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Abstract: Deployment of caching in wireless networks has been considered an effective method to cope with the
challenge brought on by the explosive wireless traffic. Although some research has been conducted on caching in
cellular networks, most of the previous works have focused on performance optimization for content caching. To
the best of our knowledge, the problem of caching resource sharing for multiple service provider servers (SPSs) has
been largely ignored. In this paper, by assuming that the caching capability is deployed in the base station of
a radio access network, we consider the problem of caching resource sharing for multiple SPSs competing for the
caching space. We formulate this problem as an oligopoly market model and use a dynamic non-cooperative game
to obtain the optimal amount of caching space needed by the SPSs. In the dynamic game, the SPSs gradually and
iteratively adjust their strategies based on their previous strategies and the information given by the base station.
Then through rigorous mathematical analysis, the Nash equilibrium and stability condition of the dynamic game are
proven. Finally, simulation results are presented to show the performance of the proposed dynamic caching resource
allocation scheme.
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1 Introduction grow at a compound annual growth rate of 62%

from 2015 to 2020, which renders explosive wireless
According to a recent report from Cisco

traffic growth. On the contrary, the capacity of
(http://www.cisco.com/c/en/us/solutions/collateral /

existing wireless networks is close to the limits
(Wang et al., 2014), especially during peak hours.
That is, the capacity of the wireless links, radio

service-provider /visual-networking-index-vni/mobile-
white-paper-c11-520862.html), mobile video will
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mobile core networks (CNs) cannot meet practical
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networks (HetNets) (Xie et al., 2012b; Beyranvand
et al., 2015), have been proposed by mobile network
operators and network equipment vendors, which
can improve the RAN situation by increasing the
radio access capacities significantly, resulting in
the RAN backhaul becoming a bottleneck (Bastug
et al., 2014). However, deploying a high-speed
fiber-optic backhaul is too expensive and, according
to Juniper’s prediction, operators need to spend
almost $840 billion globally over the next five years
to meet the burgeoning data demand and thereby
address serious bottlenecks in their RAN backhaul
networks  (http://www.lightreading.com/ethernet-
ip/mobile-network-upgrades-of-up-to-$840-billion-
required/d/d-id/689892).

Deploying caching in a RAN is a promising tech-
nique to cope with these challenges and satisfy the
quality-of-experience (QoE) and quality-of-service
(QoS) (Pedersen and Dey, 2016), which has attracted
a lot of attention. By storing popular video objects
closer to the mobile users, most video requests can
be served from the RAN caches, thereby decreasing
the load of original servers and RAN backhaul, as
well as the delivery delay (Wang et al., 2014).

One direction is caching popular content in
devices (Malak and Al-Shalash, 2014). Pedersen
and Dey (2014) introduced a reactive mobile device
caching (rMDC) framework, using which a mobile
device could cache requested videos reactively and
share these video contents with its neighbors using
device-to-device communication. In Golrezaei et al.
(2014), a novel scheme was presented to improve the
throughput of video transmission in cellular com-
munication systems by exploiting the large storage
resources on modern smartphones. Nam and Chung
(2015) proposed a cluster-based cooperative content
caching scheme to reduce the content delivery cost of
mobile devices. However, these techniques often face
great challenges in motivating users to share their
batteries, apart from limited bandwidth.

Another direction is caching within wireless net-
works. Recently, there have been some efforts con-
ducting research on caching in cellular networks. Er-
man et al. (2011) showed the potential benefits of
caching data in the carrier CN based on a study
of Hypertext Transfer Protocol (HTTP) traffic col-
lected in a cellular network. Hamidouche et al.
(2014) proposed a many-to-many matching game
theory to address the caching problem between small
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base stations (BSs) and service provider servers
(SPSs). The idea of caching content objects at an
evolving node B (eNodeB) and leveraging the infor-
mation from in-network caches to improve caching
performance has also been considered by Ming et al.
(2014). Zhang et al. (2014) proposed a cooperative
caching scheme based on the network coding tech-
nique to improve the cache hit rate and decrease
the query processing time. A novel multiple-input
multiple-output (MIMO) cooperation framework has
been proposed by Liu and Lau (2015), to improve
the video streaming performance by jointly optimiz-
ing cache control and playback buffer management.
In addition, Gu et al. (2014) and Pingyod and Som-
chit (2014a; 2014b) have investigated the cache re-
placement strategy for cache-enabled nodes in cellu-
lar networks. Mavromoustakis (2008) has proposed
a stream-oriented modeled scheme to provide op-
timized and guaranteed QoS, and later introduced
a reliable file-sharing scheme for vehicular peer-to-
peer (P2P) devices to increase end-to-end availability
for delay sensitive streams (Mavromoustakis, 2013).
Kryftis et al. (2014) presented a novel multimedia
service delivery architecture to satisfy users’ requests
efficiently by exploiting a resource prediction system.

