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Abstract:    Researchers across the globe have been increasingly interested in the manner in which important research topics 
evolve over time within the corpus of scientific literature. In a dataset of scientific articles, each document can be considered to 
comprise both the words of the document itself and its citations of other documents. In this paper, we propose a citation- 
content-latent Dirichlet allocation (LDA) topic discovery method that accounts for both document citation relations and the con-
tent of the document itself via a probabilistic generative model. The citation-content-LDA topic model exploits a two-level topic 
model that includes the citation information for ‘father’ topics and text information for sub-topics. The model parameters are 
estimated by a collapsed Gibbs sampling algorithm. We also propose a topic evolution algorithm that runs in two steps: topic 
segmentation and topic dependency relation calculation. We have tested the proposed citation-content-LDA model and topic 
evolution algorithm on two online datasets, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) and IEEE 
Computer Society (CS), to demonstrate that our algorithm effectively discovers important topics and reflects the topic evolution of 
important research themes. According to our evaluation metrics, citation-content-LDA outperforms both content-LDA and  
citation-LDA. 
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1  Introduction 
 

Scientific literature records and supports the 
continuing progress of research within a wide variety 
of domains. As a researcher approaches a new re-
search area, he/she benefits from a thorough 
knowledge of hot topics related to that field and the 

evolution of those topics throughout the body of lit-
erature, particularly when this knowledge can be 
gathered quickly and conveniently. The body of sci-
entific literature is exceedingly difficult to navigate; 
however, as an increasing number of documents (even 
documents of dubious veracity) are readily available 
through digital databases and other online sources, 
automatic topic discovery and evolution represent an 
interesting and very potentially beneficial solution to 
this problem. 

In recent decades, topic models have provided a 
simple way to analyze large volumes of unlabeled 
document collections. Among these models, proba-
bilistic latent semantic analysis (PLSA) (Hofmann, 
2001) and latent Dirichlet allocation (LDA) (Blei  
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et al., 2003) are the most popular. Both of them are 
based fairly simply on probability analysis and 
graphical models, exploiting the ‘bag of words’ con-
cept to discover topics from documents. The topic 
model combined with the timestamp information can 
reflect the evolution of the topic over time, i.e., 
providing topic evolution analysis. Topic discovery 
and evolution analysis for scientific literature have 
attracted a considerable amount of research interest in 
terms of data mining and discovery. At present, there 
are two roadmaps through the corpus of scientific 
research: one uses only the text information of scien-
tific documents for topic discovery and evolution 
research (Blei and Lafferty, 2006; Wang and 
McCallum, 2006; Ahmed and Xing, 2010), and the 
other combines the text information with additional 
information, such as similarities in citations among 
papers, to detect topics and track topic evolution over 
time. The latter model clearly uses more information 
from the literature to detect topics and their evolution, 
and thus tends to return better results. The inheritance 
topic model developed by He et al. (2009), for ex-
ample, uses the citation information among papers to 
represent topic evolution in scientific literature. The 
model works on the principle that ideas and tech-
niques inherited among papers are reflected by the 
citations shared among them. Nallapati et al. (2008) 
and Guo et al. (2014) have combined the content and 
citations of scientific documents for the purposes of 
topic modeling frameworks. Lu et al. (2014) pro-
posed a topic model which uses authorship, published 
venues, and citation relations among scientific doc-
uments to detect topics and identify the most notable 
works in the corpus. Though effective in certain re-
gards, all of these methods focus on only one or two 
aspects of topic discovery and evolution research. 
Wang et al. (2013) explored several aspects of topic 
and theme evolution by modeling document citations 
with a probability generative model. Their technique 
is the inspiration for the existing study, and we take it 
one step further by building a comprehensive topic 
modeling framework that fully combines text and 
citation information to represent topics and topic 
evolution in the corpus. 

Unlike the first-published citation-LDA topic 
detection model, the model we propose here explores 
topics in a scientific corpus in terms of both text (i.e., 
the document itself) and citations in the documents 

through a probability generative model. The main 
idea is that a collection of scientific documents can be 
considered not only a ‘bag of words’ but also a ‘bag of 
citations’. Extracting topics and identifying their 
evolution through both aspects of the documents 
return more accurate results. We develop the pro-
posed method to extract research topics as accurately 
as possible, and to analyze topic evolution in the lit-
erature without discretizing the corpus in advance. 
Similar to the method proposed by Wang et al. (2013), 
our model can extract research topics, particularly 
groundbreaking (i.e., ‘milestone’) papers, and topic 
keywords through a two-level (text and citation) 
generative topic model. The contributions of this 
work can be summarized as follows: 

1. We propose a new probability generative 
model which uses a two-level LDA based on text and 
citation information. The model exploits both the bag 
of words and the bag of citations; thus, any document 
in the corpus can be viewed as a collection of words 
or a collection of citations, as required.  

2. We address the topic evolution analysis 
problem by building an algorithm that combines topic 
segmentation and topic dependency relation calcula-
tions. The most notable characteristics of the pro-
posed algorithm are that the topics extracted from the 
entire corpus are projected into different time slots, 
and topic dependency relations are established by a 
random walk process. 

