Labs (2015), in 
the past year, 58% of corporate computers were 
attacked and 29% of companies suffered from 
network attacks. Although there are hundreds of 
thousands of new malware found every day, most of 
them are derived from the known families of malware 

(Egele et al., 2012). Malware obfuscation techniques 
(Lee et al., 2010) include mainly packing, 
metamorphosis, and virtual technologies. These 
technologies have been used widely to evade the 
detection of anti-virus software (Musale et al., 2015). 
Most malware detection systems adopted by anti- 
virus manufacturers are based on signatures and 
anomaly detections. Although the signature technique 
has a high accuracy, it cannot detect new malware 
programs and has to update its feature library in real 
time (Yan et al., 2013) manually. New malware can be 
found by anomaly detection; however, the false alarm 
rate is high. 

Based on the state of the malware that has been 
analyzed, malware analysis can be divided into static 
and dynamic analysis (Damodaran et al., 2017). Static 
analysis refers to the analysis of executable files 
without executing the program (Jain and Meena, 
2011). The advantages of static analysis are its ability 
to find an author’s style and profile the code  
flow. The disadvantage is that it is thwarted easily by  
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obfuscation techniques. Dynamic analysis, on the 
other hand, enables the observation of the running 
state of a program in a safe and controlled environ-
ment. This approach is able to reflect accurately the 
behavioral characteristics of the program. It is not 
affected by encryption, compression, metamorphosis, 
etc. However, this method spends time not only on 
debugging a program, but also in tracking and re-
cording the running process of the program. There-
fore, dynamic analysis is usually far more inefficient 
than static analysis. In addition, it is subject to some 
restrictions in the running environment (Russo and 
Sabelfeld, 2010). Malware may contain activation 
conditions; thus, some malicious actions may not be 
observed correctly.  

With the successful application of machine 
learning in the fields of image processing, speech 
recognition, and software engineering (Yu et al., 
2016), machine learning has become an important 
method for analyzing malware in the last 10 years 
(Wong and Stamp, 2006; Yao et al., 2012; Liu et al., 
2015). Generally, by machine learning the process for 
detecting malware can be divided into three steps. 
First, the features of the execution file, which are 
extracted by static and dynamic analysis, are mapped 
into the machine learning input (Shabtai et al., 2009). 
Second, a forecasting model is trained using these 
features, meaning that a type of higher-level signature 
is obtained. Finally, the unknown software is pre-
dicted. Machine learning is able to probe and discover 
the intrinsic properties of the software automatically; 
thus, it can distinguish between benign software and 
malware (Yan et al., 2013; Pascanu et al., 2015). 
Machine learning can also be used to assign an un-
known malware to a known family (Tsyganok et al., 
2012; Kong and Yan, 2013). However, malware au-
thors can easily generate a large quantity and diversity 
of malware variants using automatic tools. Therefore, 
we are encouraged to use machine learning to solve 
the following problems: (1) How to assign variants 
quickly and effectively to corresponding families?  
(2) How to detect new malware? 

In this study, we propose an incremental mal-
ware detection system to classify malware families 
and to detect new malware. This system is divided 
into three main parts: feature extraction and selection, 
decision making, and new malware detection. We 
have made the following contributions: (1) We  

propose a feature extraction method based on 
gray-scale images, Opcode n-gram, and import func-
tions. The features are mapped into the feature vector 
for machine learning. (2) We use an improved in-
formation gain to reduce the high-dimensional fea-
tures. (3) We create a decision-making system to 
assign the unknown malware to a corresponding 
family and to screen out suspicious software. The 
advantage of this system is that it can probe the ca-
pabilities of different classifiers. (4) We apply shared 
nearest neighbor (SNN) to find new malware. Com-
pared with previous clustering methods, SNN is more 
suitable for dealing with high-dimensional data.  
(5) We prove through experiments that the accuracy 
and robustness of ensemble classifiers are better than 
those of other classifiers. 

 
 

2  Related work 
 

Lin et al. (2015) proposed a method to alleviate 
the time-consuming training of the model for 
malware classification. Support vector machines 
(SVMs) were used to classify malicious software. The 
high-dimensional aspects of the n-gram features were 
constructed by dynamic analysis. Therefore, they put 
forward a two-stage dimensionality reduction method. 
First, they applied term frequency–inverse document 
frequency (TF-IDF) (Salton and McGill, 1986) to 
select the important features. Then, they used prin-
cipal component analysis (PAC) (Jolliffe, 2002) and 
kernel PCA (KPAC) to extract features to reduce the 
number of random variables. Multiple groups of ex-
periments showed the effectiveness and efficiency of 
their method. 

