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Abstract: We present a fully automatic method for finding geometrically consistent correspondences while
discarding outliers from the candidate point matches in two images. Given a set of candidate matches provided
by scale-invariant feature transform (SIFT) descriptors, which may contain many outliers, our goal is to select a
subset of these matches retaining much more geometric information constructed by a mapping searched in the space
of all diffeomorphisms. This problem can be formulated as a constrained optimization involving both the Beltrami
coefficient (BC) term and quasi-conformal map, and solved by an efficient iterative algorithm based on the variable
splitting method. In each iteration, we solve two subproblems, namely a linear system and linearly constrained
convex quadratic programming. Our algorithm is simple and robust to outliers. We show that our algorithm enables
producing more correct correspondences experimentally compared with state-of-the-art approaches.
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1 Introduction

Finding geometrically consistent correspon-
dences between pairs of images is one of the most
fundamental operations in graphics and vision and
it forms the basis of some problems such as feature
tracking, image classification or retrieval, object de-
tection, and shape matching. Given two images of
the objects in different poses or even different ob-
jects of the same class, the task is to select a set
of corresponding points, one from each image, such
that the two points in a pair correspond to the same
location. Identifying corresponding points is a chal-
lenging problem, as the shape of objects and their
pose can significantly change across images.

Different matching strategies have been used
among different image cues. Over the past decade,
correspondence techniques have evolved significantly
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in the graphics and vision literature. We refer the
interested reader to Heider et al. (2011) and Tuyte-
laars and Mikolajczyk (2008) for a survey of the
state-of-the-art methods in feature matching. These
methods, such as the scale-invariant feature trans-
form (SIFT) algorithm, create a collection of candi-
date correspondences by matching local signatures.
However, as they consider only local intensity, many
methods are globally inconsistent.

To filter the geometrically inconsistent corre-
spondences, a low-dimensional parameterized model
of deformations was proposed, such as in Chui
and Rangarajan (2003), which performs feature-
based nonrigid registration with the thin-plate spline
(TPS). However, the resulting mapping may contain
many incorrect pairs and only a few correct ones, as
there is no guarantee that it is bijective. Focusing
on the quality of the mapping, Lipman et al. (2014)
selected a large subset of correspondences that are
aligned by a global deformation of bounded distor-
tion with an alternative approach, but the subset
would filter more correct pairs while selecting more
incorrect ones as the bounded distortion constraints
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are set to be same everywhere. In this study, by bal-
ancing between these approaches, we focus mainly
on the space of all diffeomorphisms by optimizing
the deformation distance and keeping bijectivity.

Given several suitable landmarks, most existing
algorithms can find registration in the space of all
diffeomorphisms accurately and efficiently only by
fixing the boundary vertex onto squares or circles
(Zeng and Gu, 2011; Lui et al., 2012; Lam and Lui,
2014). However, the registration problem becomes
challenging when all points are set to be landmarks
in the feature-matching problem. In this case, bi-
jectivity is hard to keep in the obtained registration
as the initial correspondences contain many outliers.
To tackle this problem, we formulate an optimiza-
tion problem of certain energy functionals over the
space of all diffeomorphisms. Specifically, we mini-
mize an energy functional involving both a Beltrami
coefficient (BC) term and a deformation term, where
the first term measures the distortion of the quasi-
conformal map and the second measures the geomet-
ric distance between corresponding pairs. Different
from Lipman et al. (2014), we find an orientation-
preserving diffeomorphism f̃ : {pi}Ni=1 → {qi}Ni=1

from a low-dimensional deformation space, where
{pi}Ni=1 and {qi}Ni=1 are two input correspondences
to be matched.

We propose an efficient splitting algorithm to
perform this minimization in which we optimize vari-
ables alternatively. Using the proposed algorithm,
diffeomorphisms (1-1 and onto) between two input
feature data can be effectively obtained, even with
the large number of incorrect matches. Numerical
results show that our algorithm performs well in a
number of experiments of synthetic data and real
images over state-of-the-art approaches. The contri-
butions of our work can be summarized as follows:

1. We are the first to introduce quasi-conformal
maps into the feature-matching problem, which is
formulated as a constrained optimization involving
both the BCs and quasi-conformal map and solved
by an efficient iterative algorithm based on vari-
able splitting. Experiments show that our method
can select more geometrically consistent correspon-
dences compared with state-of-the-art approaches,
even when the input contains many outliers.

2. Our method is not sensitive to the choice of
the parameters and is robust to outliers. We demon-
strate it on a series of synthetic data.