 
 

2  Related work 
 
In this section, we will review previous work 

related to topic extraction and evolution for scientific 
documents based on both text information and link 
network (i.e., citation) information. 

Probabilistic hypertext-induced topic selection 
(PHITS) (Cohn and Chang, 2000) was the first topic 
model developed to merge the term-based PLSA 
model and citation-based analysis into a joint proba-
bilistic model. It assumes that documents and topics 
are all generated by a probability distribution of both 
words and citations, where the two distributions share 
the same document–topic (or ‘doc–topic’) mixing 
proportions. A similar model called the ‘link LDA 
model’ was developed by Erosheva et al. (2004) by 
adopting a mixed membership model for words and 
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citations but treating the membership scores as ran-
dom Dirichlet realizations in the documents. Later, 
Dietz et al. (2007) proposed the citation influence 
model, which integrates text and links into a proba-
bilistic model and infers the influences of citations on 
the topic distribution. Nallapati and Cohen (2008) 
established the link-PLSA-LDA model, which is a 
very scalable LDA model for topic modeling and link 
prediction. Chang and Blei (2009) proposed the rela-
tional topic model by describing the links among 
documents via a binary random variable, abandoning 
the exchangeability assumption of documents in the 
LDA topic model. The NetPLSA model proposed by 
Mei et al. (2008) combines other statistical topic 
models under discrete regularization based on a graph 
structure. It can be applied to text mining tasks, such 
as author–topic analysis, community discovery, and 
spatial text mining. The collective topic model (CTM) 
proposed by Lu et al. (2014) simultaneously discov-
ers topics and related milestone papers in the corpus 
by modeling papers, authors, and published venues as 
a bag of citations based on the PLSA model. 

Topic discovery and evolution analysis are often 
solved together within a unified framework, and 
topics are often modeled by combining text and cita-
tion information. This integrated approach to topic 
modeling has made it easier and altogether more ef-
fective to identify topic evolution in scientific litera-
ture (Nallapati et al., 2008). He et al. (2009) devel-
oped a particularly interesting citation-aware ap-
proach to the topic evolution problem by proposing 
the inhertance topic model (ITM), which applies the 
LDA model to the citation network and uses an itera-
tive topic evolution learning framework. Wang et al. 
(2013) proposed a novel topic evolution model called 
the ‘citation-LDA’ model, which likewise jointly 
analyzes text and citations in scientific documents. 
Citation-LDA was designed to identify milestone 
papers and evaluate topic dependency via citation 
information to return more accurate topic evolution 
results and construct better evolution graphs than the 
traditional LDA model.  

To the best of our knowledge, the approaches 
mentioned above can solve only part of the questions 
discussd here, i.e., the discovery of research topics 
(including milestone papers and key words of topics) 
and the construction of a topic evolution graph. In this 
study, we jointly model the generation of the citation 

and content information to address all the problems 
discussed above. 

 
 

3  Probabilistic modeling of literature content 
and citations 
 

The original LDA model, which is based on the 
co-occurrence of certain words, can also be called the 
‘content-LDA model’. There are a handful of issues 
inherent to the use of the content-LDA model to ex-
tract topics from scientific literature. First, the model 
is not suitable for short documents, as it must syn-
thesize a large number of topics to perform well. 
Shorter papers may provide only a title and an ab-
stract effectively. In addition, any large amount of 
noise in scientific documents due to background in-
formation or topic-irrelevant words impedes the per-
formance of the content-LDA model. The citation- 
LDA model, conversely, uses only citation link rela-
tions to generate topics in a probability framework, 
similar to the LDA model. This method has two dis-
tinct advantages: (1) In a scientific corpus, link in-
formation contains less noise than content infor-
mation. Although citation information may indeed 
contain some ‘noise’ (MacRoberts and MacRoberts, 
1989), i.e., when an author takes advantage of an-
other’s work, he or she has been influenced by that 
work. (2) Compared with using content-LDA, com-
putational complexity is greatly reduced using  
citation-LDA, because there are far fewer citations 
than words in the literature. However, the citation 
relations among scientific papers are fairly sparse. In 
a typical corpus, there are fewer authors cited and 
citing in any document. Also, more recent papers (or 
much older papers) may not be cited (or have citations) 
at all. Certain topics extracted via the citation-LDA 
model thus lose generality and representativeness. 
Citation information of papers will help find im-
portant topics and key papers of topics. In our model, 
the citation-LDA process is similar to a clustering 
process, which is responsible for the discovery of 
father topics. The number of topics is usually signif-
icantly smaller than the number of citation papers. 
The sparse citation information of papers will not 
influence the discovery of topics. On the contrary, 
some citation-unrelated papers that are not included 
in topics will be discharged as noise information. 
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We consider the above characteristics of  
citation-LDA and content-LDA carefully in devel-
oping the topic model we propose, aptly named  
‘citation-content-LDA’. Our model combines the text 
and citation information from the literature to identify 
both ‘father’ topics and sub-topics. Fig. 1 shows the 
diagram of the proposed model. 

