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Abstract:    Static analysis is an efficient approach for software assurance. It is indicated that its most effective usage is to perform 
analysis in an interactive way through the software development process, which has a high performance requirement. This paper 
concentrates on rule-based static analysis tools and proposes an optimized rule-checking algorithm. Our technique improves the 
performance of static analysis tools by filtering vulnerability rules in terms of characteristic objects before checking source files. 
Since a source file always contains vulnerabilities of a small part of rules rather than all, our approach may achieve better per-
formance. To investigate our technique’s feasibility and effectiveness, we implemented it in an open source static analysis tool 
called PMD and used it to conduct experiments. Experimental results show that our approach can obtain an average performance 
promotion of 28.7% compared with the original PMD. While our approach is effective and precise in detecting vulnerabilities, 
there is no side effect. 
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1  Introduction 
 

Static analysis is one of the most important 
techniques for software assurance. It can be used to 
find potential vulnerabilities as early as in the soft-
ware implementation phase by scanning application 
programs’ source code, byte code, binary code, or 

other artifacts rather than running the executable files. 
In recent years, many tools have been developed to 
automatically find bugs in program source code, us-
ing techniques such as syntactic pattern matching 
(Atkinson and Griswold, 2006), data flow analysis, 
type systems, model checking, and theorem proving 
(Rutar et al., 2004). As pointed out by Hovemeyer 
and Pugh (2004), integrating bug-finding tools into 
the development process is an important direction for 
future research. These tools not only are powerful but 
also possess the feature to be used in an interactive 
way through the software development process. For 
instance, Coverity and Klocwork (Emanuelsson and 
Nilsson, 2008) are two powerful software assurance 
tools, both of which have plug-in versions for Eclipse 
IDE. However, the plug-in versions are always more 
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lightweight tools, which just carry out shallow anal-
ysis due to high performance requirements. 

To deal with the performance issue, many tech-
niques have been proposed, such as the incremental 
analysis technique and distributed technology 
(Hovemeyer and Pugh, 2004). Incremental analysis 
automatically infers what parts of source code have to 
be reanalyzed after the code has been modified. This 
approach typically reduces the analysis time substan-
tially, but may, of course, imply a complete reanalysis 
in the worst case (Emanuelsson and Nilsson, 2008). 
Distributed technology is a general approach to cope 
with efficiency issues, but building a robust distrib-
uted system is a complicated and complex task. Apart 
from the above techniques, some other techniques 
exist. However, many of them have side effects on the 
precision of static analysis tools. 

In this paper, we aim to improve the perfor-
mance of static analysis tools without side effects on 
the detection capability and precision. Our approach 
is designed for rule-based static analysis tools. A 
rule-based static analysis tool detects vulnerabilities 
by checking program source code or other artifacts 
against vulnerability rules lexically or syntactically. 
We focus on this particular type of tool for several 
reasons: (1) This kind of tool is used extensively and 
many recently developed tools are of the kind, such as 
FindBugs (Hovemeyer and Pugh, 2004; 2007; 
Ayewah et al., 2007; Araújo et al., 2011), PMD 
(Helmick, 2007; Plosch et al., 2008; Araújo et al., 
2011), and CheckStyle (Loveland, 2009). (2) This 
kind of tool is able to detect many kinds of vulnera-
bilities only if the corresponding rules are included.  
(3) These tools have some unique characteristics 
which make it possible to improve their performance 
by novel approaches rather than the above traditional 
ones. 

Rule-based static analysis tools always work in a 
manner as follows. First, they translate program 
source code into an intermediate form, such as the 
abstract syntax tree (AST). Then, they detect vul-
nerabilities by checking the AST against vulnerability 
rules. Finally, they report vulnerabilities in different 
formats. The second phase is crucial for rule-based 
static analysis tools, which is always performed using 
a rule-checking algorithm. To date, most rule- 
checking algorithms have been designed based on the 
visitor pattern; that is, each AST node is matched with 

all vulnerability rules using a depth- or breadth-first 
tree-searching approach. The problem with this ap-
proach is that a large number of unnecessary rules are 
considered, which will result in much runtime over-
head. Based on this observation, we propose an op-
timized rule-checking algorithm. Given a source file f 
that is required to be validated, prior to checking the 
file against vulnerability rules, our algorithm first 
filters out unnecessary rules regarding f according to 
their characteristic objects (which is defined in later 
sections). We say a vulnerability rule r is unnecessary 
regarding a source file f, if it is impossible for f to 
contain violations of r. Our approach should be ef-
fective in improving the performance of static analy-
sis tools, because a source file always contains viola-
tions of a small part of rules rather than all. Addi-
tionally, since the abandoned rules are unnecessary, 
no side effects will be caused to the detection capa-
bility and precision. 

We filter vulnerability rules in terms of their 
characteristic objects. The characteristic objects of a 
vulnerability rule r is a set of objects that form a 
necessary condition for a source file containing vio-
lations of r. If a source file f contains violations of r, f 
should contain characteristic objects of r, but not vice 
versa. In this work, we use the classes included in a 
vulnerability rule to form the characteristic objects. In 
addition, a prefix notation (http://en.wikipedia.org/ 
wiki/Polish_notation) CObject expression is designed 
to describe characteristic objects and relationships 
among them. Relying on the evaluation results of 
CObject expressions, we filter vulnerability rules 
effectively. 

To investigate our technique’s feasibility and 
effectiveness, we implemented it in a prototype tool 
EPMD, which was developed from an open source 
static analysis tool called PMD, and used the tool to 
perform experiments. The experimental results show 
that our approach can improve the performance of 
static analysis tools effectively with an average pro-
motion of 28.7%. The earlier conference version of 
this paper appeared in Chen et al. (2014). 