2 Related work

Finding meaningful mapping or matching be-
tween corresponding data that optimizes certain
kinds of energy functionals has been extensively
studied (Montagnat et al., 2001; Nealen et al., 2006;
van Kaick et al., 2011; Zhao et al., 2012). In this
section, we review several works on matching point
features of nonrigid deformations. We also discuss
some previous works closely related to registration
via quasi-conformal maps.

1. Low-dimensional deformation spaces. With
a set of candidate pairs of correspondences as input,
which may include many outliers, several works aim
to find a subset belonging to some low-dimensional
deformation spaceD. RANSAC (Fischler and Bolles,
1981) finds a large subset of pairs aligned by a global
deformation in D up to an ε-deviation denoted as
Dε, which is formulated precisely as

min
f∈D

N∑
i=1

‖f(pi)− qi‖0.

Lipman et al. (2014) performed a similar formulation
to find the maximal subset of bounded distortion
denoted as FK , and the problem is stated as follows:

min
f∈FK

N∑
i=1

‖f(pi)− qi‖0,

where FK is the collection of all deformations de-
cided by a distortion value less than or equal to K,
and both ε and K decide the deformation space to
be low- or large-dimensional. Similarly, our method
produces a low-dimensional deformation space rep-
resented by an optimal BC, denoted as Db.

2. Space-deformation based methods. Space de-
formation has been widely used in feature match-
ing, and maximizes the quality of the matching and
minimizes the complexity of the deformation simul-
taneously. Chui and Rangarajan (2003) minimized
the deformation energy based on thin-plate splines,
while Belongie et al. (2002) used shape context lo-
cal descriptors to optimize a similar energy. Hinton
et al. (1991) minimized deformation energy includ-
ing a spline-based deformation cost and a generative
model of appearance with an elastic matching algo-
rithm. Jian et al. (2005) performed a nonrigid reg-
istration between these local frequency maps using
the Riesz transform. However, these methods may
be sensitive to initialization and outliers.
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3. Quasi-conformal maps. We review mainly
the work related to ours, including conformal maps,
quasi-conformal maps, and Beltrami flows. Various
conformal geometric methods have been presented
for nonrigid surface matching and registration (Yezzi
and Mennucci, 2005; Wang et al., 2007; Zeng et al.,
2009). Taimouri and Hua (2014) introduced a new
quasi-conformal metric which measures the curva-
ture changes at each vertex of each pose during the
deformation. Given boundary constraints, quasi-
conformal maps are widely used to parameterize
meshes onto disk domains and obtained by solving
the Beltrami equation. Several methods have been
proposed to deal with simple domains in the complex
plane (Mastin and Thompson, 1984; Daripa, 1991;
1992; Lui and Ng, 2015). Ho and Lui (2016) proposed
an algorithm to compute the quasi-conformal param-
eterization for a connected 2D domain or surface. A
method called the Beltrami holomorphic flow was
used to obtain the optimal BC associated with the
registration (Lui et al., 2012). Matching landmarks
consistently with quasi-conformal mapping has also
been proposed. Given several features on the sur-
faces, Zeng and Gu (2011) proposed a method to
register 3D surfaces with large deformations using
quasi-conformal curvature flow. However, bijectiv-
ity of the mapping is difficult to guarantee, especially
when all feature pairs are set to be landmarks. Our
approach can provide a diffeomorphism by setting
each energy term a weight parameter properly.

3 Background

In this work, we apply quasi-conformal (QC)
maps to find geometrically consistent correspon-
dences between pairs of images. In this section, we
review some basic theories on quasi-conformal geom-
etry. We refer the interested reader to Gardiner and
Lakic (2000) and Lehto et al. (1973) for details.

Given two surfaces M and N, a map f : M → N
is conformal if it preserves the surface metric up to
a multiplicative factor called the conformal factor.
A generalization of conformal maps is the quasi-
conformal maps, which are orientation-preserving
homeomorphisms between Riemann surfaces with
bounded conformality distortion, in the sense that
their first-order approximations take small circles to
small ellipses of bounded eccentricity (Gardiner and
Lakic, 2000). Suppose f : D → D′, where D and D′

are two domains in C. Then f is quasi-conformal,
provided that it satisfies the Beltrami equation

∂f

∂z
= μ(z)

∂f

∂z
(1)

for some complex-valued Lebesgue measurable μ :

C → C, satisfying ‖μ‖∞ < 1 (Bers, 1977). μ is
called the Beltrami coefficient, which measures how
far the map at each point deviates from a conformal
map. Eq. (1) admits a geometrical interpretation.
Equip D with the metric tensor

ds2 = Ω(z)2|dz + μ(z)dz̄|2,

where Ω(z) > 0. Then, f satisfies Eq. (1) pre-
cisely when it is a conformal transformation from
D equipped with this metric to domain D′ equipped
with the standard Euclidean metric, and f is called
the μ-conformal. In particular, map f is conformal
around the neighborhood of z when μ(z) = 0.