3.1  Citation-content-LDA topic model 

In a corpus of scientific literature, any document 
can be considered not only a bag of words but also a 
bag of citations. We can use citation information to 
extract father topics at the first level of the document 
(Wang et al., 2013). In this step, the extracted topics 
represent a cluster of documents, making the first part 
of the first step of our proposed method essentially a 
document clustering process. 

A content-LDA model is then applied to extract 
sub-topics from each of the father topics. Each doc-
ument d in a corpus cites a group of other documents 
{c t} ( t=1, 2,  …); thus, similar to the LDA model, 
we can suppose that each document d obeys a proba-
bility distribution Ddoc–topic over latent variables z (i.e., 
topics), while each topic from {zk} (k=1, 2,  …) 
obeys a probability distribution Dtopic–doc over a group 
of documents cited by document d. We can also 
suppose that document–topic distribution Ddoc–topic 
and topic–doc distribution Dtopic–doc are multinomial 
distributions with Dirichlet parameters α and β drawn 
priori. Here, we use θd and φz to denote Ddoc–topic( ;  d )  
and Dtopic–doc(;  z) , respectively, where θd~Dir(α) and 
φz~Dir(β). An inference is necessary for obtaining 
model parameters θd and φz via the collapsed Gibbs 
sampling algorithm (Griffiths and Steyvers, 2004). 

Through this first level of topic modeling, we 
obtain topic–doc probability distribution {φk ,  j}, i.e., 
the model-wide father topic. This topic–doc distribu-
tion indicates the importance of a single paper  
 

 
 
 
 
 
 
 
 
 

document dj in terms of father topic zk. In the second 
level, we apply a word-based LDA model to extract 
sub-topics from each father topic generated in the first 
level. As opposed to a standard word-based LDA 
model, documents in father topics from the first level 
of our model are not equiprobable—each document 
instead has a different probability over the father 
topic. 

In the second level, each document gathered 
based on the father topic in the first level is assumed 
to obey a multinomial probability distribution with 
parameter θ′d over sub-topic variables. Each sub-topic 
also obeys a multinomial probability distribution over 
words with parameter β. Once the collapsed Gibbs 
sampling algorithm is applied to infer the model pa-
rameters of doc–topic probability distribution p (z ′ |d)  
and topic–word probability distribution p (w |z ′) , 
final sub-topics p (z ′ |d)  in the second level are ac-
quired. Briefly, our topic generative process for 
documents in the corpus is shown in Algorithm 1. 

 
Algorithm 1    Topic generative process for docu-
ments in the corpus 

1  Sample a topic zk~Multi(θ i ) ; 
2  Sample a document to cite cdj~Multi(φzk

); 
3  for word wn of document d in topic zk 
4     Choose a sub-topic z′d, n~Multinomial(θ′d); 
5     Choose a word wd, n from p(wd, n|z′d, n, φzk, β), a 

multinomial probability conditioned on topic zk and 
sub-topic z′d, n; 

6  end for 
 
A graphical representation of this generative 

process for each document in the corpus is shown in 
Fig. 2. 

3.2  Parameter estimation and inference 

The parameters of the proposed model can be 
inferred, by the collapsed Gibbs sampling algorithm.  
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topic model

Corpus of scientific literature
(including citation and text)
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Topic
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T2, 1
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T2, 2

Topic 
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Topic
Tk, 1 

Topic
Tk, 2 

Topic 
Tk, m

Topic T1 Topic T2 Topic Tk
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T1, 2

First-level
topic model

… 

… … … … 

 
Fig. 1  Framework of a two-level citation-content-LDA topic model (LDA: latent Dirichlet allocation) 
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We first sample the topic–doc distribution of the 

father topics (citation-LDA) at the first level, and then 
sample the topic–word distribution of the sub-topics 
for each father topic (content-LDA) at the second 
level. The sampling algorithms are then initialized by 
assigning random topic labels {zk}, and then updating 
each of them repetitively. To be precise, for each 
document di and its tth citation of document dj in the 
corpus, the topic–doc probability is computed as 
follows: 
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where ( , )i t¬  indicates that tokens i and t are ex-
cluded from the corresponding documents and cita-
tions, and ( )i

k

d
zn  refers to the number of citations 

linked to document di belonging to topic zk. The 
probability converges to a stationary state of proba-
bility distribution after the burn-in stage. Posterior 
expectations of θi, k and φk, j are given by 
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For the second-level topic model, for each word 

{wt} (t=1,  2,  …, V) and each sub-topic {z′k} (k=1, 
2, …, K) in each corpus composed of documents 
from a father topic of topic–document distribution 
{φk, m} (k=1,  2 ,  …, K ;  m=1, 2 ,  …, M), the sub- 
topic assignment is computed as follows: 
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where counts ( )

, in ∗
∗ ¬  indicate that token i is excluded 

from the corresponding document or topic. 
Again, the sampling converges to a stationary 

state of probability distribution after the burn-in stage. 
Finally, multinomial parameter sets φ′k′, t and θ′m, k′ are 
obtained by 
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where ( )t
kn ′  denotes the number of times that term t has 

been observed with topic zk′, and ( )k
mn ′  refers to the 

number of times topic zk′ has been observed with a 
word of document m. 
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Fig. 2  Graphic of our citation-content-LDA model 
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4  Construction of the topic evolution graph 
 
In this section, we discuss the topic evolution 

graph which is constructed differently from those of 
previous studies. The distinguishing characteristic of 
our method is that topic extraction and the construc-
tion of the topic evolution graph take place in two 
separate processes. We consider the time information 
of the documents not during topic extraction, but 
when constructing the topic evolution graph. Graph 
construction is also a two-step process: first comes 
topic segmentation, and then establishment of the 
topic evolution graph. 