The contributions of this paper include: (1) an 
optimized rule-checking algorithm that can improve 
the performance of rule-based static analysis tools;  
(2) a formal language that is used to describe char-
acteristic objects of rules; (3) a prototype tool EPMD 
that implements our technique; (4) an experiment that 
evaluates the effectiveness of our technique. 
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2  Background 

2.1  Static and dynamic analysis techniques 

Generally, there are two categories of automatic 
bug-finding approaches: program static analysis 
techniques and program dynamic analysis techniques. 

Program static analysis techniques (Rutar et al., 
2004; Hovemeyer and Pugh, 2004; 2007; Atkinson 
and Griswold, 2006; Ayewah et al., 2007; Helmick, 
2007; Emanuelsson and Nilsson, 2008; Plosch et al., 
2008; Araújo et al., 2011) take program source code, 
byte code, binary code, or other artifacts as input and 
find bugs using techniques such as syntactic pattern 
matching, data flow analysis, type systems, and 
model checking. Program dynamic analysis tech-
niques do not require program source code as input. 
They find bugs from program runtime information, 
which is collected by running application programs. 
The two kinds of techniques have their own ad-
vantages and disadvantages. Static analysis ap-
proaches can find bugs as early as in the software 
implementation phase. Additionally, they can be ef-
ficient and highly automated. Furthermore, they can 
cover all the program paths, and latent specifications 
provide some benefits such as inferring relationships 
among variables according to their naming conven-
tions (Engler et al., 2001). However, they should deal 
with some intractable problems: infeasible paths, 
complicated data structures, pointer aliasing, etc. 
Compared with static analysis techniques, dynamic 
analysis techniques (Bounimova et al., 2013; Haydar 
et al., 2013; Reinbacher et al., 2014) can be used 
more extensively, especially when source codes are 
unavailable. Additionally, since they analyze pro-
grams based on runtime information, a higher preci-
sion may be achieved. Apart from that, the tricky 
problems with static analysis can be avoided. However, 
dynamic analysis techniques have the following 
drawbacks: (1) Since they require running applications, 
 

 
 
 
 
 
 
 
 

they are less efficient than static analysis techniques. 
(2) Before running applications, a lot of configuration 
work should be done, which makes these approaches 
difficult to automate. (3) They always employ in-
strumentation techniques to extract runtime infor-
mation, which will incur much runtime overhead.  
(4) The effect of these approaches largely depends on 
the quality of input test cases. 

2.2  Rule-based static analysis tools 

In this work, we focus on static analysis tech-
niques. Although these techniques have some weak-
nesses, many academic and commercial static analy-
sis tools have still been developed and used exten-
sively in practice, such as FindBugs (Hovemeyer and 
Pugh, 2004; 2007; Ayewah et al., 2007; Araújo et al., 
2011), PMD (Helmick, 2007; Plosch et al., 2008; 
Araújo et al., 2011), CheckStyle (Loveland, 2009), 
PREFix (Rajamani, 2006; Ball, 2008), PREFast 
(Rajamani, 2006; Ball, 2008), and Metal (Rajamani, 
2006). Most of these tools work with a library of 
vulnerability rules. A vulnerability rule is a program 
specification (protocol) that the source code is ex-
pected to satisfy. Violations of vulnerability rules will 
cause program errors. Additionally, the number of 
vulnerability rules is an important indicator of the 
detection capability of a static analysis tool. In this 
work, we call the kind of static analysis tools with a 
library of vulnerability rules ‘rule-based static analy-
sis tools’. As illustrated in Fig. 1, rule-based static 
analysis tools typically consist of four parts: compiler 
front end, vulnerability rules library, rules checking 
engine, and vulnerability reporter. Compiler front end 
is responsible for translating program source code 
into an intermediate form, such as AST. The vulner-
ability rules library contains a set of vulnerability 
rules. The function of the vulnerability reporter is to 
output the discovered vulnerabilities in different 
formats. The rules checking engine finds bugs by  
 

 
 
 
 
 
 
 
 

Fig. 1  Composition of rule-based static analysis tools
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checking AST nodes against vulnerability rules. The 
rule-checking algorithm that it employs is a decisive 
factor of the performance of rule-based static analysis 
tools, especially when a large number of vulnerability 
rules are included. 

2.3  Rule-checking algorithm 

To find bugs, rule-based static analysis tools take 
program source files as input and translate them into 
ASTs using compiler front end. Then, the rules 
checking engine validates programs by checking 
ASTs against vulnerability rules. 

Fig. 2 gives a Java program, a compressed AST 
of which is shown in Fig. 3 with some trivial nodes 
neglected for simplicity. The rule-checking algorithm 
traverses the AST top down using a depth- or 
breadth-first tree search approach and matches AST 
nodes with vulnerability rules. If a node n matches a 
rule r, n and the surrounding nodes above and below n 
will be checked against r and violations will be re-
ported. The whole AST and all vulnerability rules 
should be processed, because an AST node may 
match multiple vulnerability rules. As we can see, 
although the program shown in Fig. 2 has only five 
code lines, its AST is far from trivial and has more 
than 20 nodes. If the vulnerability rules library is large, 
the rule-checking algorithm must be time consuming. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1  package pmd_test; 
2  
3  import java.text.SimpleDateFormat; 
4  
5  public class Pmd_Test { 
6      public static void main(String[] args) { 
7          SimpleDateFormat sdf = new  
                SimpleDateFormat("pattern"); 
8      } 
9  } 