Lin and Stamp (2011) explored the vulne- 
rabilities in hidden Markov model (HMM) based 
malware detection approaches. They created a virus- 
generating tool, which can produce metamorphic 
copies. They also found that some of the copies can 
evade HMM-based detection. Annachhatre et al. 
(2015) demonstrated a novel method for malware 
classification. It combines HMMs and an improved 
k-means algorithm. The innovative feature is that 
seven models of HMMs were generated by four 
different compilers and handwritten assembly code, 
as well as two metamorphic malware generators. The 
seven models were GCC, MinGW, TurboC, Clang, 
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TASM, NGVCK, and MWOR. After the models were 
trained by Opcode sequences, each malware sample 
received a 7-tuple of scores from the HMM models. A 
malware sample, which is more similar to the training 
dataset, should obtain higher scores. Then, the 7 
tuples were mapped into the input of k-means, which 
separates the malware samples into clusters. Finally, 
the experiment results demonstrate that their method 
is an effective way to automate the classification of 
malicious code. Visualization techniques have also 
been applied widely in many fields of computer 
science. In recent years, these techniques have also 
been used to analyze malicious code. Han et al. (2013) 
converted binary files into bitmap images. Then, the 
bitmap image was employed to generate an entropy 
graph by calculating the entropy values. They used 
the entropy graph to calculate the similarity of the 
malware. Nataraj et al. (2014) computed the texture 
features of malware to find similarities using 
generalized search trees (GIST), which uses a wavelet 
decomposition of an image. The methods proposed by 
Han et al. (2013) and Nataraj et al. (2014) apply 
different image features, and their classification 
accuracies are between 0.97 and 0.98. However, the 
calculation time of the former is less than that of the 
latter, meaning that the former is more efficient. 

Previous studies have proved that Opcode 
n-gram patterns can be used to extract the features of 
malware effectively (Ding et al., 2014; Kapoor and 
Dhavale, 2016). For example, Ding et al. (2014) 
proposed the control flow graph (CFG) to find all the 
execution paths that are Opcode sequences. Then, 
n-grams are extracted from the Opcode stream, and 
used as features which are the top n-grams, based on a 
document frequency score. Kapoor and Dhavale 
(2016) used a similar approach to extract n-gram 
features. Bi-normal separation is used for feature 
scaling. Meanwhile, they used information gain and 
χ2 test to select features. Compared with the infor-
mation gain, a χ2 test can not only detect malware, but 
also achieve an accuracy of muticlassification up to 
0.972. 

Many methods based on Windows application 
programming interfaces (APIs) have been proposed 
(Tian et al., 2010; Iwamoto and Wasaki, 2012). They 
use API to extract knowledge about the behavior of 
the executable file. Tian et al. (2010) used a trace tool 
called ‘HookMe’ to collect all the trace reports of the 

malware. Then, they dealt with all the API call strings 
and parameters as separate strings. They set a list to 
store all the strings in all the malware. Moreover, each 
file receives a feature vector that has the same length 
as the list. In the vector, ‘1’ denotes that a string is 
contained in the list and ‘0’ means that a string is not 
present. Their experiments showed that the random 
forest (RF) classifier achieves the best result. Iwa-
moto and Wasaki (2012) created an API-sequence 
graph for each sample. They compared the graphs to 
calculate Dice’s coefficient, which is employed to 
classify the samples. Although their accuracy is lower 
than that reached by Tian et al. (2010), their dataset is 
closer to the real situation. 

Cheng et al. (2013) applied information retrieval 
(IR) theory to classify malicious programs. They 
employed a dynamic analysis method to extract the 
sequences of API calls and system calls, providing the 
discriminatory features from different layers. Com-
pared with previous methods, they recorded all pa-
rameters of the API calls and system calls stored in 
documents. Then, TF-IDF weighting and IR theory 
were applied to describe and retrieve malware fami-
lies. Experiments showed that the accuracy of their 
method is better than those of other methods. 

Besides dynamic and static analysis methods, 
hybrid analysis has attracted attention in academia. 
Roundy and Miller (2010) proposed a new method 
which integrates static and dynamic techniques to 
construct control- and data-flow analysis. To detect 
the obfuscated malware, Islam et al. (2013) also in-
tegrated two features. Experiments proved that their 
method has not only a high detection rate, but also a 
very high robustness.  

 
 

3  Our methods 

3.1  System overview 

As shown in Fig. 1, our system can be divided 
into three parts: data processing, decision making, 
and clustering. Data processing handles feature 
extraction and selection. The system uses Opcode 
n-gram, gray-scale images, and the import function to 
extract malware features. The selection method 
reduces the dimension of the feature space to prevent 
a dimension disaster and to improve classifier 
performance. In the decision-making system, several  
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classifiers are trained by a large number of instances 
to predict the unknown samples. Meanwhile, they 
decide jointly whether the detected samples are 
questionable. In the clustering phase, the suspicious 
samples are assigned to their corresponding family. If 
a sample cannot be clustered as a known malware, it 
will be stored in the database for the next clustering. 

3.2  Feature extraction 

Malware classification based on gray-scale 
imaging is a novel approach. It has been proved an 
effective static analysis tool (Kancherla and Muk-
kamala, 2013; Nataraj et al., 2014). A gray-scale 
image is an image that is expressed in gray scale. The 
brightness of white to black is divided into 256 grades 
according to a logarithmic relationship. The different 
physical information from the graphs can cause a 
corresponding gray-scale difference, and textures 
confirm the reflection of the gray-scale difference in 
the visual field. To exploit the texture difference of 
malware, we first use the interactive disassembler 
(IDA) to obtain binary files of the malware. Then, we 
divide the content of the binary files into many small 
units, each of which contains eight bits and is 
converted to an unsigned integer in the range of 
0–255. In a gray-scale image, 0 and 255 represent 
black and white, respectively. Finally, the transformed 
file is mapped to a matrix called the ‘gray-scale ma-
trix’. The width of the matrix is usually initialized to 
2n. In our experiments, n=8.  