4.1  Topic segmentation 

In Section 3, we discuss topic extraction from 
the corpus without considering the time information 
of the documents. Each topic covers a time range 
throughout the corpus, and segmenting the topics 
according to the time information is necessary to 
ensure accurate end results. We used the collapsed 
Gibbs sampling algorithm to obtain the distribution of 
topics, including topic–doc distribution p(z |d ):  θ′m, k′ 
and topic–word distribution p (w |z) : φ′k′, t, but neither 
of them contains any time-related information. 

We can identify milestone papers and calculate 
the probability that each topic fits within these topic 
distribution parameters by 

 

 

,

( , ) ( | ) ( )( | )
( ) ( )
( | ) ( ) ,m k d

p d z p z d p dp d z
p z p z
p z d p d nθ ′

⋅
= =
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where p(z) refers to the prior topic probability dis-
tribution over documents of the whole corpus, and p(d) 
refers to the prior probability of document d. The 
former is the same for all documents and the latter can 
be represented by nd which refers to the word count of 
document d. 

Once doc–topic probability p (d |z)  is identified, 
we can identify not only the milestone papers of each 
topic according to the order of probability, but also the 
time information for these milestone papers. In  
other words, each topic can also be viewed as a 
bag-of-documents model and each topic can be di-
vided based on the time information of its documents. 
We propose the simple topic segmentation scheme 
(Fig. 3), which divides the documents of each topic 

into sub-topics in each time slot. The start and end 
times of the corpus are denoted as s0 and sn, respec-
tively, and the number of time slots as Q; thus, the 
time interval for each time slot is seg=(sn−s0+1)/Q. 
Supposing the number of topics is k, we can acquire 
K·Q sub-topics after topic segmentation. 
 
 

 
 
 
 
 

 
 
 
 
 

4.2  Topic evolution graph establishment 

To establish the topic evolution graph, the rela-
tion between two sub-topics in adjacent time slots 
should be measured first. Kullback–Leibler- 
divergence (KL-divergence) is a typical approach 
used to measure the topic transition distance in topic 
evolution models (Mei and Zhai, 2005). It is in effect 
a measure of topic dependency relations. We bor-
rowed from the KL-divergence approach here, be-
cause the relation between two topics is considered to 
be the influence of one topic on another. 

There are several methods for measuring influ-
ence via directed-weighted graphs (e.g., web link 
analysis and social network analysis). Influences in 
these methods are assumed to propagate through the 
edges of the graph. Among these methods, PageRank, 
which employs the random walk concept (Brin and 
Page, 1998), is applied most often to link analysis in 
web page ranking applications. Similar to PageRank, 
we adopt the random walk concept to calculate the 
influence between topic pairs. 

There are no actual edges between any two top-
ics, however. In our topic model, topics are composed 
of words. Thus, we can establish the relation between 
two topics according to the co-occurrence of words. 
First, we can build a bipartite directed graph G=(V ,  
E) , where V represents the set of vertices (which 
correspond to words or topics), and E represents the 
set of edges. For each word w belonging to topic z, we 
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Fig. 3  A simple topic segmentation scheme 
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add both edges (w ,  z) and (z ,  w). In the simple graph 
shown in Fig. 4, there are two topics (indicated by 
squares) and four words (indicated by circles). Edge 
weights αij between topic zi and word wj represent the 
topic–word distribution probability p(wj |z i) . 
 
 

 
 
 
 
 
 

 
 
Here, we define the relation between two topics 

as relation(zi,  zj|w), which should be high if the two 
topics are related closely, and w plays a key role in 
this relation. The bipartite-directed graph of topics 
and words can be considered a representation of the 
topic–word relation graph (Fig. 4). Intuitively, if the 
two topics are related, a short path starting from zi 
should reach zj frequently. We calculate the probabil-
ity distribution for random walks starting from zi to 
complete the graph, where the probability distribution 
is the proportion of the time the walker spends on 
each node: 
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where μ controls the restart probability of one random 
walk, p (r |s)  is the probability of reaching r from s, 
and δr(zi) is denoted as follows: 
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Next, consider the effect of w on these walks in 

the bipartite-directed graph. If we change w into a 
sink node, pw(r |s) has the same probability as p (r |s);  
however, there is no way out of node w. The proba-
bility distribution for this new graph is ( )

j

w
zp r . The 

relation between zi and zj with regard to w is defined 
as the difference between these two probability dis-
tributions, ( ) ( ).

i i

w
z j z jp z p z−  Thus, we have 
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i i

w
i j z j z jz z w p z p z= −  (10) 

 
Thus, the total relation between zi and zj is computed 
as follows: 

 
 relation( , ) relation( , ).i j i j

w
z z z z w=∑  (11) 

 
Briefly, constructing the topic evolution graph 

proceeds in the following steps: (1) calculate the 
strength of relation between any two topics of adja-
cent time slots via Eq. (11); (2) connect topic pairs 
with a strength of relation equal to or greater than the 
given threshold τ in advance. The evolution graph of 
the dataset is then complete. 
 