Fig. 2  Example of a Java program 

2.4  Rule description languages 

Vulnerability rules are described using various 
kinds of rule description languages, such as PQL 
(Jarzabek, 1998; Martin et al., 2005), Datalog (Whaley 
et al., 2005; Hajiyev et al., 2006; Alpuente et al., 
2009; Zook et al., 2009), and XPath expression 
(Panchenko et al., 2010; 2011). Fig. 4 illustrates a 
vulnerability rule MDBAndSessionBeanNaming- 
Convention (MSBNC) described using an XPath 
expression, which is excerpted from the rule library of 
PMD. It is designed to check the EJB specification in 
which the name of any class implementing Mes-
sageDrivenBean or SessionBean interface should be 
suffixed by ‘Bean’. Based on rule description lan-
guages, we can compose various kinds of vulnerabil-
ity rules to extend the detection capability of rule- 
based static analysis tools. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3  A compressed abstract syntax tree (AST) of the Java program shown in Fig. 2: (a) AST; (b) information of 

AST nodes 

TAG TYPE VALUE
n0 CompilationUnit
n1 PackageDeclaration pmd_test
n2 ImportDeclaration java.text.SimpleDateFormat
n3 ClassOrInterfaceDeclaration Pmd_Test
n4 MethodDeclaration ResultType:void
n5 MethodDeclarator main
n6 FormalParameters Count:1
n7 FormalParameter args
n8 Type
n9 ClassOrInterfaceType string
n10 LocalVariableDeclaration
n11 Type
n12 ReferenceType
n13 ClassOrInterfaceType SimpleDateFormat
n14 VariableDeclarator
n15 VariableDeclaratorId sdf
n16 AllocationExpression
n17 ClassOrInterfaceType SimpleDateFormat
n18 Arguments Count:1
n19 Literal "pattern"
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<![CDATA[ 
// TypeDeclaration/ClassOrInterfaceDeclaration 
[ 
    ( 
        (./ImplementsList/ClassOrInterfaceType 
        [ends-with(@Image,'SessionBean')]) or 
        (./ImplementsList/ClassOrInterfaceType 
        
[ends-with(@Image,'MessageDrivenBean')]) 
    ) 
    and not (ends-with(@Image,'Bean')) 
]]]> 

Fig. 4  Vulnerability rule MSBNC excerpted from PMD 

 
 

3  Motivating example 
 

Although many static analysis tools (Loveland, 
2009; http://findbugs.sourceforge.net; http://pmd. 
sourceforge.net) have improved the rule-checking 
algorithm to some extent in implementation, the ef-
fect is not significant. In this section, we present an 
extremely bad case that our technique intends to deal 
with. 

Fig. 5 shows the XPath expression of a vulner-
ability rule SimpleDateFormatNeedsLocale (SDFNL). 
It is excerpted from the rule library of PMD. The rule 
is designed to detect a misuse of class SimpleDate-
Format from JDK. SimpleDateFormat is a concrete 
class for formatting and parsing dates in a locale- 
sensitive manner. One of its constructors has two 
parameters. The first one is a pattern describing the 
date and time format. The second one is the locale. A 
common error in instantiating objects from the class is 
shown at line 7 of the program illustrated in Fig. 2, 
where only the pattern is specified but the locale is 
neglected. 

 

<![CDATA[ 
// AllocationExpression 
[ClassOrInterface-
Type[@Image='SimpleDateFormat']] 
[Arguments[@ArgumentCount=1]] 
]]> 

Fig. 5  Vulnerability rule SDFNL excerpted from PMD 

 
Let us consider checking the program shown in 

Fig. 6 against the above rule SDFNL. By manual 
inspection, we can confirm that no violations of the 
rule exist in the program, because the program has 
never used class SimpleDateFormat. However, the 
rule-checking algorithm will also traverse the whole 
AST of the program and match the AST nodes with 

all vulnerability rules until no match is found. Virtu-
ally, this situation is ubiquitous in static analysis and 
results in enormous time overhead. To mitigate the 
problem, we propose an optimized rule-checking 
algorithm, which can deal with the situation effec-
tively. Details of our technique will be discussed in 
Section 4. 

 
1  package pmd_test; 
2   
3  import java.util.Collection; 
4  import java.util.ArrayList; 
5   
6  public class Pmd_Test { 
7      public static void main(String[] args) { 
8          Collection c = new ArrayList(); 
9          Integer obj = new Integer(1); 
10        c.add(obj); 
11 
12        Integer[] a = (Integer [])c.toArray(); 
13    } 
14  }

Fig. 6  Example of Java program 

 

 
4  Our technique 

 
In this section, we present our technique of 

checking source files against vulnerability rules. Our 
technique can handle application programs written in 
most of mainstream programming languages (e.g., 
Java, C/C++, and C#). In this section, we take Java 
programs as an example to demonstrate its working 
principle. We first provide an intuitive description of 
our technique and then discuss its main characteristics 
in detail. 

4.1  General approach 

The rule-checking algorithm takes ASTs and 
vulnerability rules as input. To find bugs in a source 
file, it traverses the AST translated from the source 
file top down using a depth- or breadth-first 
tree-searching approach. Each AST node is matched 
with all vulnerability rules. When a match (n, r) is 
found, where n and r are AST node and vulnerability 
rule, respectively, node n and its surrounding nodes 
will be checked against rule r, and violations will be 
reported. The above rule-checking algorithm can be 
reduced to a general searching problem: let N and R 
be the sets of AST nodes and vulnerability rules, 
respectively. The rule-checking algorithm aims at 
finding a match (n, r) from the Cartesian product N×R. 
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Generally, the time overhead of the rule-checking 
algorithm is proportional to |N×R|, where ‘|·|’ denotes 
the cardinality of a set. Since 

 
|N×R|=|N|×|R|, 

 
we can improve the performance of rule-checking 
algorithms by reducing |N| or |R|, that is, cutting down 
the number of AST nodes or vulnerability rules used 
for matching. In this work, we optimize the rule- 
checking algorithm by filtering vulnerability rules. 