Consider the effect of the pullback under f of the
usual Euclidean metric. The resulting metric is then
given by ∣∣∣∣∂f∂z

∣∣∣∣
2

|dz + μ(z)dz̄|2,

which is relevant to the background Euclidean metric
dzdz̄, and has eigenvalues

(1 + |μ|)2
∣∣∣∣∂f∂z

∣∣∣∣
2

,

and

(1− |μ|)2
∣∣∣∣∂f∂z

∣∣∣∣
2

.

The eigenvalues represent the squared length of the
major and minor axes of the ellipse obtained by
pulling back along f the unit circle in the tangent
plane (Fig. 1). Accordingly, the dilatation of f at a
point z is defined by

K(z) =
1 + |μ(z)|
1− |μ(z)| .

The dilatation of f is given by

K(f) = sup
z∈D

|K(z)| = 1 + ‖μ‖∞
1− ‖μ‖∞ .

A simple calculation leads to the following
property:
Theorem 1 If f : C → C satisfies ‖μ(f)‖∞ <

1, then f is a diffeomorphism (Gardiner and Lakic,
2000).
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Fig. 1 Illustration of how the Beltrami coefficient
controls conformality distortion

Theorem 1 plays the fundamental role of obtain-
ing a diffeomorphism. That is, given a BC μ : C → C
with ‖μ‖∞ < 1, we can find a one-to-one quasi-
conformal mapping from C onto itself satisfying the
Beltrami equation (Eq. (1)).

4 Problem formulation

Given a set of candidate pairs of correspon-
dences in the complex plane (pi, qi) ∈ C × C (i =

1, 2, · · · , N), our aim is to extract a geometrically
consistent subset {(pil

, qil)}, l = 1, 2, · · · , n ≤ N

matched by f̃ ∈ Db (Db is the space of all diffeomor-
phisms). We can set up our problem as

f̃ = argmin
f∈Db

N∑
i=1

‖f(pi)− qi‖0,

where the �0-norm measures the Euclidean distance
between f(pi) and qi; i.e., ‖f(pi) − qi‖0 = 1 if
f(pi) �= qi, and ‖f(pi) − qi‖0 = 0 otherwise. In
this way, we select matches with small conformal dis-
tortion. Unfortunately, it is impossible to construct
space Db by adding several constraints, such as in
Lipman et al. (2014). Going back to Eq. (1), we solve
Beltrami’s equation by involving an Lp-minimization
of the Beltrami energy:

EB(f) =

∥∥∥∥∂f∂z − μ
∂f

∂z

∥∥∥∥
p

. (2)

Note that, if we set p large enough, the optimization
problem gives a good approximation. In particular,
when p = 2, the result of the least-square problem
(2) is called the least-square quasi-conformal map
associated to μ (Gu and Yau, 2008; Weber et al.,
2012). In this study, we choose p = 2 and solve it
with an alternating minimization algorithm.

Going back to Theorem 1, to obtain a diffeo-
morphic registration associated with an optimal BC,
which is guaranteed to be bijective, our optimization
can generally be written as finding f̃ : S1 → S2 that

satisfies

f̃ =argmin
f

E(f)

=

∫
|∇μf|2dS + α

∫
|μf|2dS

+ γ

∫
|fz̄ − μffz|2dS + β

N∑
i=1

‖f(pi)− qi‖0

s.t. ‖μf‖∞ < 1,

(3)

where μf is the BC associated with f ∈ Db, and we
write

∫
S1

as
∫

for short.
The first term of E is a regularization term en-

suring the smoothness of f . The second term of E
is minimized to control the conformality distortion
of f. The third term of E aims to minimize the dis-
cretization of the least-square Betrami energy, and
the last term is designed to align as many of pi’s as
we can with qi’s.

The optimization problem (3) poses two main
challenges:

1. The problem involves the optimization of
both quasi-conformal maps f and μf , which depend
highly on each other, leading to a highly nonlinear
optimization.