 
5  Experiments and results 
 

We first formally described the two datasets (CS 
and PAMI) we used to demonstrate our citation- 
content-LDA technique, then evaluated the results of 
our topic discovery and evolution method in detail, 
and compared our citation-content-LDA with con-
ventional content-LDA and citation-LDA baselines 
according to two evaluation metrics: perplexity and 
symmetric KL (sKL) divergence. 

5.1  Datasets 

We used two scientific literature datasets (both 
are available online) to test our method: the IEEE 
Computer Society (CS) scientific literature dataset, 
which contains documents related to artificial intel-
ligence, pattern recognition, image processing, data 
mining, and other computer science fields; the PAMI 
dataset, which contains work from the journal of 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence. The CS dataset comprises a total of 
42 213 papers published between 1967 and 2006, 
including citing and cited papers, from 67 venues 
with 33 961 citations (including only cited works also 
within the dataset). The PAMI dataset contains all 
papers published in IEEE Transactions on Pattern 
Analysis and Machine Intelligence from 1995 to 
September, 2012, with a total of 2719 papers and 
6284 citations (again, including only cited works 
within the dataset). All papers in both datasets include 
the paper ID, title, venue, publication year, and  

    w3w2w1
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Fig. 4  Bipartite-directed graph of topics and words 
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citation information. After text pre-processing for the 
title (including stopword removal and filtering words 
which appear fewer than five times in the dataset), we 
acquired 5704 unique words for the CS dataset and 
886 for the PAMI dataset. 

5.2  Scientific topic detection results 

It is challenging to select the number of topics 
appropriately for topic modeling. In our experiments, 
we ran citation-content-LDA with 100 topics in CS 
and 30 in PAMI, first according to the characteristics 
of the dataset itself (topic number selection process is 
further discussed in Section 5.4). Other parameters in 
our topic detection model included: the number of 
topics in the first-level citation-LDA model (10 topics 
for both the CS and PAMI datasets) and hyper- 
parameters α=0.5 and β=0.01. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.1  Finding milestone papers 

Milestone papers for two typical topics, ‘hand-
written character recognition’ from PAMI and ‘3D 
reconstruction’ from CS, are presented in Tables 1 and 
2, respectively. Topic–doc probability φkj for these 
two topics and the venue/journal sources for the se-
cond topic are also included. Here, we consider 
milestone papers to be as typical of the topic as pos-
sible and as widely accepted by the academic com-
munity as possible with respect to the topic. In Table 1, 
all milestone papers listed belong to the ‘handwritten 
character recognition’ topic from PAMI, except the 
first and the fifth papers. The first paper contains 
‘street name recognition’ within one line of text and 
the fifth paper involves ‘writing identification’ from 
uppercase western script. These two papers still  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Top 10 highest impact papers on topic ‘handwritten character recognition’ (topic 10, PAMI) 

Topic–doc 
probability Paper title 

0.014 975 
 

0.013 723 
0.013 041 
0.012 983 
0.012 788 

 
0.012 230 
0.012 151 
0.012 146 
0.012 117 
0.011 934 

A statistical approach for phrase location and recognition within a text line: an application to street name 
recognition 

Offline recognition of unconstrained handwritten texts using HMMs and statistical language models 
Lexicon-driven segmentation and recognition of handwritten character strings for Japanese address reading 
Off-line handwritten Chinese character recognition as a compound Bayes decision problem 
Automatic writer identification using connected-component contours and edge-based features of uppercase 

western script 
Improving offline handwritten text recognition with hybrid HMM/ANN models 
An HMM-based approach for off-line unconstrained handwritten word modeling and recognition 
Statistical character structure modeling and its application to handwritten Chinese character recognition 
A discrete contextual stochastic model for the off-line recognition of handwritten Chinese characters 
Off-line recognition of totally unconstrained handwritten numerals using multilayer cluster neural network 

PAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence 
 

Table 2  Top 10 highest impact papers on topic ‘3D reconstruction’ (topic 29, CS) 