In Fig. 2, four types of malware belonging to 
three malware families are converted to gray-scale  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

images. The two types of malware in Figs. 2a and 2b, 
whose textures are similar, belong to the same family. 
The malware in Fig. 2c is from family Virus.Win32. 
Afgan. The malware in Fig. 2d is from family Trojan- 
Banker.Win32. From Fig. 2, we arrive at the follow-
ing conclusions: the textures of malware are different 
for different families, and similar within the same 
family. However, the matrix is not suitable to be used 
as our feature expression. To adapt it for further use, 
the gray-scale matrix is mapped into a 1D vector 
called a ‘gray-scale vector’. 

 
 
 
 
 
 
 
 
 
 
 
 

3.3  Opcode n-gram 

We use IDA Pro to reverse the analysis of mal-
ware. IDA Pro is a powerful interactive disassembler 
that Hex-Rays released (Tian et al., 2009; Ye et al., 
2010). It is not only applied to obtain the assembly 
file from malware, but also used to identify the func-
tion blocks and describe the function flow chart, gain 
import functions, etc. 

Fig. 2  Malware textures: (a) and (b) belong to the same 
family; (c) is from family Virus.Win32.Afgan; (d) is from 
family Trojan-Banker.Win32 

Fig. 1  Schematic of our system which is composed of three modules: data processing, decision making, and clustering 
(SNN: shared nearest neighbor) 
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3.3.1  n-gram 

In this study, we employ an n-gram model to 
extract Opcode features from a malware program. 
The model is an effective method for text feature 
extraction. It is based on the hypothesis that the 
appearance of the n words is related only to the pre-
vious n−1 words, wherein n represents the length of a 
characteristic sequence. If we have a set that contains 
L Opcodes, the set will be divided into L−n+1 feature 
sequences. The model finds feature sequences in a 
sliding window way. For example, a 3-gram model is 
employed to obtain feature sequences from {push, 
call, add, mov, xor, inc, pop}. As shown in Fig. 3, we 
extract five short sequences, and each sequence in-
cludes three Opcodes. 

 
 
 
 
 
 
 
 
 
 

3.3.2  Control flow graph 

The programs, written by a high-level language, 
are composed of conditional judgment, loop state-
ment, call function, etc.; thus, the relationship be-
tween the functions is very important in the analysis 
of the program (Kinable and Kostakis, 2011). In-
structions cannot be limited to local relationships. 
However, they should be put into the program flow. 
Therefore, we analyze the malware by constructing a 
CFG. Fig. 4 shows how we construct the CFG of 
functions using IDA Pro. Functions are a part of 
VIRUS.Wind32.Afgan.c. To express the function call 
relationship, we need to count the times each function 
is called. To describe the program features correctly, 
we make the function block a basic unit, so we can 
extract only feature sequences in the block. 

3.3.3  Opcode 3-gram extraction 

We combine CFG with 3-gram to extract the 
Opcode features of the malware. Fig. 5 describes the 
process of an Opcode feature extraction. First, we 
distill a set of Opcodes with the CFG sequentially.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Opcode 3-gram 

Fig. 4  Control flow graph 

Call sub_427934

Call sub_427810

Fig. 5  Opcode 3-gram extraction 

{(cmp, jz, push),  (jz, push, push),  (push, push, push),  (push, 
push, call) , (push, call, add), (call, add, cmp), (add, cmp, jz), 
(cmp, jz, push), (jz, push, mov), (push, mov, push), (mov, push, 
mov) ,  (push, mov, push) ,  (mov, push, push) ,  (push, push, 
push) ,  (push, push, call) ,  (push, call, add) ,  (call, add, mov) , 
(add, mov, xor), (mov, xor, inc), (xor, inc, pop), (inc, pop, mov), 
(pop, mov, pop), (mov, pop, retn)}

{cmp, jz, push, push, push, call, add, 
cmp, jz, push, mov, push, mov, push, 
push, push, call, add, mov, xor, inc, 
pop, mov, pop, retn}
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The set contains 25 Opcodes. Then we apply 3-gram 
to extract 23 feature sequences. There are two func-
tions named ‘sub_427934’ and ‘sub_427810’, which 
are called in sub_40107B. The counters are added to a 
unit automatically. This means that a function is 
called m times, and its characteristic sequences will 
be counted m times. 

3.4  Import functions 

Import functions for a program are contained 
mainly in dynamic link libraries. If a malware pro-
gram hopes to achieve a specific function, it needs to 
call a specific library function. For example, 
wsock32.dl can perform the relevant network task, 
and Kernel32.dll contains access and memory opera-
tions, files, hardware, and other functions. Adva-
pi32.dll provides functions which can access core 
Windows components. Thus, the information for 
these import functions can help us analyze the mal-
ware’s purpose. Therefore, we count the times each 
DLL appears in the import functions, and the statis-
tical values will be a part of the malware features. 
Fig. 6 shows the import functions for VIRUS.Wind32. 
Afgan.c, where the ‘Name’ column contains names of 
the call functions, and the ‘Library’ column is the 
dynamic link library (DLL) of the corresponding 
function. The frequency of each import function will 
be an important part of malware features. 