2. The L2,0 functional in problem (3) is not
smooth and is nonconvex.

We tackle the problem by combining the split-
ting method and iterative reweighted least-square
(IRLS) method. More specifically, following Lipman
et al. (2014), we replace the L2,0 term by a smooth
functional to approximate its minima. Since μf and
f are highly related and the energy is highly nonlin-
ear, we introduce a new variable ν and reformulate
problem (3) to be an equality-constrained problem.
Thus, the problem can be further formulated as look-
ing for an optimal BC ν̃ : S1 → C, which is the BC
of some diffeomorphism f̃ : S1 → S2, minimizing the
following energy functional E(ν, f):

(ν̃, f̃) = argmin
f,ν

E(ν, f)

=

∫
|∇ν|2dS+α

∫
|ν|2dS+γ

∫
|fz̄ − νfz|2dS

+ β

N∑
i=1

‖f(pi)− qi‖0

s.t. ‖ν‖∞ < 1, ν = μ(f).
(4)

Problems (3) and (4) are equivalent to each other.
Based on problem (4), we apply the splitting method
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and the IRLS method to solve the constrained opti-
mization problem, by replacing the L2,0 functional
term and equation constraints, as follows:

(ν̃, f̃) = argmin
f,ν

Esplit
δ (ν, f)

=

∫
| ∇ν|2dS + α

∫
|ν|2dS

+ σ

∫
|ν − μ(f)|2dS + γ

∫
|fz̄ − νfz|2dS

+ β

N∑
i=1

(‖f(pi)− qi‖2 + δ)
p
2

s.t. ‖ν‖∞ < 1,

(5)

where p is a small constant, the sequence δ → 0

is a parameter updated during the iterations, and
σ is the weight of the penalty term required to in-
crease to infinity theoretically. We iteratively min-
imize Esplit

δ (ν, f) subject to the constraints. More
precisely, given an initial match f (0), set ν(0) = 0,
δ = δ(0). Suppose we have obtained ν(k) and
δ(k) at the kth iteration. Fixing ν(k), we obtain
f (k) by minimizing Esplit

δ(k) (ν
(k), f) over f . Once

f (k) is updated, similarly, by fixing f (k), we ob-
tain ν(k+1) by minimizing Esplit

δ(k) (ν, f
(k)) over ν. If∣∣∣Esplit

δ(k+1)(ν
(k+1), f (k+1))−Esplit

δ(k) (ν
(k), f (k))

∣∣∣ < ε, up-

date δ(k).

5 Numerical implementation

5.1 Discretization

We use a Delaunay triangulation of the pla-
nar point set {pi} denoted as T = (V, F ), where
V = {pi}Ni=1 is the set of vertices and F = {fj}Tj=1

is the set of oriented faces. We choose f from the
space of continuous piecewise linear (CPL) map-
pings defined by the values at vertices. The com-
plex derivatives fz̄ and fz are naturally defined on
each triangle. Given ei, ej , ek as edge vectors of T
with opposite vertices (i, j, k), the gradient of f is
(fiti + fjtj + fktk)/(2AT ), where AT is area of the
triangle, ti = e⊥i , and fi is the value at vertex pi.
Then per-triangle derivatives are given by

fz =
1

4AT
(fit̄i + fj t̄j + fk t̄k),

fz =
1

4AT
(fiti + fjtj + fktk),

where ti = txi + i tyi is the complex form of ti =

(txi , t
y
i ).

The BC μ is a piecewise constant function de-
fined on each triangle of T . Different from Lam and
Lui (2014) and Lui and Ng (2015), who computed
μ on each vertex and converted the value to each
face by averaging the values on each vertex, we re-
strict the value of μ on triangle τ as μτ and compute
it by μτ = fz̄|τ/fz|τ (defined above) for each tri-
angle, so μ = (μ0, μ1, · · · , μT−1) ∈ RT . For any
μ1,μ2,μ ∈ RT , we define the inner product and
norm as

(μ1,μ2)RT =
∑
τ

μ1
τμ

2
τAτ ,

‖μ‖RT =
√

(μ,μ)RT .

For any μ ∈ RT , we define the jump of μ over an
edge e as

[μ]e =

{ ∑
e≺τ

μτ sgn(e, τ), e � ∂T,

0, e ⊆ ∂T,

where e ≺ τ denotes that e is an edge of triangle
τ , and sgn(e, τ) defines the relative orientation of
edge e to triangle τ . More specifically, we set all
the triangles with an anticlockwise orientation, and
all edges are with fixed orientations chosen randomly.
For an edge e, if the orientation of e is consistent with
the orientation of τ , then sgn(e, τ) = 1; otherwise,
sgn(e, τ) = −1. In the piecewise constant function
space, the gradient operator can be defined as

∇ : μ → ∇μ, ∇μe = [μ]e.