Caching video contents at eNodeB could reduce
transport energy but it needs additional caching en-
ergy. The problem of energy consumption in the
eNodeB caching mechanism has also been studied.
Xu et al. (2014) built a theoretical model to formu-
late the energy consumption, with the purpose of
minimizing the total network energy consumption
at eNodeB caches. Yang et al. (2014) have studied
the energy efficiency problem in wireless cooperative
caching networks and a suboptimal caching strategy
has been proposed. An effective algorithm has been
proposed by Arai et al. (2014) to minimize the to-
tal energy consumption of user equipments (UEs) by
reassigning UEs to eNodeBs.

Although these studies have been conducted for
caching in cellular networks, most of the previous
works have focused on performance optimization or
energy efficiency for content caching (Liu J et al.,
2011; Chaudhry et al., 2015; Ding et al., 2015; Liu
YX et al., 2015). To the best of our knowledge, the
problem of caching space sharing for SPSs has been
largely ignored. However, the issue is very important
because to maximize the revenue of SPSs, each SPS
always hopes to get enough caching space to cache
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its contents to improve the users’ experience, which
may lead the SPSs to compete for the caching space.
Therefore, our work is different from previous works.
In this study, by assuming that caching capability is
deployed in the BS in a RAN, we consider the prob-
lem of caching resource sharing for multiple SPSs to
compete for the caching space.
tures are listed as follows:

Some distinct fea-

1. We focus on the caching resource sharing
problem in RANs. The system is modeled as an
oligopoly market, in which the SPSs compete for the
caching resources provided by the BS and the cost of
the caching resources is defined by a price function.

2. The caching resource sharing problem is
formulated as a dynamic non-cooperative Cournot
game. In addition, a Newton-Raphson method based
iterative algorithm is proposed to obtain the optimal
amount of caching space needed by SPSs (i.e., the
Cournot equilibrium solution).

3. We evaluate the performance of the proposed
caching resource sharing scheme under different sys-
tem parameters. The stability characteristics of the
scheme are also analyzed.

2 System description

In this section, we first briefly depict the system
model. Then the problem formulation is presented.

2.1 System model

As shown in Fig. 1,
bile user accesses a video object, the video is first
requested from content servers. Then traveling
through the wireless carrier CN and RAN, the video
reaches the user’s device. In this case, the SPSs
should consume the RAN backhaul resources to
guarantee the video QoE, which implies the need
to meet an initial delay and to ensure that there is
no stalling during playback. If SPSs store popular
video content objects in the BS, most video requests
could be processed directly from the BS. However,
the storage resources are owned by the BS. So, SPSs
should pay for the use of these resources.

in general, when a mo-

In this study, we consider a wireless system with
multiple SPSs, a BS, and multiple users (Fig. 2).
The BS owns limited but enough storage resources to
meet the demands of SPSs. In this case, the BS wants
to offer a selling price and sells storage resources to
the SPSs to earn profit. From the SPSs’ point of

SGW: service gateway
PGW: packet data network gateway
MME: mobility management entity

Video cache

Core network (CN)

Fig. 1 Video transmission process: (a) the traditional
video access process, in which the requested video
is fetched from source content servers through the
wireless carrier core network and the radio access
network; (b) when the requested video is cached in
the base station, it will be provided by the BS locally
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Fig. 2 System model for caching resource sharing in
BS: base station; S; (¢ =1, 2,

, M): service provider servers; U; (j =1, 2, ...,
N): users; b;: the amount of caching space demanded
by SPS;; c;: the selling price of caching space (1 MB)
for SPS;; C;: the cost of RAN backhaul resources
paid by SPS; for transmitting 1 MB data

radio access networks.

view, they want to buy the storage resources owned
by the BS and cache their videos based on specific
caching strategies to maximize their revenues. To
simplify the analysis of the problem, we assume that
the BS charges all SPSs for the same price.

Under this framework, we consider that there
are N users in the set N' = {Uy, Us, ..., Uy} belong-
ing to the BS and M SPSs in the set M = {57, Sa,

, Sy} wanting to buy storage resources from the
BS to cache their videos. The BS is ready to allocate
some portion of the resources with SPS;, denoted as
b;. The BS charges the SPSs for the resources at a
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rate of ¢(b) (per MB), where b is the total amount
of storage resource demand of all SPSs. Besides, the
cost of RAN backhaul resources paid by SPSs for
transmitting 1 MB data is C' (i.e., the cost of SPS;

2.2 Problem formulation

In this subsection, we formulate the caching
resource sharing problem as an oligopoly market
model. In an oligopoly market, a few players com-
pete with each other to achieve the highest profit
based on the amount of supplied commodity in the
market. In the caching resource sharing problem
considered here, all SPSs compete with each other
to share the caching resources provided by the BS,
and the goal of all SPSs is to achieve their highest
revenue. We can model this situation as a Cournot
game.