 
 
 
 
 
 
 

 
 
 

 
 

3.5  Feature selection 

It is important to choose features that have the 
ability to distinguish malware families. The features 
are extracted by the n-gram model as high- 
dimensional data. To improve classification accuracy 
and reduce time consumption, a novel method is 
applied to reduce the dimensionality of the data. To 

assist in the description, we review a few concepts. 
Y={0, 1, …} represents the label of the malware 
family. si refers to the feature sequence. The fre-
quency of the sequence is  
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The information gain of the sequence is  
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p(si, y) stands for the joint probability distribution of si 
and y, and p(si) and p(y) are the marginal probability 
distribution functions of S and Y, respectively. The 
information gain is used to measure the ability of a 
sequence to distinguish the malware. We employ a 
two-step strategy to reduce the dimensionality. 

If feature si satisfies condition |1−F(si)/fj(si)|≤ζ, si 
is deleted. This shows that the feature does not have 
the ability to discriminate the malware family. Define 
a new information gain as 
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The expression has a weight term. This term is aimed 
at enhancing the importance of certain features that 
have low frequency and high discrimination. By 
calculating the information gain, we retain 500 fea-
tures with larger values. 
 
 
4  Decision-making system 
 

We propose a decision-making system to capture 
suspicious software, which may belong to a known 
family or be a new malware program. This system 

Fig. 6  Import functions 



Liu et al. / Front Inform Technol Electron Eng   2017 18(9):1336-1347 1342

determines the label of a sample through integrating 
results of multiple classifiers. Compared with previ-
ous ensemble systems (Hu et al., 2007; Tao et al., 
2013), we design a weight vector for each classifier. 
The weight vector contains n weight values, where n 
denotes the quantity of the sample family. In Fig. 7, 
there are N classifiers and N weight vectors. Each 
classifier is trained by a training set, which is sampled 
by Bootstrap. Testing set T1 is used to verify the ca-
pability of each classifier. The capability is not only to 
gain a higher accuracy rate, but also to classify the 
special family precisely. Different classifiers may 
have different effects on different families. Therefore, 
each classifier is able to provide a higher degree of 
confidence for the specific classification results. 

 
  
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

Fig. 8 refers to weight vectors. C and F represent 
the classifier and the sample family, respectively, W 
indicates the ability of classifier Ci to identify family 
Fj, and Wij=TP/Nj, where TP is the number of samples 
that are classified correctly into Fj, and Nj is the 
quantity of samples included in Fj. In the voting phase, 
the system combines all Wij’s to decide the result.  

The voting result is max
max

,l
l

R W W


    where 

1
,

N

l ijj
W a W


   max max( ),lW W  and l[1, N]. 

When l=i, a=1; otherwise, a=0. If the result satisfies 
|R|≥ƞ, the sample belongs to the target label; other-
wise, it is a suspicious malware. Threshold ƞ is cho-
sen based on our experience. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Shared nearest neighbor 
 

Although we have designed an effective method 
that can reduce attributes, there are still thousands of 
dimensions. The performance of classical clusters is 
low in the high-dimensional space, because the  
Euclidean distance fails in the high-dimensional 
space, and the triangle inequality does not hold (Jarvis 
and Patrick, 1973). Consider the similarities of the 
three samples listed in Table 1. 

 
 
 

 
 
 
 
We calculate the Euclidean distance: D(P1, 

P2)=2, D(P2, P3)=2, and D(P1, P3)= 6.  Two conclu-
sions can be obtained: (1) P1 and P3 have the same 
similarity for P2; i.e., they have the same distance to 
P2. (2) P1 and P3 are close to P2; thus, P1 is close to P3. 
Assume that these three points are malware samples. 
If the attribute value is not zero, it is contained in this 
sample. Table 1 demonstrates that P1 and P2 have no 
common properties, while P2 and P3 have two shared 
properties. This explains why the Euclidean distance 
does not exactly depict the similarity of the samples in 
a high-dimensional space. 

In view of the above problems, we adopt the 
SNN method, which has good performance in the 
high-dimensional space. The method was first pro-
posed by Jarvis and Patrick (1973). The similarity of 
two points is defined in that they jointly have a large 
neighborhood C which includes at least k points. The 

Table 1  Similarities of three samples 

Sample A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

P1 1 1 0 0 0 0 0 0 0 0

P2 0 0 0 0 0 0 0 0 1 1

P3 0 0 0 0 1 1 1 1 1 1

 

Fig. 7  Decision-making system 

Classifier 1 Classifier 2 Classifier N

R1(X) R2(X) RN(X)

. . .

Training 
set S1

Training 
set S2

Training 
set S3

Testing 
set T1

Voting 
result

W1

Bootstrap

WNW2

. . .

. . .

. . .

Fig. 8  Weight table, where Ci and Fj represent the clas-
sifier and the sample family, respectively, and Wij indi-
cates the ability of classifier Ci to identify family Fj (i=1, 
2, …, N; j=1, 2, …, n) 
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advantage of this method is that it is able to cluster 
points with different densities. As shown in Fig. 9, 
circles of different sizes describe the clustering with 
different densities. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
The position relationship M between two points 

is stored in each row of a similarity matrix. M(A, B)=1 
denotes that point B is the closest to point A. Each row 
saves only k minimum values, and other values are set 
to 0. The matrix is used to construct the K-nearest 
neighbor (K-NN) graph. In Fig. 10, points O and P are 
noise or outliers, which, however, are not separated 
by the graph. To address the problem, the link 
strength is calculated by 

 

str( , ) ( 1 ) ( 1 ).O P k m k n             (5) 

 
If the strength of a point is less than the special 

threshold, all of its edges are removed. In Fig. 10, 
points O and P are classified as outliers. Ertoz et al. 
(2002) adopted the link strength to select the core 
points that have larger link strength in each clustering. 
In each clustering, a point is either one of the core 
points or connected to the core points. 