Thus, the term
∫ |∇μ|2dS can be discretized

as
∑

e le[μ]
2
e, where le denotes the length of edge

e. Since ‖μτ‖∞ < 1 is hard to optimize, we have
simplified it into ‖μx

τ‖∞ <
√
2/2 and ‖μy

τ‖∞ <
√
2/2

for all τ ∈ F .
To summarize, we discretize energy problem (5)

with complex variables fi to present the map and
per-face complex variables ντ for BC:

(ν̃, f̃) = argmin
f,ν

Esplit(ν, f)

=
1

ne

∑
e

le[ν]
2
e+

α

T

∑
τ

|ντ |2+ σ

T

∑
τ

Aτ |ντ−μτ (f)|2

+
γ

T

∑
τ

Aτ

∣∣∣fz̄|τ − ντfz|τ
∣∣∣2

+
β

N

N∑
i=1

(‖f(pi)− qi‖2 + δ
) p

2

s.t. ‖νjτ‖∞ <

√
2

2
, τ ∈ F, j = 0, 1,

(6)
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where ne denotes the number of edges, and Aτ the
area of triangle τ .

5.2 Optimization

Energy problem (6) is highly nonlinear. Stan-
dard methods, e.g., Newton methods or ADMM
methods (Boyd et al., 2011; Li et al., 2015), do not
perform well for optimizing this energy. Besides, it is
quadratic with respect to both vector variables f =

[f(p1), f(p2), · · · , f(pN )] and ν = [ν1, ν2, · · · , νT ].
This suggests the use of an alternating-descent algo-
rithm to optimize f and ν in an alternating fashion.
More specifically, if f is fixed, we can obtain ν by
solving a linearly constrained convex quadratic prob-
lem. Similarly, we can easily obtain f by solving a
linear system when ν is fixed. While there is no guar-
antee of the convergence to a global minimum, this
algorithm is relatively stable with consistent practi-
cal behavior (Fig. 7).

1. f -subproblem. We discuss the minimization
of Esplit(ν(k),f) over f by fixing ν(k). Note that
for each p > 0 and δ > 0, the standard family of
functionals

Ep,δ(f) =
N∑
i=1

(‖f(pi)− qi‖2 + δ
) p

2

is smooth, and we can take a sequence δ → 0 while p

is a small constant. Let us denote E(k)
δ as the energy

at the kth iteration:

E
(k)
δ =

N∑
i=1

ω
(k−1)
i ‖f(pi)− qi‖2. (7)

Since μ(f) characterizes the distortion of the map
(scale, stretch, etc.), we set a small weight to the
region of large distortion, that is,

ω
(k−1)
i = exp

(
−
∥∥μ(f (k−1))vi

∥∥2
2m

)
· di, (8)

where

di =

(∥∥∥f (k−1)(pi)− qi
∥∥∥2 + δ(k)

) p
2−1

,

μ(·)vi denotes the value of μ(·) on the ith vertex
computed by averaging the values of its neighboring
faces, and we set m = 0.005 in our implementation.

Then the energy is given by

f (k) =argmin
f

{
γ

T

∑
τ

Aτ

∣∣∣fz̄|τ − ν(k)τ fz|τ
∣∣∣2

+
β

N

N∑
i=1

ω
(k−1)
i ‖f(pi)− qi‖2

}
,

(9)

which is a quadratic problem in f whose solution can
be easily obtained by solving a linear system.

2. ν-subproblem. Once f (k) is obtained, we min-
imize Esplit

p,δ

(
ν,f (k)

)
over ν while fixing f (k). That

is, we obtain ν(k+1) by solving the following problem:

min
ν

Esplit
(
ν,f (k)

)
=

1

ne

∑
e

le[ν]
2
e +

σ

T

∑
τ

Aτ

∣∣∣ντ − μτ (f
(k))

∣∣∣2

+
α

T

∑
τ

Aτ |ντ |2 + γ

T

∑
τ

∣∣∣f (k)
z̄ |τ − ντf

(k)
z |τ

∣∣∣2

s.t. ‖νjτ‖∞ <

√
2

2
, τ ∈ F, j = 0, 1,

(10)
where μ(f) is the BC associated with f .

Theoretically, the conventional penalty method
requires that σ should increase to infinity. In our
experiments, we found that setting σ to be a large
constant can also give satisfactory results. Obvi-
ously, this is a linearly constrained convex quadratic
programming problem, optimized over ν with Mat-
lab’s quadratic programming routine. The two-step
optimization is summarized in Algorithm 1.

6 Experimental results

We tested our algorithm on both synthetic data
and real images, and compared it with several exist-
ing algorithms, including BD (Lipman et al., 2014),
Tensor (Duchenne et al., 2011), and RANSAC (Fis-
chler and Bolles, 1981) algorithms, both visually and
quantitatively. For comparison, we tested the Ten-
sor method with a cost function to penalize changes
in the angles between triplets of feature points and
compute three RANSAC models, affine (denoted
as RANSAC-AFF), epipolar (denoted as RANSAC-
EPI), and projective (denoted as RANSAC-PRO)
(using Matlab’s estimateGeometricTransform and
estimateFundamentalMatrix function, respectively),
with suitable parameters demonstrated in Lipman
et al. (2014). In our experiments we chose constants
p = 0.001 and σ = 20. We decreased δ by half in
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Algorithm 1 Feature matching using quasi-
conformal maps
Require: candidate correspondences (pi, qi) ∈ R2×R2,

i = 1, 2, · · · , N
Ensure: subset of pairs (pil

, qil
), l = 1, 2, · · · , n ≤ N ,

and the bijective map f

1: Initialization: Triangulation T = {V, F} from
{pi}Ni=1

f (0)(pi) = pi, ν
(0) = 0

δ(0) ≈ diam{pi}, ω0
i from Eq. (8)