Topic–doc 
probability Venue Paper title 

0.007 036 
0.006 719 
0.005 850 

 
0.005 794 
0.004 687 
0.004 350 

 
0.004 305 

 
0.004 140 

 
0.004 084 

 
0.003 963 

ICCV, 1999 
PAMI, 2001 
CVPR, 1999 

 
PAMI, 1995 
CVPR, 1997 
IJCAI, 1991 

 
ECCV, 1998 

 
ECCV, 2000 

 
CVPR, 1997 

 
CVPR, 1999 

Inherent two-way ambiguity in 2D projective reconstruction from three uncalibrated 1D images 
Two-way ambiguity in 2D projective reconstruction from three uncalibrated 1D images 
Trajectory triangulation of lines: reconstruction of a 3D point moving along a line from a  

monocular image sequence 
Invariants of six points and projective reconstruction from three uncalibrated images 
Uncalibrated 1D projective camera and 3D affine reconstruction of lines 
Combining stereo and monocular information to compute dense depth maps that preserve depth 

discontinuities 
A factorization method for projective and Euclidean reconstruction from multiple perspective 

views via iterative depth estimation 
Homography tensors: on algebraic entities that represent three views of static or moving planar 

points 
Critical motion sequences for monocular self-calibration and uncalibrated Euclidean  

reconstruction 
Efficient iterative solution to M-view projective reconstruction problem 

CS: IEEE Computer Society; PAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence; ICCV: IEEE International 
Conference on Computer Vision; CVPR: IEEE Conference on Computer Vision and Pattern Recognition; IJCAI: International Joint 
Conferences on Artificial Intelligence; ECCV: European Conference on Computer Vision 
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belong to the character recognition research area. All 
the milestone papers listed in Table 2 are related 
closely to topic ‘3D reconstruction’ from CS. The 
venue/journal sources of all the papers belong mainly 
to the image processing and computer vision fields, 
e.g., PAMI, IEEE International Conference on 
Computer Vision (ICCV), IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 
and European Conference on Computer Vision 
(ECCV). 

5.2.2  Extracting topic keywords 

The representative 10 topics identified in the 
PAMI and CS datasets are listed in Tables 3 and 4, 
respectively. For each topic (which will be discussed 
in detail later in Section 5.3, the six words with the 
highest probabilities are singled out. The extracted 
keywords are related to the task, problem, method-
ology, and model of the topics. For topic 15 in PAMI, 
the ‘face recognition’ problem, most models involve a 
‘learning’ process and use ‘dimensionality reduction’ 
methods. For topic 37 in CS, ‘classification problems’, 
methods include ‘support vector machines’, ‘kernel’, 
and ‘learning’ techniques. In general, it is easy to 
summarize the research problems or specific methods 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for each topic through the extracted key words, as 
different methods/models which apply to the same 
topic are represented in the extracted keywords. For 
example, topics 5 and 6 in PAMI are related to the 
research theme ‘image segmentation’, but the  
key words differentiate them: ‘Markov random  
field modeling’ (topic 5) versus ‘texture modeling’  
(topic 6). 

5.3  Topic evolution analysis results 

5.3.1  Topic segmentation by time range 

After applying the citation-content-LDA model 
to extract topics from the PAMI and CS datasets, we 
tracked the topic evolution graph for these topics 
through two-step topic segmentation and topic evo-
lution graph generation processes described above. 
The parameters for topic segmentation are the start 
year and end year (1995 and 2012, respectively for 
PAMI, and 1985 and 2004, respectively for CS) and 
the number of segments (six for PAMI, five for CS). 
The topic segmentation results for topics 15 (PAMI) 
and 29 (CS) are presented in Tables 5 and 6, respec-
tively. In each table, we list the sequence number and 
the time range of each segment, and the top key words  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Representative 10 topics in the PAMI dataset (30 topics) 

Topic Weight Top key words 
15 
  6 
18 
13 
  5 
10 
16 
20 
  3 
  9 

0.052 477 
0.042 572 
0.041 959 
0.041 887 
0.040 208 
0.040 099 
0.039 933 
0.032 613 
0.031 624 
0.033 609 

Face; Recognition; Dimensionality; Reduction; Object; Learning 
Image; Segmentation; Texture; Modeling; Local; Detection 
Affine; Invariant; Shape; Recognition; Wavelet; Local 
Texture; Classification; Image classification; Performance; Feature 
Markov; Random; Field; Image segmentation; Textured 
Handwritten; Character; Recognition; Off-line; HMM; Features 
Graph; Matching; Recognition; Shape; Algorithm; Detection 
Visual; Tracking; Object; Visual; 3D; Learning 
Classification; Feature; Selection; Learning; Nearest; Neighbor 
Stereo; Matching; Shape; Detection; Object; Robust 

PAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence 
 

Table 4  Representative 10 topics in the CS dataset (100 topics) 

Topic Weight Top key words 
29 
59 
32 
  3 
37 
  6 
40 
91 
48 
45 

0.014 080 
0.013 223 
0.012 706 
0.012 546 
0.012 156 
0.012 041 
0.011 527 
0.010 915 
0.010 622 
0.009 727 