We filter vulnerability rules according to their 
characteristic objects. The characteristic objects of a 
vulnerability rule r is a set of objects that form a 
necessary condition for a source file containing vio-
lations of r. In other words, if a source file f contains 
violations of r, f should contain characteristic objects 
of r, but not vice versa. In this work, we use the 
classes included in a vulnerability rule to form the 
characteristic objects. Our technique is based on the 
observation that a vulnerability rule is always dedi-
cated to some particular classes. Take the rule 
MSBNC illustrated in Fig. 4 as an example; it aims to 
detect violations concerning class MessageDriv-
enBean and SessionBean. We can conclude that a 
source file must be free of violations of the rule if 
neither of the classes has been used in the file; that is, 
the classes form a necessary condition of rule 
MSBNC. 

Characteristic objects may have various kinds of 
logical relationships. Consider the vulnerability rule 
shown in Fig. 4. A disjunction relationship exists 
between its characteristic objects MessageDriv-
enBean and SessionBean. To deal with the situation, 
we describe characteristic objects using a prefix no-
tation CObject expression, which is able to express 
complicated logical relationships. Given a source file 
f and a set of vulnerability rules R, our rule-checking 
algorithm validates f against R based on the following 
approach: for each rule rR, CObj(r) denotes the 
CObject expression of r. We evaluate CObj(r) against 
f and achieve a Boolean result p. If p equals true, we 
add r to a set of vulnerability rules R′; otherwise, we 
abandon rule r. Finally, we validate the source file f 
against rule set R′ rather than R. The outline of our 
rule-checking algorithm is presented in Algorithm 1, 
where evaluate(CObj(r), f) denotes the evaluation of 
CObj(r) against file f. 

Algorithm 1    Our rule-checking algorithm 

Input: f, a source file; R, the library of vulnerability rules
Methods: 
1   for each rule r in R do 
2        P←evaluate(CObj(r), f) 
3        if P equals true then 
4            Add r to a set of vulnerability rules R′ 
5        end if 
6   end for 
7   Validate f against rule set R′ 

 
Note that the evaluation of CObj(r) against 

source file f may be time consuming especially when 
the file is large. To address the problem, we ap-
proximately evaluate CObj(r) against f by evalu-
ate(CObj(r), Pf), where Pf is the set of package 
statements at the beginning of file f. The package 
statements are used to import a package of objects 
into a source file, supported by most of mainstream 
languages, such as the import statements in Java, 
include statements in C/C++, and using statements in 
C#. Since the package statements are always at the 
beginning of a source file, they can be extracted 
conveniently. Additionally, the number of package 
statements of a source file is much smaller than that of 
the code lines in the source file. Consequently, our 
approximate evaluation of CObj(r) against Pf should 
be more efficient than that against f. 

4.2  CObject expression 

To describe characteristic objects as well as re-
lationships among them, we propose a prefix notation 
CObject expression. 

A CObject expression is composed of charac-
teristic objects, parameters, commas, parentheses, and 
operator symbols. The recursive definition of COb-
ject expression is as follows. Given a characteristic 
object λ and two CObject expressions R and S, we 
have the following CObject expressions: 

exist(λ, F) denotes the existence operation that 
determines whether the characteristic object λ has 
been used in a source file F. The source file F is a 
parameter of the exist operator. When evaluating 
CObject expressions, we will apply a source file to the 
exist operator; that is, we substitute F with an argu-
ment. For the convenience of notation, we always 
omit parameter F in CObject expressions. 

neg(R) denotes the negation operation that re-
verses the meaning of a Boolean operand. 
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and(R, S) denotes the conjunction operation that 
performs a logical conjunction on two Boolean  
operands. 

or(R, S) denotes the disjunction operation that 
performs a logical disjunction on two Boolean  
operands. 

The CObject expression is compact and easy to 
use. Additionally, in our formal language, operators 
can be nested within each other. This makes our 
language powerful enough to express complex vul-
nerability rules. For instance, the characteristic ob-
jects of the vulnerability rule MSBNC shown in Fig. 4 
can be expressed using a CObject expression as  
follows: 

 

or(exist(SessionBean), exist(MessageDrivenBean)), 

 
which means that violations of rule MSBNC may 
exist in a source file f, if either of the classes Mes-
sageDrivenBean and SessionBean has been used in f. 
Note that we omit the prefix javax.ejb of the fully 
qualified names javax.ejb.MessageDriven Bean and 
javax.ejb.SessionBean for notational convenience. 

Given a vulnerability rule r, the evaluation result 
of CObj(r) against a source file f is a Boolean value p. 
If p equals true, it indicates that violations of r may 
exist in f; otherwise, f should be free of violations of 
rule r. Based on the evaluation results of CObject 
expressions, we can filter the vulnerability rules  
effectively. 

To examine the expressing capability of CObject 
expressions, we inspect all rules of PMD, and no 
exceptions are found. The CObject expression may be 
limited for some unknown rules (e.g., rules whose 
characteristic objects have an if-then relationship), 
but we believe it is applicable in most of cases. For 
further understanding of the CObject expression, we 
present its EBNF grammar specification in Fig. 7. 