// diam{·} gives the minimum radius of a circle that
contains all the points pi

k = 0, δmin = 1× 10−8, kmax = 50

2: while δ(k) > δmin and k < kmax do
3: while Esplit

δ(k) (ν
(k),f (k)) − Esplit

δ(k−1)(ν
(k−1),f (k−1))

> ε do
4: k = k + 1

5: δ(k) = δ(k−1)

6: Set ω
(k−1)
i according to Eq. (8)

7: Optimize f subproblem via problem (9) with
ν(k) fixed

8: Optimize ν subproblem via problem (10) with
f (k) fixed

9: end while
10: δ(k) = δ(k)/2

11: end while
12: Return all pairs (pi, qi) for (pi, qi) < ε

each iteration, and set the lower bound as 1× 10−8.
Experiments showed that our algorithm is not sen-
sitive to these choices. To measure whether f(pi)

reaches the location closely to the target qi, we use
the distance threshold of five pixels.

6.1 Synthetic data

To compare our algorithm with other state-of-
the-art methods, we first tested it on synthetic data.
We sampled points of a square randomly and uni-
formly on the 2D plane, and produced another set
of points by a random radial basis function (RBF)
mapping of the first one. We produced six RBFs.
For each RBF, we produced n = 64 inlier pairs
of points sampled uniformly from an 8 × 8 grid
p1,p2, · · · ,pn, chose 10 control points randomly de-
noted as {ck}10k=1, and then obtained the correspond-
ing RBF as

f(p) =
10∑
i=1

φ(d(p,pi))ci + P1(p),

where φ(·) is an RBF, and we used φ(r) = 1−30r2−
10r3+45r4− 6r5− 60r3 · log r. P1 is a vector valued

linear polynomial. Next, following Lipman et al.
(2014), N − n outlier pairs (pi, qi) were added by
first creating pi uniformly in the square, i = n +

1, n+2, · · · , N , and then choosing qi according to the
distribution of outliers estimated from real images.

To evaluate the performance of our algorithm,
we carried out 100 trials randomly with an outlier
fraction in the range [0, 0.95] for each RBF and com-
puted the F -measure for each trial:

F = 2 · precision · recall
precision + recall

,

where precision is the fraction of retrieved instances
that are relevant, and recall is the fraction of relevant
instances that are retrieved (Sasaki, 2007). We plot-
ted the F -measure of the six RBFs as a function of
the fraction of outliers over all trials in Fig. 2, which
shows that our algorithm gives a higher F -measure
even for a large fraction of outliers.
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Fig. 2 Performance curves on six RBFs using our
method and other methods: (a) RBF 1; (b) RBF 2;
(c) RBF 3; (d) RBF 4; (e) RBF 5; (f) RBF 6

6.2 Real images

Results on real images are shown in Figs. 3–
5. We tested our algorithm on different kinds of
image pairs including images with large deforma-
tions, images from different viewpoints, and images
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(a) Input images (b) SIFT (c) QC (our algorithm)

(d) BD (K=3) (e) BD (K=20) (f) Tensor

(g) RANSAC-AFF (h) RANSAC-EPI (i) RANSAC-PRO

Fig. 3 Experiments on real images with large deformations. There are nine image pairs: original images
(a), SIFT correspondences as input (b), and several methods for filtering the SIFT correspondences (c)–(i).
Disks of the same color denote correspondences in an image pair, and the color varies linearly according to
the horizontal position of points in the left image. On the right image of each pair, red lines show the errors
between selected correspondences and ground-truth correspondences. The black disks are used to visualize
the pairs selected by our method but missed by other methods (References to color refer to the online version
of this figure)

of different animals of the same species. We used
SIFT descriptors in the VLFeat software package
to obtain the initial correspondences in all experi-
ments (Vedaldi and Fulkerson, 2010). We compared
RANSAC, Tensor, and BD algorithms with distor-
tion bound parameter K = 3 and K = 20 character-
izing different deformation spaces.