3D; Reconstruction; Motion; Images; Stereo; Projective 
Reinforcement; Learning; Function; Algorithm; Decision; Concept 
Decision; Tree; Learning; Classifiers; Induction; Estimation 
Explanation-based; Learning; Control; Planning; Search; Reasoning 
Support; Vector; Machines; Kernel; Learning; Classification 
Constraint; Satisfaction; Problem; Satisfaction; Search; Solving 
Neural; Networks; Learning; Analysis; Text; Classification 
Information; Retrieval; Language; Query; Text; Document 
Belief; Networks; Learning; Inference; Bayesian; Probabilistic 
Reasoning; Logic; Default; Learning; Nonmonotonic; Networks 

CS: IEEE Computer Society 
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and key papers (only paper IDs are listed here to save 
space; the paper titles are listed in Tables S1 and S2 in 
the supplementary) for each topic in each segment. 
Other topic segmentation results are omitted here to 
save space. Table 5 shows that any topic has different 
research focuses in different time segments, reflecting 
the topic evolution over time. For example, topic 15 
(PAMI) is mainly about research on face recognition; 
however, in different segments there are different 
emphases, including, from the first to the sixth seg-
ments: image matching, support vector machines, 
neural networks, dimensionality reduction (at both 
fourth and fifth segments), and sparse representation. 

5.3.2  Topic evolution graph 

After topic segmentation, we constructed the 
topic evolution graph for both datasets via the algo-
rithm discussed in Section 4.2. We set τ=0.2 and 
μ=0.8. Fig. 5 shows the resulting topic evolution 
graph for the PAMI dataset, and the graph for the CS 
dataset is shown in Fig. 6 (we divide it into two 
graphs, because it is fairly large). 

The topic evolution graph for the PAMI dataset 
is divisible into four components corresponding to 
four research directions: image segmentation, face 
recognition, handwritten character recognition, and 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
tracking. Numbers in the graph indicate the number of 
topics, and edges indicate the evolutionary paths 
between topics. For each research direction of the 
four components, there are one or several evolution-
ary paths: image segmentation has seven different 
paths and focuses on topics 4, 5, 6, 7, and 17; face 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Topic segmentation results of topic ‘face recognition’ (topic 15, PAMI) 

Segment Time range Top key words Key papers (paper ID) 
1 
2 
3 
4 
 

5 
 

6 

1995–1997 
1998–2000 
2001–2003 
2004–2006 

 
2007–2009 

 
2010–2012 

Recognition; Object; Image; Matching; Visual; Face 
Recognition; Face; Object; Support; Vector; Illumination 
Recognition; Face; Neural; Networks; Feature; Lighting 
Recognition; Face; Linear; Dimensionality; Reduction; 

PCA 
Recognition; Face; Reduction; Dimensionality; Object; 

Extraction 
Recognition; Face; Illumination; Alignment; Sparse; 

Representation 

349, 351, 356, 364, 352, 348 
737, 428, 424, 612, 782, 637 

862, 814, 1180, 1189, 1108, 1222 
1362, 1628, 1242, 1404, 1282, 1448 

 
1880, 2007, 2099, 1763, 1959, 1979 

 
2596, 2391, 2297, 2385, 2450, 2445 

PAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence 
 

Table 6  Topic segmentation results of topic ‘3D reconstruction’ (topic 29, CS) 

Segment Time range Top key words Key papers (paper ID) 
1 
 

2 
 

3 
 

4 
 

5 

1985–1988 
 

1989–1992 
 

1993–1996 
 

1997–2000 
 

2001–2004 

3D; Vision; Image; Motion; Calibration; Stereo 
 
Stereo; Motion; 3D; Estimation; Reconstruction;  

Uncalibrated  
Motion; Reconstruction; 3D; Structure; Geometry;  

Projective 
Reconstruction; 3D; Motion; Projective; Stereo;  

Structure 
3D; Reconstruction; Motion; Image; Stereo;  

Projective 

16 549 332, 13 920 339, 11 693 906, 
12 744 126, 19 254 858, 16 611 145 

9 791 025, 12 618 997, 12 838 003, 
10 764 090, 11 046 635, 13 830 823 

9 968 838, 16 700 632, 12 657 226, 
13 382 699, 12 134 266, 11 360 979 

11 337 071, 15 582 579, 16 222 326, 
13 908 159, 18 818 276, 18 338 412 

14 227 596, 11 931 025, 11 078 465, 
10 088 014, 17 623 078, 15 639 317 

CS: IEEE Computer Society 
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Fig. 5  Topic evolution graph for the PAMI dataset  

PAMI: IEEE Transactions on Pattern Analysis and Machine 
Intelligence 
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recognition has six paths and focuses on topics 13, 14, 
and 15; handwritten character recognition has three 
paths and focuses on topics 10 and 26; and tracking 
has only one path and focuses on topics 20 and 21. 
The number of paths for different components in the 
graph reflects the importance and complexity of the 
themes identified in the PAMI dataset. To save space, 
we include the detailed top key words of each topic in 
the supplementary (Tables S3–S5). 

The first half of the CS dataset graph is shown in 
Fig. 6a, with eight different components representing 
eight different research directions in the dataset: in-
formation retrieval, reasoning, Bayesian network 
learning, neural network, decision tree, constraint 
satisfaction problem, planning, and reinforcement 
learning. These components represent three computer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
science domains: information retrieval, artificial in-
telligence, and machine learning. Most of them relate 
to artificial intelligence, while reasoning, neural 
network, and reinforcement learning show more 
complex evolutionary paths. 