4.3  Evaluating CObject expressions 

In this subsection, we introduce our technique of 
evaluating CObject expressions. 

Let r be a vulnerability rule. Before evaluating 
CObj(r) against a source file f, we should apply f to 
CObj(r); that is, we have the following transfor-
mation: 

 

evaluate(CObj(r), f) evaluate(CObj(r)(f)). 

CObj(r)(f) is also a prefix notation, which is achieved 
by substituting the parameter of exist operators in 
CObj(r) with argument f. Taking the CObject ex-
pression of the vulnerability rule MSBNC shown in 
Section 4.2 as an example, we have the following 
results: 
 

CObj(MSBNC)(f)  or(exist(SessionBean, f),  
exist(MessageDrivenBean, f)). 

 

startexpr : expr; 

expr : binexpr | unaryexpr | atomexpr; 
binexpr 

:
BINOP LPAREN expr COMMA expr 

RPAREN; 
unaryexpr : UNARYOP LPAREN expr RPAREN; 
atomexpr 

:
EXISTOP LPAREN object COMMA 'F' 

RPAREN; 
object : (obname DOT)* obname; 
obname 

:
(LETTER | UNDERLINE)(LETTER | 

NUMBER | UNDERLINE)*; 
BINOP : 'and' | 'or'; 

UNARYOP : 'neg'; 

EXISTOP : 'exist'; 

DOT : '.'; 

LETTER : 'a'...'z' | 'A'...'Z'; 

NUMBER : '0'...'9'; 

UNDERLINE : '_'; 

LPAREN : '('; 

RPAREN : ')'; 

COMMA : ','; 

Fig. 7  EBNF grammar specification of the CObject  
expression 

 
After that, we evaluate CObj(r)(f) using the 

classic stack-based approach (http://en.wikipedia.org/ 
wiki/Polish_notation), which is dedicated to prefix 
notations. The method scans CObj(r)(f) from right to 
left. For each encountered token η, the following 
actions are conducted according to the token type: 

1. If η is an operand, push it into a stack T. 
2. If η is an operator, perform corresponding 

operations on operands popped from the top of T and 
push the results back into T. 

3. If η is a separator, such as commas and pa-
rentheses, discard it. 

Once all the symbols have been processed, a 
Boolean value will be left in T, which is the evalua-
tion result. The stack-based approach is efficient and 
only a stack with the maximum length of n is em-
ployed, where n is the length of CObj(r)(f). Both the 
time and space complexities of the stack-based ap-
proach are O(n). 
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4.4  Existence operation 

Note that a CObject expression subsumes four 
kinds of operators: neg, and, or, and exist. The former 
three are logical operators. As to the last one, a 
brute-force approach to carry out the operation is as 
follows: given a characteristic object λ and a source 
file f, we evaluate exist(λ, f) by searching the AST of f 
using a depth- or breadth-first tree-searching ap-
proach. Each AST node is matched with λ. A result of 
Boolean value true is achieved if any match is found. 
Otherwise, we have a result of false. 

Obviously, the above approach may cause sig-
nificant time overhead if the source file f is large. To 
mitigate the problem, we approximately evaluate 
exist(λ, f) in terms of Pf rather than f, where Pf is the 
set of package statements at the beginning of f. In 
other words, we have the following transformation: 
 

evaluate(exist(λ, f)) evaluate(exist(λ, Pf)). 

 
Our method is based on a common programming 

practice: to use a class in a source file, programmers 
will first import it using package statements at the 
beginning of the source file. Taking the Java class 
SessionBean as an example, it may be imported using 
one of the following statements: (1) import javax.ejb. 
SessionBean; (2) import javax.ejb.*. 

The first statement imports exactly one class into 
a source file, i.e., SessionBean. The second statement 
imports classes in the package javax.ejb on demand. 
The package statement is supported by many pro-
gramming languages, such as the import statement in 
Java programs, include statement in C/C++ programs, 
and using statement in C# programs. Since package 
statements are at the beginning of source files, they 
can be recognized conveniently. On the other hand, 
the number of package statements in a source file is 
trivial compared to that of the code lines. Conse-
quently, our technique should be efficient. 

Note that some package statements may not be 
included in ASTs after a source file is compiled, such 
as the preprocessor statement include in C/C++ pro-
grams. In this situation, our rule-checking algorithm 
should take ASTs and package statements as input. 

Also, note that our technique of evaluating the 
existence operation may not work properly in some 
special cases. Taking the import statement in Java 

programs as an example, the programming practice 
that a class should be imported into a source file be-
fore its usage may be violated in the following situa-
tions: (1) Classes within package java.lang can be 
used in a source file without import statements. (2) 
Redundant import statements may exist in source files. 
(3) We cannot ascertain the existence of a specific 
object according to import-on-demand statements 
(e.g., import javax.ejb.*). (4) We can use an object via 
its fully qualified name without import statements. To 
deal with case 1, we can evaluate the existence oper-
ation against the whole source file f when the char-
acteristic object λ belongs to the package java.lang. 
As to cases 2 and 3, our approximate evaluation 
method will give a wrong result true, even if a char-
acteristic object has not been used in a source file. 
Finally, the failure to filter out unnecessary rules may 
result. The last case is worse, because it may incur 
false negatives. In practice, we should avoid this sit-
uation when applying our technique. Although the 
above cases may discount the usability of our tech-
nique, they are rare in programs coded with good 
programming practices (some program analysis tools 
even take redundant import statements as errors). 
Therefore, our technique is applicable in most cases. 