In Figs. 3–5, disks of the same size and color
indicate matching pairs to visualize matching results
clearly. In the left image of each image pair, we set
the color varying according to the horizontal position
of the points. For all real images, we used ground-
truth correspondences marked by a human observer,

and showed the correspondence error by connecting
a red line between each correspondence chosen and
the respective ground-truth correspondence in each
right image. Our goal is to select as many SIFT cor-
respondences compatible with the ground-truth or
with small positional deviations (indicated by short
red lines), while filtering the ones with large posi-
tional deviations (indicated by long red lines). In
addition, we used black disks to visualize the pairs
selected by our method but missed by other meth-
ods. The results show that our method selects more
consistent correspondences than the others.
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(a) Input images (b) SIFT (c) QC (our algorithm)

(d) BD (K=3) (e) BD (K=20) (f) Tensor

(g) RANSAC-AFF (h) RANSAC-EPI (i) RANSAC-PRO

(j) Input images (k) SIFT (l) QC (our algorithm)

(m) BD (K=3) (n) BD (K=20) (o) Tensor

(p) RANSAC-AFF (q) RANSAC-EPI (r) RANSAC-PRO

Fig. 4 Experiments on real images from different viewpoints: red lines show the errors between selected
correspondences and ground-truth correspondences and the black disks in the results are used to visualize the
pairs selected by our method but missed by other methods (see caption in Fig. 3 for details). The images were
taken with permission from Lazebnik et al. (2004; 2005) (References to color refer to the online version of this
figure)
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(a) Input images (b) SIFT (c) QC (our algorithm)

(d) BD (K=3) (e) BD (K=20) (f) Tensor

(g) RANSAC-AFF (h) RANSAC-EPI (i) RANSAC-PRO

(j) Input images (k) SIFT (l) QC (our algorithm)

(m) BD (K=3) (n) BD (K=20) (o) Tensor

(p) RANSAC-AFF (q) RANSAC-EPI (r) RANSAC-PRO

Fig. 5 Experiments on real images of different animals of the same species: red lines show the errors between
selected correspondences and ground-truth correspondences and the black disks in the results are used to
visualize the pairs selected by our method but missed by other methods (see caption in Fig. 3 for details). The
images were taken with permission from Lazebnik et al. (2004; 2005) (References to color refer to the online
version of this figure)

6.2.1 Images with large deformations

For images with large deformations, the SIFT
descriptors are less discriminative and contain more
incorrect correspondences, and it is difficult to filter
correct correspondences. Fig. 3 shows a scene where
two objects are close to each other in the left im-
age while away from each other in the right one. In
this case, the distances are preserved between fea-
ture points within each object while changing sig-
nificantly across the two objects, and our aim is to

capture the large deformation while discarding the
outliers. Fig. 3 shows that previous methods cannot
capture correct pairs near the eyes since the input
SIFT matches contain many incorrect ones. In con-
trast, our method selects more good correspondences
even though the SIFT matches are of poor quality.

6.2.2 Images from different viewpoints

We tested our method on the images from dif-
ferent viewpoints (Fig. 4). It is a challenging test
case for images from different viewpoints since some
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feature points are captured in the first image, while
they are in shade in the second one. In addition,
the location of one object with respect to another
or background may change significantly. Exam-
ples in Fig. 4 demonstrate that previous works ei-
ther miss more good pairs (indicated by black disks)
and introduce more false ones (indicated by long red
lines) or fail to recognize symmetry and repetitions
(RANSAC-AFF). Our method can capture repeated
structures or breaks correctly and choose more pairs
fitting the input with fewer outliers.

6.2.3 Images of different animals of the same species

Fig. 5 shows the performance of our algorithm
over animal images from the natural world. We
tested the images of different animals of the same
species. Since the SIFT descriptor is unstable, many
outliers are included, but our algorithm can still per-
form well. The first example in Fig. 5a shows that
RANSAC-PRO and BD (K = 3) lose more correct
correspondences and other algorithms always select
more incorrect ones, while we can balance them well
especially on the body of the bird. For the other
example, both RANSAC-EPI and RANSAC-PRO
lose more correct correspondences on the right wing,
while RANSAC-AFF cannot filter the outliers effi-
ciently. However, we can locate the left and right
wings correctly with more consistent matches.

7 Discussion

7.1 Quality

To quantify the correspondences retrieved, we
present the F -measure in Table 1 on the examples in
Figs. 3–5 of the tested algorithms. For each exam-
ple, since there might be some discrepancy between

a human observer and the geometrically consistent
SIFT correspondences, we define ground-truth as an
acceptable distance threshold of five pixels from the
human observer. From Table 1, we can find that our
algorithm achieves larger F -measures than the other
algorithms.

7.2 Bijectivity

Following Section 3, we investigated the bijec-
tivity of deformation f by computing the norm of the
BC on each face. Fig. 6 shows the histograms of the
BC norms of examples from Figs. 3–5. All the BC
norms are less than 1.