 

 
 
 
 
 

 

 
 
 

The SNN model can be described as follows:  
(1) calculate the similarity matrix; (2) construct the 

K-NN graph; (3) compute the link strength and set the 
threshold to find the noises and outliers with a low 
strength; (4) select the core points that have a high 
strength; (5) assign a new point to the clustering, or 
mark it as an outlier.  

 
 

6  Experiment 

6.1  Dataset 

A large amount of malware information has been 
collected using ESET NOD32, VX Heavens, and 
Threat Trace Security from our campus network. We 
capture 21 740 malware instances which belong to 
nine families (viruses, worms, Trojan horses, back-
doors, etc.). They are detected mainly from Windows 
7. The data set is divided into a training set and a test 
set which have 19 740 and 2000 samples, respectively. 
IDA Pro transforms each malware instance into a 
binary file and assembly file. The features of each 
malware program are extracted in the third part of our 
method. We use the Oracle database, Python 2.7, and 
Scikit-learn, where Scikit-learn is the machine 
learning module for Python containing most of the 
classification algorithms. In the experiments, the RF, 
K-NN, gradient-boosting (GB), Naïve Bayes (NB), 
logistic regression (LR), SVM-poly (SP), and deci-
sion tree (DT) algorithms are used. 

6.2  Classification 

6.2.1  n-gram (n=2, 3, …, 9) 

n-gram is an efficient method for text feature 
extraction, where n denotes the length of the feature 
sequence. The length determines the performance of 
the algorithm. Therefore, we employ nine different 
lengths to abstract features, which are applied in 
seven classification algorithms. As shown in Table 2, 
the accuracies of all the algorithms show that the one 
that uses n-gram (n=2, 3) is the best. We find that the 
performance of classifiers may be worse when em-
ploying n-gram (n>4). 

6.2.2  Combination of three features 

We have an integration feature that combines the 
gray-scale image, n-gram (n=3), and the frequencies 
of import functions. Table 3 shows the results of 
seven classifiers based on different feature extraction 
methods. RF and GB algorithms have the best  

Fig. 9  Clustering with five neighborhoods of each point

x

y

Fig. 10  Near neighbor graph (a) and weighted shared 
near neighbor graph (b) 
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performance. In addition, they represent ensemble 
learning. RF is made up of many DTs, but its average 
performance is 7.4% higher than that of DT. Specif-
ically, in applying the 3-gram, its accuracy is 16.7% 
higher than that of DT. The reason is that ensemble 
learning is able to improve the classification ability of 
a single classifier by integrating multiple weak clas-
sifiers (Zhou et al., 2002). Our experiments prove that 
the gray-scale image is the Opcode n-gram, and the 
accuracy of the combined method is higher than those 
of the others. In Fig. 11, we find that the performances 
of NB and DT achieve the greatest improvement. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
To evaluate our method effectively, we present a 

comparison with that proposed by Nataraj et al. 
(2014). We use the LMgist module (Oliva and 
Torralba, 2001) based on Matlab R2012b to extract 
the GIST feature from our gray-scale images. We use 
seven classifiers to test its accuracy for malware 
classification. The results show that the average ac-
curacy is 0.914, and the best accuracy is 0.965 based 
on RF. Although their method is better than the  

 
 
 
 
 
 
 
 
 
 
 
 

gray-scale method, the accuracy of our combined 
method is 4.3% higher than that of their method. 
Opcode n-gram is similar to the method proposed by 
Ding et al. (2014). Our experiments show that when n 
is equal to three, our combined method achieves a 
best accuracy of 0.853. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.3  New malware 

In this experiment, our dataset is divided into 
known and unknown malware. Assume that the un-
known malware is regarded as a new family belong-
ing to the Trojan family. Then, the classifiers are 
trained using the known malware. The test results of 
these classifiers are shown in Table 4, where each 
element represents the accuracy of a classifier on a 
particular family. The expression for accuracy is 
TP/Ni.  

To discover new malware, we construct a 
decision-making system which is composed of mul-
tiple classifiers. Because the performance of classifi-
ers is different, they have different effects on the  

Table 3  Accuracy rates of different features based on 
different classifiers 

Classifier 
Accuracy 

Image 3-gram Combined Average
RF 0.958 0.936 0.989 0.961 
K-NN 0.872 0.831 0.881 0.861 
GBC 0.961 0.922 0.975 0.953 
NB 0.775 0.772 0.953 0.833 
LR 0.928 0.872 0.958 0.919 
SP 0.936 0.800 0.969 0.902 
DT 0.917 0.769 0.975 0.887 
Average 0.907 0.843 0.957 – 

RF: random forest; K-NN: K-nearest neighbor; GB: gradient-
boosting; NB: Naïve Bayes; LR: logistic regression; SP: support 
vector machine-poly; DT: decision tree 

 

Table 2  The n-gram comparisons among different classifiers 

Classifier 
Accuracy 

2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram 9-gram Average 
RF 0.928 0.947 0.936 0.925 0.922 0.883 0.878 0.769 0.899 