In a Cournot game, players are the SPSs. The
commodity is the caching resource owned by the BS.
Each player’s strategy corresponds to the amount of
allocated caching resources, denoted as b; for SPS;.
The payoff for each player is the revenue of each
SPS (denoted as m; for SPS;) by using the caching
resources.
the price function used by the BS. Then based on
the delivery cost without/with caching, the utility
function of SPSs is given.

In the following part, we first present

2.2.1 Price function used by the BS

In the oligopoly market, the BS is the only com-
modity provider and thus stands in a completely
monopoly position. In the market economy environ-
ment, monopoly price depends on the commodity
demand. Therefore, we assume that the price func-
tion used by the BS to charge the SPSs is as follows
(Niyato and Hossain, 2007; 2008):

M T
¢(B) =z +y<z m) , (1)
i=1

where x and y are non-negative constants, and
B={b1, ba, ..., by} is the set of strategies of all SPSs.
To meet the demand price theory in economics (i.e.,
when the supply is fixed and the demand increases,
the price will go up), we define 7 > 1; in this case,
the price function is convex. Caching content objects
at the BS would consume additional costs (e.g., cen-
tral processing unit/system bus usage and storage
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cost), which depend mainly on the caching hardware
technology, such as dynamic random access memory
(DRAM), high-speed solid state disk (SSD), ternary
content-addressable memory (TCAM), and static
random access memory (SRAM). In this study, let
w denote the average cost (per MB) of these object-
caching technologies. Then we assume ¢(B) > w;
otherwise, the BS is not willing to sell its storage
resources to the SPSs.

2.2.2 Delivery cost without caching

In this part, we consider the delivery cost in the
absence of caching in cellular networks. As shown
in Fig. 1, in this case, each video request begets the
costs of traveling through the entire path from the
users’ devices to the packet data network gateway
(PGW) and then to the source servers (Ming et al.,
2014). The total costs of SPS; for processing the
requests can be computed as follows:
=n;- (Ri +Gi +T3) - qi, (2)

Ononcachc

where n; denotes the total number of requests arriv-
ing at SPS;, ¢; is the mean size (MB) of a requested
video object, and R;, G;, T; are the cost components
denoting the cost (per MB) from the users’ devices
to the BS, the cost of the CN link (per MB) from
the BS to the PGW, and the cost (per MB) from the
PGW to the source servers of SPS;, respectively.

2.2.3 Delivery cost with caching

If SPSs cache popular videos in the BS and the
requested videos can be found in BS caches, videos
could be fetched from the BS directly. Thus, in
the presence of BS caching, inspired by Ming et al.
(2014), the costs for SPS; to fulfill the requests can
be computed as follows:

Ocache _ (n; — n‘;aChe) (Ri+Gi+T;) - qi
+ ngaChC “Ri-q; + N - C(b) © 4, (3)
where n¢at® denotes the number of video requests

that can be responded to by the BS directly, ¢(b) is
the cost (per MB) of caching objects paid to the BS,
and N; is the number of video objects cached at the
BS. Therefore, (n; — n$*"®) - (R, + G; + T;) - q; rep-
resents the cost incurred when the requested objects
need to be obtained from source servers, n§2h¢. R, - ¢;
is the cost incurred on the RAN path from the BS to
the users’ devices, and N; - ¢(b) - ¢; is the additional
cost of SPS; for caching video objects at the BS.
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2.2.4 Utility function of SPSs

Given the delivery cost with/without caching,
we can obtain the total cost saving of SPS; as follows:

savings __
0) g

=nshe (G +Ti) - ¢ — Ni-c(b) - qi
cache

¢ . Ci g — C(b) . bi, (4)

Uz

Ononcache _ Ocache

:ni'

where C; is composed of the CN link cost (per MB)
from the BS to the PGW and the cost (per MB) from
the PGW to the source servers (i.e., C; = G;+1T;), b;
denotes the portion of caching resources that SPS;
wants to buy from the BS (i.e.,, b; = N; - ¢;), and

cache

’ denotes the ratio of the requested cached ob-

jecrézs to the total requested objects (related to the
specific caching policies). There are many caching
policies, such as least recently used (LRU), least
frequently used (LFU), and user preference profile
(UPP). The LRU (Sleator and Tarjan, 1985) replaces
videos in the caching space that have been least used
recently if the caching space is full. The LFU (Lee
et al., 2001) caches the ‘most popular videos’ and dis-
cards the least frequently used ones by keeping track
of the number of requests to each video. The UPP
(Ahlehagh and Dey, 2014) caching policy uses the
UPPs of active users in a cell to cache video objects.
Although there are many caching policies, they have
a common goal, which is caching the videos with
the highest requested probability. The larger the
requested probability of a video is, the higher the
priority of caching by the SPSs.