The above discussions are dedicated to Java 
programs. As to other programming languages, some 
limitations may not exist. For example, the above 
cases 1 and 4 do not exist in C/C++ programs, which 
makes our technique more useful. 

4.5  An evaluation example 

As an example, we evaluate the CObject ex-
pression of rule MSBNC shown in Fig. 4 against an 
input program ρ illustrated in Fig. 6. For simplicity, 
we omit the prefix javax.ejb of the fully qualified 
names javax.ejb.MessageDrivenBean and javax.ejb. 
SessionBean. The CObject expression after applying 
program ρ is as follows: 

 
or(exist(SessionBean, ρ), exist(MessageDrivenBean, ρ)). 

 
The evaluation process is presented in Table 1. 

As we can see, the evaluation result is Boolean value 
false, which is consistent with our manual inspection. 
According to the evaluation results, we have the 
conclusion that it is unnecessary to check program ρ 
against rule MSBNC. 
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5  Experiments 
 
To evaluate our technique, we implemented it in 

a prototype tool called EPMD, which was developed 
from the open source static analysis tool PMD. After 
that, we evaluated the effectiveness of our technique 
through a comparison test based on EPMD. In this 
section, we first introduce our prototype tool EPMD. 
Then, we present the subject programs used in our 
experiment. Next, we elaborate the comparison test 
based on EPMD and present experimental results. 
Finally, we discuss our technique’s runtime overhead 
and limitations. 

5.1  Prototype tool EPMD 

We implemented our technique in an open 
source static analysis tool PMD and called it the ex-
tended version (EPMD). PMD is designed to find 
mistakes and smells in Java programs, such as unused 
variables, empty catch blocks, and unnecessary object 
creation (http://pmd.sourceforge.net). It supports two 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

kinds of vulnerability rules: Java classes and XPath 
expressions. Our primary extensions to PMD are: (1) 
implementation of a module that evaluates CObject 
expressions; (2) addition of CObject expressions to 
the vulnerability rules of PMD. 

To evaluate CObject expressions, we con-
structed a lexer and parser, which are used to recog-
nize tokens and validate the syntax of CObject ex-
pressions, respectively. The lexer and parser were 
constructed with the help of ANTLR (Schaps, 1999; 
Bovet and Parr, 2008; Liu et al., 2008; Parr and Fisher, 
2011), which is a language tool. After that, EPMD 
evaluates CObject expressions using the stack-based 
approach elaborated in Section 4. 

We added CObject expressions to the vulnera-
bility rules of PMD by inserting a property COb-
jectExpr to their XML descriptions, which is shown 
below: 

<property name="CObjectExpr" type="String" 
description="rule’s CObject expression" 
value="exist(java.ejb.EJBHome)"/> 

Table 1  Evaluation example 

Step Token (η) Stack* (T) Action 

1 )  Discard 

2 )  Discard 

3 ρ ρ Push ρ into stack T 

4 , ρ Discard 

5 MessageDrivenBean ρ, MessageDrivenBean Push MessageDrivenBean into T 

6 ( ρ, MessageDrivenBean Discard 

7 exist false Pop operands MessageDrivenBean and ρ 
Evaluate expression exist(MessageDrivenBean, ρ)→false 
Push evaluation result false into stack T 

8 , false Discard 

9 ) false Discard 

10 ρ false, ρ Push ρ into stack T 

11 , false, ρ Discard 

12 SessionBean false, ρ, SessionBean Push SessionBean into stack T 

13 ( false, ρ, SessionBean Discard 

14 exist false, false Pop operands SessionBean and ρ 
Evaluate expression exist(SessionBean, ρ)→false 
Push evaluation result false into stack T 

15 ( false, false Discard 

16 or false Pop operands false and false 
Evaluate expression falsefalse→false 
Push evaluation result false into stack T 

17   Pop and output evaluation result false 
* The left and right ends are the bottom and top of stack T, respectively 
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Note that not all rules have CObject expressions 
(which will be discussed in Section 5.5). Our tech-
nique will not work for rules without the CObjectExpr 
property. 

5.2  Subjects 

We adopted six large-scale open source appli-
cations in our experiments (Table 2). These applica-
tions were selected based on the following consider-
ations: (1) applications with available source code, (2) 
applications of a large code base, and (3) applications 
coming from various application domains. The sec-
ond requirement is important for our evaluation, be-
cause the performance improvement gained by the 
removal of one unnecessary rule is trivial. To achieve 
accurate and salient results, we should perform ex-
periments on large-scale applications, where a large 
number of unnecessary rules may be pruned away. 
Furthermore, to avoid biases, we selected subject 
programs from various application domains. Addi-
tionally, they were of different sizes spanning from 73 
kilo lines of code (KLoC) to 2675 KLoC (we counted 
code lines only; comment lines and blank lines were 
excluded).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3  Effectiveness of our technique 

To investigate the effectiveness of our technique, 
we analyzed subject applications using EPMD with 
rule sets RS and RS*, respectively. Rule sets RS and 

RS* comprise 45 vulnerability rules excerpted from 
PMD (part of vulnerability rules can be found in 
Appendix). These two rule sets are nearly the same, 
except that rules in RS* have an additional property 
CObjectExpr. Since our technique will not work for 
rules without the property CObjectExpr, we can in-
vestigate the effectiveness of our technique through a 
comparison test with rule sets RS and RS*. To 
achieve accurate results, we ran EPMD five times for 
each group of subjects and rule sets. The platform 
used in our experiment is an Intel® CoreTM i3-2100 
3.1 GHz machine with 3 GB of memory running 
Windows XP. Table 3 presents the average execution 
time of EPMD running with rule sets RS and RS*. 