K-NN 0.883 0.881 0.850 0.811 0.797 0.781 0.742 0.706 0.806 
GB 0.925 0.928 0.914 0.911 0.900 0.878 0.858 0.794 0.889 
NB 0.725 0.747 0.714 0.719 0.675 0.686 0.669 0.622 0.695 
LR 0.900 0.900 0.892 0.856 0.867 0.831 0.786 0.744 0.847 
SP 0.819 0.803 0.792 0.733 0.689 0.667 0.639 0.553 0.712 
DT 0.738 0.767 0.743 0.645 0.677 0.638 0.629 0.602 0.680 

Average 0.845 0.853 0.834 0.800 0.790 0.766 0.743 0.684 0.790 

RF: random forest; K-NN: K-nearest neighbor; GB: gradient-boosting; NB: Naïve Bayes; LR: logistic regression; SP: support vector 
machine-poly; DT: decision tree

 

Fig. 11  Improved accuracies of different classifiers 
RF: random forest; K-NN: K-nearest neighbor; GB: 
gradient-boosting; NB: Naïve Bayes; LR: logistic regression; 
SP: support vector machine-poly; DT: decision tree 
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result of the decision. Therefore, a scoring method is 
used to combine the different results of the classifiers.  

In the experiment, we use S={S1, S2, …, S10, …, 
SN} as the sample set, where S′={S1, S2, …, S10} 
belongs to the new malware and the other samples 
belong to the known families. We train seven models 
to validate the samples. For example, the labels for S′ 
are {(4, 4, 1, 8, 1, 4, 5, 1, 1, 4), (5, 6, 2, 4, 4, 4, 1, 6, 1, 
4), (5, 4, 4, 5, 6, 4, 4, 4, 1, 6), (8, 1, 1, 1, 8, 1, 8, 1, 1, 1), 
(1, 4, 5, 6, 5, 8, 5, 8, 5, 5), (6, 1, 6, 2, 2, 6, 2, 2, 2, 6),  
(8, 5, 1, 7, 5, 4, 1, 5, 6, 7)}, where label(Si)={si1, si2, …, 
si10}. Then, we employ the scoring method to calcu-
late the scoring table of labels. Table 5 is the scoring 
table, which denotes the weights of classifiers for the 
decision results. 

In the decision phase, we select the target label 
which has the most votes. If the result of sample Si 
satisfies |Ri|≥0.16, Si belongs to the target label. If 
|Ri|<0.16, Si is the suspicious malware. By calculating 
|Ri|, 10 samples are the suspicious malware. We 
employ the SNN method to cluster the suspicious 
malware. In Fig. 12, the suspicious samples are con-
sidered to be outliers. The samples are too far away 
from the core points to be clustered. Moreover, there 
are few outliers to form a new group. Then, these 
samples are stored in the database. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We reselect 900 samples which contain nine la-
beled samples. The samples include 810 known 
samples and 90 new samples which are from the same 
family as the suspicious samples. The results of the 
experiment are shown in Fig. 13. A new group ap-
pears in the lower right corner of the figure. The 
group is composed of 78 samples from the unknown 
malware. There are 12 samples assigned wrongly to 
other categories. Therefore, the accuracy of this 
experiment is 0.867. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Accuracies of different classifiers on different malware families 

Classifier 
Accuracy 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

RF 1.00 1.00 1.00 1.00 1.00 0.97 0.98 1.00 0.96 

K-NN 0.74 1.00 0.96 0.89 0.63 0.85 1.00 1.00 0.92 

GB 1.00 1.00 1.00 0.96 0.94 0.97 0.97 0.96 1.00 

NB 1.00 1.00 0.95 1.00 0.86 0.88 0.95 1.00 0.95 

LR 0.97 0.98 0.98 1.00 0.89 0.86 1.00 0.97 0.97 

SP 1.00 1.00 1.00 0.96 0.93 0.89 1.00 1.00 0.97 

DT 1.00 1.00 1.00 0.96 0.90 0.87 1.00 1.00 0.98 

 
Table 5  Scoring table 

Classifier 
Accuracy 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

RF 0.149 0.149 0.146 0.149 0.150 0.150 0.152 0.150 0.154 0.151 

K-NN 0.126 0.127 0.146 0.133 0.134 0.133 0.112 0.126 0.113 0.134 

GB 0.144 0.143 0.140 0.142 0.146 0.144 0.146 0.144 0.154 0.146 

NB 0.140 0.149 0.146 0.149 0.150 0.150 0.152 0.150 0.154 0.150 

LR 0.146 0.149 0.130 0.129 0.134 0.146 0.134 0.145 0.137 0.134 

SP 0.149 0.149 0.146 0.149 0.150 0.133 0.152 0.150 0.154 0.134 

DT 0.146 0.134 0.146 0.149 0.136 0.144 0.152 0.135 0.134 0.151 

 

Fig. 12  Unknown malware detection with eight esti-
mated clusters 
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7  Conclusions 
 

The system is composed mainly of three parts: 
data processing, decision making, and clustering. The 
system can detect accurately not only known malware, 
but also unknown malware. In the data processing 
phase, we presented a combined feature extraction 
method, which is based on a gray-scale image, Op-
code n-gram, and the import function. The method 
uses the texture of the malware to effectively describe 
the features of the different programs. In the decision- 
making system, we proposed a decision-making sys-
tem applied to find the suspicious malware. Due to the 
high dimensionality of the malware, SNN is used to 
cluster the samples. Finally, experiment results 
showed that our system not only improves the accu-
racy of malware classification effectively, but also 
discovers new malware effectively.  
 