We assume that the requested probability of
each video follows a Zipf-like distribution, which is
commonly used to model content popularity in net-
works (Breslau et al., 1999; Cha et al., 2009); the
probability of accessing a video at rank k out of
Nietal available video objects can be expressed as
follows:

k=8
p(vk) = Ntotal = Q" (5)

j=1 i

where Nf°al denotes the total number of videos
owned by SPS,, 2 = YN
to normalize the requested probability. A larger S
means that more requests are concentrated on a few
hot video objects. Typically, the value of g ranges

between zero and one (i.e., 8 € (0,1)) (Breslau et al.,

j7# is a constant used

1999). In this case, if SPS; wants to cache N; most

cache
popular video objects at the BS, could be
ng
computed as follows:
ache Ni q.—
nf ch — k=1 k ’8. (6)
Inspired by Breslau et al. (1999), we can obtain
, N8
ivil k=P ~ 15 Thus, for Zipf-like distribu-

tions, the cumulative probability that one of the top
N; video objects is accessed could be given approxi-
mately as follows:

cache

; NP
e T -g @

n

In a Cournot game, the utility function of SPSs
can be defined as the total cost savings with the exis-
tence of caching at the BS. Based on Eqs. (4) and (7),
the utility function of SPS; can be computed as
follows:

NP
(1 =p)12%
The Cournot game model has been built, and

the equilibrium solution will be described in the next
section.

7'[1(8) =N, . Cl g — C(b) . bi. (8)

3 Equilibrium solution of Cournot
game and stability analysis

As mentioned in Section 2, we can model the
problem of caching space sharing as a Cournot game.
If we assume that each SPS can completely observe
the strategies and the profits gained by the other
SPSs, a simple static Cournot game can be modeled
to solve the problem. However, this assumption is
not practical; in other words, an SPS may not be
able to observe the payoff of another SPS. More-
over, the current strategy adopted by another SPS
may be unknown, and only the pricing information
from the BS could be observed by SPSs. Based on
the above situation, in this section, we discuss a dy-
namic Cournot game model. In this scenario, an
SPS adjusts its strategy according to the variations
in payoff because of the differential price charging
by the BS. The goal of this caching resource sharing
problem is to maximize the profit of all SPSs by us-
ing the equilibrium concept. In this section, we first
introduce the dynamic Cournot game. Then we give
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the equilibrium solution and stability analysis of the
dynamic Cournot game.

3.1 Dynamic Cournot game

As mentioned earlier, the objective of the
Cournot game is to maximize the profit of SPSs.
Based on Egs. (1) and (8), we can rewrite the profit

as follows:
M T
i=1
(9)

In a practical competitive scenario, only the
pricing information from the BS could be observed by
SPSs. Therefore, we have to obtain the best response
of each SPS on the basis of the interaction with the
BS only. In this case, each SPS communicates with
the BS to receive the differentiated pricing informa-
tion and uses only this local information to adjust its

N8
' Ciqi—

(B)=n; (1—B8)%

strategy. Because all SPSs are rational in maximiz-
ing their profits, they can adjust their caching space
demands b; by using the marginal profit function as
shown in Eq. (10). Let b;(¢) denote the strategy of
SPS; at iteration ¢, and b;(¢t + 1) is defined similarly.
Therefore, the relationship between the strategies in
the current and the future iterations can be expressed
as follows (Niyato and Hossain, 2007; 2008):

abi(t)

where «; is the learning rate of SPS; and
om(B)  ni-Cib; M ’
ob; 2 -q;7" vy ;
M T—1
i=1

Therefore, the dynamic Cournot game can be
represented as shown in Eq. (12).

bi(t 4+ 1) = bi(t) + a;bi(t) (10)

(11)

3.2 Equilibrium solution of dynamic Cournot
game

In a dynamic Cournot game, the strategy pro-
file B = {b1, ba, ..., by} is a set of strategies.

bi(t +1) = bi(t) + abi(t) - Qg

(o) )
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An element in this set corresponds to the strat-
egy of an SPS, and a strategy profile must in-
clude one and only one strategy for each SPS. For
ease of analysis, we can also write B as (b;, B_;),
where b; is the strategy of SPS;, and B_; denotes
the set of strategies of all SPSs except SPS; (i.e.,
B_,={bjlj =1, 2, ..., M; j # i}. Now, we an-
alyze the Cournot game model to obtain the stable
solutions called ‘Nash equilibrium’.