7.3 Running time

We have implemented the alternating-descent
algorithm using MATLAB on a laptop with Pentium
IV, 2.16GHz CPU, and 2GB RAM. We solved f us-
ing a sparse linear system and ν using quadratic pro-
gramming in Matlab. Table 2 gives the model statis-
tic and running time of the examples from Figs. 3–5.
Our method takes more time than RANSAC and BD
algorithms, as it solves a quadratic program and a
linear system in each iteration.

7.4 Convergence

We solve energy problem (6) by the alternating-
descent algorithm discussed in Section 5. Although
it is difficult to prove the convergence of the splitting
algorithm, the energy decreases consistently through
iterations, similar to the coordinate descent algo-
rithms (Wright, 2015). We further examine the con-
vergence of our algorithm via numerical experiments
and plot the energy curves of examples in Figs. 3–5
(Fig. 7). The results show that the energy always
decreases during the iterations.

Table 1 Comparison of F -measure of real images

Method
F -measure

Fig. 3 Figs. 4a–4i Figs. 4j–4r Figs. 5a–5i Figs. 5j–5r

BD (K = 3) 0.919 0.943 0.796 0.896 0.847
BD (K = 5) 0.899 0.922 0.773 0.854 0.806
BD (K = 20) 0.835 0.808 0.564 0.714 0.728
RANSAC-AFF 0.910 0.938 0.773 0.862 0.786
RANSAC-EPI 0.851 0.848 0.782 0.705 0.561
RANSAC-PRO 0.924 0.890 0.733 0.902 0.776
Tensor 0.859 0.812 0.664 0.744 0.813
Ours 0.945 0.972 0.858 0.962 0.959
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Fig. 6 Histograms of the BC norm of examples in Fig. 3 (a), Figs. 4a–4i (b), Figs. 4j–4r (c), Figs. 5a–5i (d),
and Figs. 5j–5r (e)

Table 2 Comparison of running time

Method
Running time (s)

Fig. 3 Figs. 4a–4i Figs. 4j–4r Figs. 5a–5i Figs. 5j–5r
(|v|=1905, |f |=3980) (|v|=2925, |f |=6064) (|v|=495, |f |=908) (|v|=533, |f |=980) (|v|=902, |f |=1690)

BD 215.491 441.196 52.367 60.543 105.553
RANSAC-AFF 0.028 0.151 0.411 0.257 0.092
RANSAC-EPI 10.436 10.543 7.145 7.361 7.537
RANSAC-PRO 0.023 0.790 0.533 0.522 0.572
Tensor 792.466 1827.547 132.693 169.544 321.593
Ours 242.911 410.278 54.736 74.501 122.583
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Fig. 7 Energy curves of examples in Figs. 3–5. These
curves show that the energy decreases during the it-
erations and yields a stable result

7.5 Choice of parameters

We have tested our algorithm with different pa-
rameter settings on RBF 1. Specifically, we have ap-
plied our algorithm with different values of σ in the
interval (10, 30) on data RBF 1 and ε in the interval
(2, 8) to see the average performance with different
outlier fractions of data RBF 1. Fig. 8 shows that
our algorithm is not sensitive to all of these choices.

8 Conclusions

In this work, we considered the problem of find-
ing a geometrically consistent set of correspondences
between two input images. Given a set of candidate
matches provided by SIFT descriptors, which may
include many outliers, we selected a subset of these
correspondences that can be aligned perfectly from
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Fig. 8 The performance of our method with different
choices of parameter σ (a) and the effect of varying the
distance threshold ε (b). The performance is stable
for a wide range of parameter values

the space of all diffeomorphisms. We formulated this
problem as a constrained optimization problem in-
volving both the BC term and quasi-conformal map
term, and solved it using a splitting method. In
each iteration of our algorithm, we solved the f sub-
problem by solving a linear system and ν subprob-
lem by linearly constrained convex quadratic pro-
gramming. We further examined the convergence
of our algorithm via numerical experiments. Exper-
iments showed that our algorithm is not sensitive
to the parameter choice and is robust to outliers,
and produces excellent results on synthetic data and
real images in comparison to the state-of-the-art ap-
proaches.

We dealt with the one-to-one correspondence of
geometrically consistent features in this work, but
there are still many issues to be solved. Given two
sets of features, which may contain different numbers
of features, we hope that we can generalize this algo-
rithm to find the overall consistent correspondence
mapping (one-to-one or one-to-many). In addition,

since SIFT may not be stable when the deforma-
tions and lighting changes are large, how to build
a descriptor capturing more geometric information
would be an interesting topic for future work.
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