References 
Annachhatre, C., Austin, T.H., Stamp, M., 2015. Hidden 

Markov models for malware classification. J. Comput. 
Virol. Hack. Tech., 11(2):59-73.  

 https://doi.org/10.1007/s11416-014-0215-x 
Cheng, J.Y.C., Tsai, T.S., Yang, C.S., 2013. An information 

retrieval approach for malware classification based on 
Windows API calls. Int. Conf. on Machine Learning and 
Cybernetics, p.1678-1683.  

 https://doi.org/10.1109/ICMLC.2013.6890868 
Damodaran, A., di Troia, F., Visaggio, C.A., et al., 2017. A 

comparison of static, dynamic, and hybrid analysis for 
malware detection. J. Comput. Virol. Hack. Tech., 13(1): 
1-12. https://doi.org/10.1007/s11416-015-0261-z 

Ding, Y.X., Dai, W., Yan, S.L., et al., 2014. Control flow- 
based Opcode behavior analysis for malware detection. 

Comput. Secur., 44:65-74.  
 https://doi.org/10.1016/j.cose.2014.04.003 
Egele, M., Scholte, T., Kirda, E., et al., 2012. A survey on 

automated dynamic malware-analysis techniques and 
tools. ACM Comput. Surv., 44(2): Article 6.  

 https://doi.org/10.1145/2089125.2089126 
Ertoz, L., Steinbach, M., Kumar, V., 2002. A new shared 

nearest neighbor clustering algorithm and its applications. 
Workshop on Clustering High Dimensional Data and Its 
Applications at the 2nd SIAM Int. Conf. on Data Mining, 
p.105-115. 

Gandotra, E., Bansal, D., Sofat, S., 2014. Malware analysis 
and classification: a survey. J. Inform. Secur., 5(2):44440.  

 https://doi.org/10.4236/jis.2014.52006 
Han, K.S., Lim, J.H., Im, E.G., 2013. Malware analysis 

method using visualization of binary files. Proc. on Re-
search in Adaptive and Convergent Systems, p.317-321. 
https://doi.org/10.1145/2513228.2513294 

Hu, Q.H., Yu, D.R., Xie, Z.X., et al., 2007. EROS: ensemble 
rough subspaces. Patt. Recogn., 40(12):3728-3739.  

 https://doi.org/10.1016/j.patcog.2007.04.022 
Islam, R., Tian, R.H., Batten, L.M., et al., 2013. Classification 

of malware based on integrated static and dynamic fea-
tures. J. Netw. Comput. Appl., 36(2):646-656.  

 https://doi.org/10.1016/j.jnca.2012.10.004 
Iwamoto, K., Wasaki, K., 2012. Malware classification based 

on extracted API sequences using static analysis. Proc. 
Asian Internet Engineering Conf., p.31-38.  

 https://doi.org/10.1145/2402599.2402604 
Jain, S., Meena, Y.K., 2011. Byte level n-gram analysis for 

malware detection. In: Venugopal, K.R., Patnaik, L.M. 
(Eds.), Computer Networks and Intelligent Computing. 
Springer, Berlin, p.51-59.  

 https://doi.org/10.1007/978-3-642-22786-8_6 
Jarvis, R.A., Patrick, E.A., 1973. Clustering using a similarity 

measure based on shared near neighbors. IEEE Trans. 
Comput., C-22(11):1025-1034.  

 https://doi.org/10.1109/T-C.1973.223640 
Jolliffe, I.T., 2002. Principal Component Analysis (2nd Ed.). 

Springer, New York. https://doi.org/10.1007/b98835 
Kancherla, K., Mukkamala, S., 2013. Image visualization 

based malware detection. IEEE Symp. on Computational 
Intelligence in Cyber Security, p.40-44.  

 https://doi.org/10.1109/CICYBS.2013.6597204 
Kapoor, A., Dhavale, S., 2016. Control flow graph based 

multiclass malware detection using bi-normal separation. 
Defen. Sci. J., 66(2):138-145.  

 https://doi.org/10.14429/dsj.66.9701 
Kaspersky Labs, 2015. Security Bulletin 2015. https://securelist. 
 com/files/2015/12/KSB_2015_Statistics_FINAL_EN. 
 pdf 
Kinable, J., Kostakis, O., 2011. Malware classification based 

on call graph clustering. J. Comput. Virol., 7(4):233-245.  
 https://doi.org/10.1007/s11416-011-0151-y 
Kong, D.G., Yan, G.H., 2013. Discriminant malware distance 

learning on structural information for automated malware 

Fig. 13  Unknown malware clustering with nine esti-
mated clusters 

y



Liu et al. / Front Inform Technol Electron Eng   2017 18(9):1336-1347 1347

classification. Proc. 19th ACM SIGKDD Int. Conf. on 
Knowledge Discovery and Data Mining, p.1357-1365.  

 https://doi.org/10.1145/2487575.2488219 
Lee, J., Jeong, K., Lee, H., 2010. Detecting metamorphic 

malwares using code graphs. Proc. ACM Symp. on Ap-
plied Computing, p.1970-1977.  

 https://doi.org/10.1145/1774088.1774505 
Lin, C.T., Wang, N.J., Xiao, H., et al., 2015. Feature selection 

and extraction for malware classification. J. Inform. Sci. 
Eng., 31(3):965-992.  