Nash equilibrium is a combination of optimal
strategies, that is, B* = {b}, 03, ..., b},;}, where b}
denotes the best response of SPS;, whereby this par-
ticipant cannot increase its payoff by choosing a dif-
ferent action given the other participants’ actions. It
means that 7t;(b;, B ;) < m;(bf, B*,), where B*, de-
notes the set of optimal strategies of all SPSs except
SPS;. So, the Nash equilibrium in a non-cooperative
game is a situation in which all of the players use the
optimal strategies and none of them wish to deviate
from the equilibrium (Dufwenberg, 2011).

In an actual system, the SPSs can estimate the
value of 67;;8) (Niyato and Hossain, 2008). In a
particular casze, at time ¢, each SPS submits the stor-
age resource size b; (t) £ to the BS, where 0 is a small
number (e.g., § = 0.001). Then the BS computes the
price ¢~ (+) and ¢* (+) for b;(t) — & and b;(t) +d respec-
tively, according to the price function. Next, the BS
sends the information to these SPSs. With this infor-
mation, each SPS can compute the profits 7; (-) and
7rz+() locally and then estimate the marginal profit

om() () —mi ()
0b; (t) 20 '
The concept of bounded rationality is used in
the strategy adaptation definition, in which the op-
timal strategies could not be reached immediately.
With the help of accurate pricing information given
by the BS, strategies will be adjusted and improved
gradually by the SPSs in a distributed manner. At
the equilibrium point, we have b;(t + 1) = b;(t) = b;
(i=1,2,..., M) (Agiza et al., 1999). With a linear
price function (i.e., 7 = 1; note that this linear price
function is a common assumption for an oligopoly
market), the optimal response can be obtained by

from

-1
(12)
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solving the following set of equations (i =1, 2, ...,
M):

ni-Ci-biiﬁ M
albl ( .Qlwqi*ﬁ — <$+y (; b1>> —biy> =0.

(13)

For ease of illustration, we first consider a spe-
cific system model with two SPSs in the radio en-
vironment (M = 2); Eq. (13) can be rewritten as
follows (note that to facilitate the analysis, we let
x=0):

o Y

n19?1ql_16 — 2ybt — ybibz = 0,

Ny - Cy - byl =P , (14)
92 ) QQ_B — 2yb2 - yblbg =0.

According to the first expression of Eq. (14),
we can obtain the relationship between b; and by as
follows:

_ 5 by 7P — 2yby
y b

b (15)
ny - Cq ng - Co
2P 2y -qp=P
Eq. (15) and the second expression of Eq. (14), we

can obtain

where g1 = and go = . Based on

(91'1?1[5—23/51
gz2-

-8
) ) —2g1-bi P +3yb1=0. (16)

We can use Newton’s method (Kelley, 2003) to
solve Eq. (16) to obtain the optimal solution of SPS,
i.e., by. Then according to the relationship between
by and bs (i.e., Eq. (15)), we can obtain the optimal
solution of SPS,, i.e., bs.

ny-Cy-by?

fl(b)—b1+a1bl'< 21-q1 P

_ T T—1
B Ng-Cl-by P M M
f2(b)—b2+0‘2b2'< Qo-qa—F _y<i_1bi —bay7( 3 b :

Now, we consider the situation with more than
two SPSs. Because in a dynamic Cournot game,
SPSs adjust their demanded caching space b; dy-
namically, the caching resource sharing problem can
be expressed as a system of nonlinear equations, as in
Eq. (17). Inspired by Kelley (2003), we can use the
following iterative algorithm based on the Newton-
Raphson method to obtain the Cournot game equi-
The basic idea of the Newton-
Raphson method is to linearize nonlinear equations

librium solution.

successively, each step solving linear equations, con-
sequently forming an iterative algorithm. The itera-
tive algorithm is given in Algorithm 1.

In the proposed algorithm, the caching space
demands could be updated for each iteration, i.e.,
bi(k+1) =bi(k) — pi(k)d;(k) (e =1,2, ..., M), to
guarantee that b; is a positive value, and

1, bi(k+1)=0b;(k) —di(k) >0,

Hz(k) =

bi(k .
0.5 min{ ( ), d;(k) > 0} , otherwise.

d; (k)
(18)

When the caching space demands converge (i.e.,
1fi(b(k)) — filb(k — 1) < €) where b =
(b1, by, ..., by)T and i = 1, 2, ..., M, the al-
gorithm terminates. In this case, the equilibrium so-
lutions of the Cournot game are obtained (i.e., b(k)).
The performance of the proposed algorithm will be
shown later through simulations.