We can observe from Table 3 that the execution 
time of EPMD with rule set RS* is generally less than 
that with RS for all subject applications. The least 
ratio of reduction is 15.6% when testing on Eclipse. 
The ultimate ratio is 45.3% with PMD. We have an 
average time reduction ratio of 28.7%. A side effect 
that may be caused by our technique is the increase of 
false positives and false negatives. We compared the 
bug reports generated by EPMD in each group and 
found that the bugs reported by EPMD running with 
rule sets RS and RS* were exactly the same. This 
result suggests that the fully qualified names of clas-
ses that may cause false negatives to our technique are 
rarely used in Java programs. 

In our experiment, we validated six real-world 
programs against 45 vulnerability rules. The experi-
mental results strongly suggest that our technique is 
effective in improving the performance of static 
analysis tools without side effects. Moreover, better 
results may be achieved if more vulnerability rules are 
considered, which we will further investigate in the 
future. 

5.4  Runtime overhead 

The primary runtime overhead of our technique 
is introduced in the phase of filtering rules (Section 4). 
To filter rules, we evaluated CObject expressions 
based on the approach applied to prefix notations. 
Different actions were carried out according to the 
type of operator, among which the existence operation 
is crucial. Let L and M be the counts of tokens of a 
CObject expression and package statements of a 
source file, respectively. Then the time complexity of 
the stack-based evaluation approach is O(L). The 

Table 2  Subject programs used in our experiments 

Subject program Description 
Number 
of source 

files 
KLoC

Eclipse 4.2 Software  
development 
environment 

20 602 2675 

ElasticSearch 
v0.19.9 

Distributed 
search engine 

2581 230 

PMD 5.0 Source code 
analyzer 

945 73 

Tomcat 6.0.35 Web server  
and servlet 
container 

1157 172 

SQuirreL SQL 
Client 3.4.0 

Java SQL client 2890 253 

JBoss 6.0.0.Final Application 
server 

6397 494 

KLoC: kilo lines of code 
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existence operation has a time complexity of O(M) 
because it consists mainly of a loop iterating through 
all package statements. Therefore, the time complex-
ity of filtering rules is O(L×M). On the other hand, it 
is quite reasonable to assume L to be a constant be-
cause, in general, the CObject expressions of vul-
nerability rules are of limited length. Additionally, it 
is well known that the number of package statements 
is trivial relative to the number of lines of code in a 
source file. Thus, we believe that the runtime over-
head incurred by our technique is within an accepta-
ble range. 

5.5  Limitations 

Although our technique is effective in improving 
the performance of static analysis tools, it has the 
following limitations: 

1. As discussed in Section 4, our approximate 
evaluation approach of the existence operation based 
on package statements may not work properly for 
programs coded with poor programming practices. 
The requirement for high-quality programs may limit 
the application scope of our technique. 

2. In this work, we compose the CObject ex-
pressions of vulnerability rules manually. An auto-
matic approach to derive the CObject expressions 
from the description of vulnerability rules may make 
our technique more useful. 

3. There exist some rules that have no charac-
teristic objects. Consider the rule ForLoopShould- 
BeWhileLoop illustrated in Fig. 8. It is designed to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

detect for loops that should be simplified to while 
loops. As we can see, this rule does not possess any 
characteristic objects but for a keyword for. Our 
technique is unable to deal with this situation. 

 
<![CDATA[ 
// ForStatement 
[count(*) > 1] 
[not(ForInit)] 
[not(ForUpdate)] 
[not(Type and Expression and Statement)]
]]>

Fig. 8  Rule ForLoopShouldBeWhileLoop excerpted from 
PMD 

 
Although our technique has some limitations, as 

above, it is applicable in most of circumstances. The 
evaluation results showed that our technique is effec-
tive in improving the performance of static analysis 
tools. 

 
 

6  Related work 
 
Though some state-of-the-art static analysis 

tools are efficient enough to satisfy most applications, 
performance is an eternal topic, and it is still a key 
challenge to integrate bug-finding tools into the de-
velopment process. To deal with the performance 
issue, researchers have proposed various kinds of 
techniques. In this section, we focus on several typical 
techniques. 

Table 3  Results of our comparison test with EPMD being run five times for each group of subjects and rule sets 

Subject program 
Rule 
set 

Execution time (s) 
AVG (s) RDT (s) 

RDT 
ratio 1 2 3 4 5 

Eclipse RS 469.8 437.4 444.0 438.9 467.1 451.4 
70.4 15.6%

RS* 380.3 380.2 380.3 382.9 381.6 381.1 
ElasticSearch RS 40.7 36.9 37.1 36.7 39.7 38.2 

6.6 17.3%
RS* 31.5 31.7 31.7 31.6 31.5 31.6 

PMD RS 9.5 6.6 6.7 6.6 8.6 7.6 
3.4 45.3%

RS* 4.1 4.2 4.1 4.2 4.2 4.2 
Tomcat RS 15.5 14.8 14.6 14.6 15.2 14.9 

5.4 36.4%
RS* 9.6 9.5 9.3 9.6 9.5 9.5 

SQuirreL SQL 
Client 

RS 45.2 31.2 31.4 48.1 31.1 37.4 
11.1 29.6%

RS* 26.4 26.5 26.2 25.8 26.8 26.3 
Jboss RS 57.8 49.0 49.2 66.3 49.6 54.4 

15.4 28.2%
RS* 38.8 39.2 39.0 39.0 39.1 39.0 

AVG: average execution time of EMPD; RDT: average reduction of execution time 
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Incremental analysis (Emanuelsson and Nilsson, 
2008) can automatically infer which parts of source 
code have to be reanalyzed after the code has been 
modified. This approach typically reduces the analy-
sis time substantially, especially for a frequent inter-
active use of static analysis tools in the development 
process. However, it is difficult to accurately identify 
the associated code when programs have been 
changed; in the worst case, a complete reanalysis will 
be performed. 