 https://doi.org/10.6688/JISE.2015.31.3.11 
Lin, D., Stamp, M., 2011. Hunting for undetectable meta-

morphic viruses. J. Comput. Virol., 7(3):201-214.  
 https://doi.org/10.1007/s11416-010-0148-y 
Liu, X.W., Wang, L., Huang, G.B., et al., 2015. Multiple 

kernel extreme learning machine. Neurocomputing, 149: 
253-264. https://doi.org/10.1016/j.neucom.2013.09.072 

Musale, M., Austin, T.H., Stamp, M., 2015. Hunting for 
metamorphic JavaScript malware. J. Comput. Virol. Hack. 
Tech., 11(2):89-102.  

 https://doi.org/10.1007/s11416-014-0225-8 
Nataraj, L., Karthikeyan, S., Jacob, G., et al., 2014. Malware 

images: visualization and automatic classification. Proc. 
8th Int. Symp. on Visualization for Cyber Security. 
https://doi.org/10.1145/2016904.2016908 

Oliva, A., Torralba, A., 2001. Modeling the shape of the scene: 
a holistic representation of the spatial envelope. Int. J. 
Comput. Vis., 42(3):145-175.  

 https://doi.org/10.1023/A:1011139631724  
Pascanu, R., Stokes, J.W., Sanossian, H., et al., 2015. Malware 

classification with recurrent networks. IEEE Int. Conf. on 
Acoustics, Speech and Signal Processing, p.1916-1920.  

 https://doi.org/10.1109/ICASSP.2015.7178304 
Roundy, K.A., Miller, B.P., 2010. Hybrid analysis and control 

of malware. In: Jha, S., Sommer, R., Kreibich, C. (Eds.), 
Recent Advances in Intrusion Detection. Springer Berlin 
Heidelberg, p.317-338.  

 https://doi.org/10.1007/978-3-642-15512-3_17 
Russo, A., Sabelfeld, A., 2010. Dynamic vs. static flow-  

sensitive security analysis. 23rd IEEE Computer Security 
Foundations Symp., p.186-199.  

 https://doi.org/10.1109/CSF.2010.20 
Salton, G., McGill, M.J., 1986. Introduction to Modern In-

formation Retrieval. McGraw-Hill, Inc., New York, 
USA. 

Shabtai, A., Moskovitch, R., Elovici, Y., et al., 2009. Detec-
tion of malicious code by applying machine learning 

classifiers on static features: a state-of-the-art survey. 
Inform. Secur. Tech. Rep., 14(1):16-29.  

 https://doi.org/10.1016/j.istr.2009.03.003 
Tao, H., Ma, X., Qiao, M., 2013. Subspace selective ensemble 

algorithm based on feature clustering. J. Comput., 8(2): 
509-516. 

Tian, R.H., Batten, L., Islam, R., et al., 2009. An automated 
classification system based on the strings of Trojan and 
virus families. 4th Int. Conf. on Malicious and Unwanted 
Software, p.23-30.  

 https://doi.org/10.1109/MALWARE.2009.5403021 
Tian, R.H., Islam, R., Batten, L., et al., 2010. Differentiating 

malware from cleanware using behavioural analysis. 5th 
Int. Conf. on Malicious and Unwanted Software, p.23-30.  

 https://doi.org/10.1109/MALWARE.2010.5665796 
Tsyganok, K., Tumoyan, E., Babenko, L., et al., 2012. Classi-

fication of polymorphic and metamorphic malware sam-
ples based on their behavior. Proc. 5th Int. Conf. on Se-
curity of Information and Networks, p.111-116.  

 https://doi.org/10.1145/2388576.2388591 
Wong, W., Stamp, M., 2006. Hunting for metamorphic en-

gines. J. Comput. Virol., 2(3):211-229.  
 https://doi.org/10.1007/s11416-006-0028-7 
Yan, G.H., Brown, N., Kong, D.G., 2013. Exploring discrim-

inatory features for automated malware classification. In: 
Rieck, K., Stewin, P., Seifert, J.P. (Eds.), Detection of 
Intrusions and Malware, and Vulnerability Assessment. 
Springer Berlin Heidelberg, p.41-61.  

 https://doi.org/10.1007/978-3-642-39235-1_3 
Yao, W., Chen, X.Q., Zhao, Y., et al., 2012. Concurrent sub-

space width optimization method for RBF neural network 
modeling. IEEE Trans. Neur. Netw. Learn. Syst., 23(2): 
247-259. https://doi.org/10.1109/TNNLS.2011.2178560 

Ye, Y.F., Li, T., Chen, Y., et al., 2010. Automatic malware 
categorization using cluster ensemble. Proc. 16th ACM 
SIGKDD Int. Conf. on Knowledge Discovery and Data 
Mining, p.95-104.  

 https://doi.org/10.1145/1835804.1835820 
Yu, Y., Wang, H.M., Yin, G., et al., 2016. Reviewer recom-

mendation for pull-requests in GitHub: what can we learn 
from code review and bug assignment? Inform. Softw. 
Technol., 74:204-218.  

 https://doi.org/10.1016/j.infsof.2016.01.004 
Zhou, Z.H., Wu, J.X., Tang, W., 2002. Ensembling neural 

networks: many could be better than all. Artif. Intell., 
137(1-2):239-263. 

 https://doi.org/10.1016/S0004-3702(02)00190-X 

 