3.3 Stability analysis of the dynamic Cournot
game

Now we give the stability analysis of the caching
space allocation scheme by considering the eigenval-
ues of the Jacobian matrix (Eq. (19)) and applying
the Routh-Hurwitz stability condition (Sonis, 1996).

|
S
NgE
S
N———
g
|
(wyl
S
<
\]
(\
NgE
S
N———
g
!
v

(17)

nar-Coy-byr ™’ _y(M

fau(b)=ba+anbar- ( Our-qar ="
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By definition, the equilibrium point is stable if, and
only if, all the eigenvalues of the Jacobian matrix
are inside the unit circle of the complex plane (i.e.,
[Ai] < 1) (Agiza et al., 1999; Niyato and Hossain,
2008).

When we consider the scenario with two SPSs,
the Jacobian matrix can be expressed as Eq. (20).

The two eigenvalues of the Jacobian matrix can

Algorithm 1 Iterative algorithm based on

the Newton-Raphson method for the Cournot

equilibrium

1: Initialization: given initial strategies b(0) (i.e.,
b(0) = [b1(0),b2(0),...,ba (0)]T) and control accu-

racy € > 0
2: k<« 0
3: loop
4 if || fi(b(k)) — filb(k = 1)) || <e,i=1,2, ..., M
then
5 output the approximate solution b(k)
6 break
7.  end if £b(K)
RCANAC)
9: bz(k + 1) — bl(k) — ul(k)dl(k),
10: k< k+1
11: end loop
Obi(t+1)  9Obi(t+1) Obi(t+1)
by (%) b (t) Db (1)
Aba(t+1)  Oba(t+1) Oba(t +1)
J=| on@) b (t) Obas (t)
Obp(t+1) by (t+1) Abp(t+1)
0 b (t) Dby (1)

—a1b1y
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be obtained by solving

—J1,2
A—J2,2

90()\) _ det(/\I _ J) = ’ A —.]1,1
—J2,1
=22 = A(jr1 + J22) + (Jr1dz2 — J1,272,1)

=0, (21)

where I is the identity matrix. The solution is

(11 +Jo,2) £ \/4j1,2j2,1 + (11— j2,2)2

(A1, A2) = 9

(22)
By definition, if the evolutionary equilibrium of the
dynamic Cournot game with two SPSs is stable,
|)\1| < 1 and |/\2| < 1.

In the scenario that there are more than two
SPSs in the system, we can obtain all eigenvalues by
solving the characteristic equation of the Jacobian
matrix (i.e., p(A) = det(AI — J) = 0). Then based
on the Routh-Hurwitz stability condition, we can
confirm whether the Nash equilibrium point is stable.

4 Simulation results and discussion

In this section, we use simulations to evaluate
the performance of the distributed dynamic caching
resource sharing scheme. For illustration purposes,

M
14+ (gl'(l—ﬁ)-bfﬁ—w—y (Z1 bi> —3b1y)

—apbary

Lo (gM.u_ﬁ).bM-é_z_y<%bi)_3bw)

[ 2

J1,2 }
J2,2

—yazbz

i=1

1+Oél(gl . (1 —ﬁ) . b1—5 — T —4yb1 —ybg)

14 ag(ga-(1—B) by ? —a — dyby — yby)

(19)

—yob
e . (20)
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we first consider a simple network environment with
two SPSs and one BS. The simulation parameters are
set as follows. For the price function, we set z = 0,
y =1, and 7 = 1 (Niyato and Hossain, 2007; 2008).
We assume that each video object of each SPS has
the same size, which is 25 MB (i.e., ¢; = 25), and that
the content popularity follows the Zipf-like distribu-
tion with the skewness factor 5 = 0.8 (Ahlehagh and
Dey, 2014). Besides, the total number of requests ar-
riving at each SPS is 10000 (i.e., n; = 10000). The
backhaul cost of transmitting 1 MB data is 10.0 (i.e.,
C; = 10). The total number of video contents owned
by each SPS is 1000 (i.e., Nf°**! =1000). Note that
some of these parameters have to be adjusted based
on the evaluation scenarios.