The other nine components of the CS dataset are 
shown in Fig. 6b, including the classification algo-
rithm, motion planning, natural language processing 
(NLP), object recognition, image segmentation, 
tracking, motion, image reconstruction, and image 
matching. These components represent six research 
domains of computer science: machine learning, ro-
botics and automation, NLP, pattern recognition, 
image processing, and computer vision. The last two 
contain more components than the others. Classifica-
tion algorithm, motion planning, and motion themes 
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Fig. 6  Topic evolution graph for the CS dataset: (a) part 1; (b) part 2 (CS: IEEE Computer Society) 
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show more complex evolutionary paths than the other 
themes, and there are no related topics projected into 
time range 1985–1988 for tracking or image recon-
struction themes. 

5.4  Model selection and experimental compari-
sons  

Here, we discuss how to select the number of 
topics for citation-content-LDA and compare its 
performance with that of content-LDA and citation- 
LDA based on two metrics, perplexity and sKL di-
vergence. We included the conventional content-LDA 
and citation-LDA models as our baseline, using the 
title to represent the papers in both PAMI and CS. 

5.4.1  Perplexity evaluation 

Perplexity proposed by Blei et al. (2003) is an 
important criterion used to show the generalization 
power of a model on unseen data and the number of 
topics. Perplexity is equivalent to the inverse of the 
geometric mean per-word likelihood. It is a mono-
tonically decreasing function in the likelihood of the 
test dataset, where a lower perplexity score indicates 
that the model has a better generalization power. 

Generally, for a test set Dtest, perplexity is de-
fined as follows: 

 

   test
1 1

perplexity( ) exp log ( ) ,
M M

d d
d d

D p N
= =

 
= − 

 
∑ ∑w   

(12) 
 

where Nd represents the number of words in document 
d and wd=(w1d,  w2d,  …, wnd)  is the vector form of 
document d.  

Figs. 7 and 8 show the comparison of the ex-
perimental results in terms of perplexity between the 
PAMI and CS datasets, respectively. The results show 
that citation-content-LDA has a better perplexity 
performance than content-LDA or citation-LDA, and 
that 30 topics for PAMI and 100 topics for CS are 
appropriate numbers of topics. 

5.4.2  Symmetric Kullback–Leibler divergence eva- 
luation 

sKL divergence can also be used to measure the 
similarity of a pair of topics. It is often employed to 
estimate the similarity between dual probability 
distributions, as it effectively represents a natural  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
distance measure for probability distribution (Lin 
et al., 2007). Given the topic–word distribution of a 
topic pair, sKL divergence is defined as follows: 

 

 
2

1sKL( , ) log log .
2
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θ θ θ θ
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 (13) 

 
A higher sKL divergence score indicates that the 
model has more distinct topics. Tables 7 and 8 show 
the comparison of the experimental results of sKL 
divergence between the PAMI and CS datasets. We 
again find that citation-content-LDA outperforms the 
other two LDA models, and 30 and 100 are good 
choices for the PAMI and CS dataset topic numbers, 
respectively. 

From Tables 7 and 8, we again observe the fol-
lowing results: (1) Citation-content-LDA performs 
better in topic detection based on sKL divergence, 
compared with both content-LDA and citation-LDA; 
(2) Thirty and 100 topics are good choices for the 
PAMI and CS datasets, respectively. 
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Fig. 7  Comparison of three different models for the PAMI 
dataset in terms of perplexity  
LDA: latent Dirichlet allocation; PAMI: IEEE Transactions 
on Pattern Analysis and Machine Intelligence 
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Fig. 8  Comparison of three different models for the CS 
dataset in terms of perplexity  
LDA: latent Dirichlet allocation; CS: IEEE Computer Society 
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6  Conclusions 

 
In this paper, we presented a two-level latent 

citation-content-LDA topic extraction model plus a 
novel topic evolution algorithm for identifying and 
analyzing topics and thematic evolution within the 
bodies of scientific literature. The citation-content- 
LDA model, which exploits both the document itself 
and its citation information, can extract research 
topics accurately according to key words and mile-
stone papers. The topic evolution algorithm includes 
both topic segmentation by timestamp and topic de-
pendency relation calculation. Both processes are 
necessary to construct a complete topic evolution 
graph that accurately represents research themes in 
the corpus. We ran experiments on the PAMI and CS 
datasets. The results showed that our proposed model, 
citation-content-LDA, outperforms both content- 
LDA and citation-LDA models. In effect, citation- 
content-LDA allows researchers to process scientific 
literature quickly and effectively. 

There are several future directions in which we 
could take this research, for example, including in the 
model information such as the authors’ names and the 
journal/venue for the documents. In terms of topic 
evolution, quantitative analysis of topic dependency 
relations and probability reasoning in the topic  

evolution graph are also interesting possible future 
research directions. 
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