A commonly used approach to improve the 
performance of static analysis tools is to perform a 
less deep analysis, such as GREP (Atkinson and 
Griswold, 2006; Emanuelsson and Nilsson, 2008). It 
performs lexical analysis only. However, these tools 
always have a high rate of false positives, which 
discounts their usability. 

The technique used by PMD is similar to our 
approach, which improves the rule-checking algo-
rithm by filtering rules leveraging a data structure 
Rule Chain. A Rule Chain divides all AST nodes into 
different categories, where nodes in each category 
have the same programming language and node type. 
With the help of the Rule Chain, PMD checks AST 
nodes against vulnerability rules with the same pro-
gramming language and type rather than all. This 
approach is effective in improving the efficiency of 
rule-checking algorithms. However, it cannot exclude 
all unnecessary vulnerability rules because such rules 
may have the same programming language and type 
as an AST node. 

Many static analysis tools, such as FindBugs 
(http://findbugs.sourceforge.net) and CheckStyle 
(Loveland, 2009), provide the functionality for users 
to select vulnerability rules before checking a pro-
gram. This approach is most similar to our technique. 
Both of them aim to improve performance by filtering 
rules. However, our technique can filter rules  
automatically. 

 
 

7  Conclusions and future work 
 
Performance is a key challenge of integrating 

bug-finding tools into a development process. In this 
paper, we proposed an optimized rule-checking al-
gorithm that can improve the performance of static 
analysis tools without side effects on their detection 

capability and precision. Our rule-checking algorithm 
filters unnecessary vulnerability rules automatically 
by evaluating their CObject expressions. Although 
we discussed our technique based on Java programs 
and vulnerability rules described using XPath ex-
pressions, our method is a general approach that is 
applicable for most of mainstream programming 
languages and other types of vulnerability rules. To 
evaluate the effectiveness of our technique, we im-
plemented it in an open source static analysis tool 
PMD and called it the extended version (EPMD). 
Relying on EPMD, we performed a comparison test 
and found that our technique can achieve an average 
performance promotion of 28.7%. Additionally, few 
false positives and false negatives were caused. 

As discussed in Section 5, our technique has 
some limitations, which may discount its usability. In 
the future, we will mitigate these problems and make 
our technique more useful. For example, we may 
implement our technique for other programming 
languages, where some limitations regarding Java 
programs may not exist. Additionally, we may further 
promote the ease of use of our technique by deriving 
CObject expressions from descriptions of vulnerabil-
ity rules automatically. This task can be performed by 
leveraging a syntax transducer, which parses XPath 
expressions of vulnerability rules and translates them 
to CObject expressions. 
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Appendix: Part of vulnerability rules used in 
our experiments 

 
This appendix presents part of vulnerability rules 

used in our experiments. All vulnerability rules are 
excerpted from PMD. The vulnerability rules are 
listed in Table A1. As seen, we present the names of 
vulnerability rules (Name), XML files that a vulner-
ability rule belongs to (File), and CObject expressions 
of vulnerability rules (CObject expression) in the 
table. 
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Table A1  Some vulnerability rules used in our experiments 

Name File CObject expression 

SimpleDateFormatNeedsLocale design.xml exist(java.text.SimpleDateFormat) 

UnsynchronizedStaticDateFormatter design.xml exist(java.text.SimpleDateFormat) 

RemoteSessionInterfaceNamingConvention j2ee.xml exist(javax.ejb.EJBHome)  

LocalInterfaceSessionNamingConvention j2ee.xml exist(javax.ejb.EJBLocalObject)  

LocalHomeNamingConvention j2ee.xml exist(javax.ejb.EJBLocalHome)  

RemoteInterfaceNamingConvention j2ee.xml exist(javax.ejb.EJBObject)  

ProperLogger logging-jakarta-commons.xml exist(org.apache.commons.logging.Log) 

MoreThanOneLogger logging-java.xml exist(java.util.logging.Logger) 

LoggerIsNotStaticFinal logging-java.xml exist(java.util.logging.Logger) 

ReplaceVectorWithList migrating.xml exist(java.util.Vector) 

ReplaceHashtableWithMap migrating.xml exist(java.util.Hashtable) 

ReplaceEnumerationWithIterator migrating.xml exist(java.util.Enumeration) 

UseArrayListInsteadOfVector optimizations.xml exist(java.util.Vector) 

UseCollectionIsEmpty design.xml exist(java.util) 

MDBAndSessionBeanNamingConvention j2ee.xml or(exist(javax.ejb.SessionBean),  
exist(javax.ejb.MessageDrivenBean)) 

StaticEJBFieldShouldBeFinal j2ee.xml or(or(or(exist(javax.ejb.SessionBean),  
exist(javax.ejb.EJBHome)), 
or(exist(javax.ejb.EJBLocalObject),  
exist(javax.ejb.EJBLocalHome))),  
exist(javax.ejb.EJBObject)) 

JUnitStaticSuite junit.xml or(exist(junit.framework.TestCase),  
exist(org.junit.Test)) 

File: the XML file that contains the XPath expressions of vulnerability rules 