Fig. 3 shows the effect factors of caching space
sharing. From Figs. 3a and 3b, we can see that the
best response of SPS; increases with the increase of

600

400

b1 (MB)

350
300
250
2002

by (MB)

by (MB)

800 1000 1200
Total number of videos owned by SPS; (N,

(9)

1400

total )

its total number of requests (n1) and decreases with
the increase of the total number of requests arriving
at SPSy (ng). This is not hard to understand. When
there are more requests, SPSs need larger bandwidth
to deliver video objects, which will result in the in-
crease of backhaul costs. In this case, SPSs prefer
to buy more caching space. In Figs. 3c and 3d, we
analyze the relationship between the caching space
demand from the SPS and the backhaul cost of trans-
mitting 1 MB data. Relationships with mean size of
a video content are evaluated in Figs. 3e and 3f. In
Figs. 3g and 3h, we investigate the relationship be-
tween the caching space demand from the SPS and
the total number of videos owned by each SPS. Obvi-
ously, caching space demand depends largely on the
price given by the BS to sell its storage resources and
backhaul costs used by SPSs to transmit requested
video objects to UEs. While caching space demand

280
260
240

220
0.8

faY

by (MB)

(b)

250 - —

by (MB)

200
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|
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Fig. 3 Effect factors of caching space sharing: (a) and (b) show the effect of the total numbers of requests of
SPS; and SPS2; (c) and (d) present the effect of the backhaul costs (per MB) of SPS; and SPS2; (e) and (f)
show the effect of mean sizes of a video object of SPS; and SPS2; (g) and (h) present the effect of the total

numbers of videos owned by SPS; and SPS2
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is a decreasing function of resource price, it is an
increasing function of backhaul costs. Specifically,
when the resource price increases, the SPS needs to
pay the BS more fees for a certain amount of stor-
age resources, resulting in the situation in which the
SPS tends to buy less caching space. However, with
the increase of backhaul costs, the SPS is willing
to buy more caching space to reduce expenditure
in backhaul bandwidth. When there are more re-
quests arriving at SPSo, SPSs tends to demand more
storage resources, and therefore the BS will charge
higher price for the same size of resources (as shown
in Eq. (1), the price function is convex). As a re-
sult, the profit of SPS; decreases and the size of
the demanded storage resources from SPS; becomes
smaller. This analysis method can be used for other
evaluation results in Fig. 3.

In Fig. 4, we evaluate the variations of the rev-
enue of an SPS when the caching space demand of
the other SPS is given.
see that the revenue of SPS; first increases with
the increase of its caching space. Then when the
caching space size reaches a certain value, the rev-
enue of SPS; begins to decrease.
when the storage resources demanded by either SPS
(i.e., SPS; or SPSs) increases, the price given by
the BS will become larger (Eq. (1) with 7 = 1). In
this case, the cost of buying storage resources will in-
crease. As aresult, the SPS first benefits from buying
caching space. However, at a particular point (e.g.,
b1 = 245), the revenue gained by the SPS decreases
because the storage resource price becomes too high.

From the figure, we can

This is because

7.88

~ 7.86

7.841

7.82

7.80F--—

7.78

Revenue of SPS; (x10°

7.76

I
7.74 L
210 220 230 240 250 260 270 280

Caching space of SPS+, by (MB)

Fig. 4 Revenue of SPS; versus the caching space size

Fig. 5 shows the best responses of both SPSs.
The best response of each SPS is a nonlinear func-
tion of the other SPS’s strategy due to the nonlin-

earity of the utility function. The intersection of
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the best response curves indicates the Nash equi-

librium point. In the following simulations, we use
ng - Ck
Ik =
Q- qr =P
of several parameters (e.g., ny and Cy). From the
figure, we note that the best response of the SPSs

(k =1, 2) to denote the variations

has a demand for a larger caching space when g, is
higher. This is because the SPSs will reduce more
backhaul cost when the value of g is larger. So, in
this case, the SPSs expect to get more storage re-
sources to maximize their revenue by caching more
popular video contents.

-#- by (91=9,=55000)
—#— b, (91=9,=60000)
—#= b1 (g1=g»=65000)

-4 b, (91=9,=55000)
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|
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Caching space of SPS,, b, (MB)

Fig. 5 Best responses of two SPSs

In Fig. 6, we show the impact of the Zipf-like
distribution on the caching space demand of an SPS
when the number of SPSs is fixed at two. When
the value of the parameter  increases, g; and gs
become larger, resulting in both the SPSs needing
more caching space. In this case, the BS will achieve
benefits from charging higher price from the SPSs
(as shown in Eq. (1), the price function is convex).
However, at a particular point (e.g., 5 = 0.75), the
caching space demand of SPS; decreases because the
price of the storage resources becomes too high and
the cost of sharing storage resources increases at a
rate larger than the revenue of SPS;.

Fig. 7 gives the dynamic behavior analysis of
the non-cooperative game. First, we set the initial
strategies of the two SPSs to b1(0) = b2(0) = 300.
With the proposed dynamic caching space sharing
scheme in which an SPS is not aware of others, and
it adjusts its demand based on the marginal profit for
the SPS, we illustrate the variations in caching space
demand for both SPSs in Fig. 7 when g; = 60000
and go = 50000. Obviously, with these parameters,
the Nash equilibrium point is located at by = 250.95
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and by = 217.39. As shown in Fig. 7, when the
learning rate is set properly (e.g., @3 = 0.0015 and
as = 0.0015), the caching space demand will con-
verge gradually and finally reach the Nash equilib-
rium. However, if the learning rate is large (e.g.,
a1 = 0.0023 and ay = 0.0023), the strategies of both
SPSs will swing drastically and may never converge
to the Nash equilibrium. This is because if the learn-
ing rate is too large, the determination of an SPS
strategy greatly depends on the latest information
obtained from the BS, such as the pricing informa-
tion. Therefore, the strategies of SPSs fluctuate too
much to converge to the equilibrium.

280
260f—-——j-==———p==—=f-=——= ;
240F -~
_220p----
g 200F----
3 180 ————4-— !
160 F-- —e— N™=1000, N5"*=900 - - - -2 -1
140 —
120
100 :

Fig. 6 Caching space demand of SPS; under different
values of the Zipf parameter

—e- 0=0.0015

—&— a=0.0023

o
[\CY E—

Fig. 7 Dynamic behaviors of stable and unstable cases

So far, we have simulated the network scenario
with two SPSs and one BS. In the following part, we
will consider the situation with more than two SPSs.
In this case, we use Algorithm 1, which has been de-
scribed in Section 3, to obtain the Nash equilibrium.
In Fig. 8, we investigate the performance of the iter-
ation algorithm. Fig. 8 shows the convergence of the
storage resource demand over the iteration step. It is
obvious that given the initial strategies, the storage
resource sharing scheme could converge to the Nash
equilibrium after several iteration steps. This is be-
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cause when the price offered by the BS decreases,
the storage resource demand of SPSs increases and
when the storage resource demand of SPSs increases,
the price offered by the BS increases. In this case,
the SPSs tend to decrease the demanded storage re-
sources. So, after several steps, the storage resource
demand of SPSs attains the Nash equilibrium.

In Fig. 9, we present the caching space demand
and the revenue of the SPSs and the BS for different
values of gi.. We observe that the location of the Nash
equilibrium depends on the value of g;. From Fig. 9,
we can see that as the value of g3 increases, SPS3
prefers to demand a larger caching space size from
the BS. Moreover, the value of g3 affects the caching
space demands of other SPSs. From the figure, we
can see that with the increase of the value of g3, the
demanded caching space and revenue of other SPSs
(i.e., SPS; and SPSj3) decrease. Furthermore, the
revenue and the demanded caching space of other
SPSs decrease at a rate smaller than the increasing
rate of SPS3. In addition, the revenue of the BS
increases at a low rate. Similar results are expected
for scenarios with a larger number of SPSs.

30 T
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Fig. 8 Convergence of the proposed iteration algo-
rithm based on the Newton-Raphson method
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Fig. 9 Caching space demand and revenue of SPSs
and the BS under different values of g3
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5 Conclusions and future work

In this paper, we have discussed the issues of
the caching resource sharing strategy in RANs to
save the bandwidth of RAN backhaul networks. The
caching resource sharing problem is formulated as
a dynamic Cournot game. Then we computed the
equilibrium solution of a specific system model with
two SPSs and proposed an iteration algorithm based
on the Newton-Raphson method to obtain the equi-
librium solution with more than two SPSs. Next, the
stability analysis of the dynamic Cournot game has
been presented. Simulation results have been pre-
sented to illustrate the performance of the proposed
scheme and demonstrate the instability effects due
to changes in the learning rate.

In this paper, we consider the scenario in which
there is only one BS to cache video objects of
several SPSs. In our future work, we will con-
sider inter-domain collaborative caching scenarios,
wherein multiple BSs cooperate in caching. The
storage resource sharing problem in these cooper-
ative scenarios should consider the imperfect and
dynamic radio channel condition (Xie et al., 2012a).
Moreover, this research is based on the LTE network.
However, in recent years, the fifth-generation (5G)
network has become an advanced research hotspot
in academia and industry (Liang et al., 2015). So,
the potential caching techniques that might be used
in 5G mobile networks will be considered in our fu-
ture work. Future works also include exploring new
relevant opportunities and challenges of caching con-
tents in 5G systems.
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