
Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 332

Efficient vulnerability detection based on an optimized

rule-checking static analysis technique*

Deng CHEN†‡1, Yan-duo ZHANG1, Wei WEI2, Shi-xun WANG3,

Ru-bing HUANG4, Xiao-lin LI1, Bin-bin QU5, Sheng JIANG5
(1Hubei Provincial Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430205, China)

(2Industrial Robot Engineering Center, Wuhan Institute of Technology, Wuhan 430205, China)

(3School of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China)

(4School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China)

(5School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
†E-mail: chendeng8899@hust.edu.cn

Received Nov. 1, 2015; Revision accepted Mar. 20, 2016; Crosschecked Feb. 28, 2017

Abstract: Static analysis is an efficient approach for software assurance. It is indicated that its most effective usage is to perform
analysis in an interactive way through the software development process, which has a high performance requirement. This paper
concentrates on rule-based static analysis tools and proposes an optimized rule-checking algorithm. Our technique improves the
performance of static analysis tools by filtering vulnerability rules in terms of characteristic objects before checking source files.
Since a source file always contains vulnerabilities of a small part of rules rather than all, our approach may achieve better per-
formance. To investigate our technique’s feasibility and effectiveness, we implemented it in an open source static analysis tool
called PMD and used it to conduct experiments. Experimental results show that our approach can obtain an average performance
promotion of 28.7% compared with the original PMD. While our approach is effective and precise in detecting vulnerabilities,
there is no side effect.

Keywords: Rule-based static analysis; Software quality; Software validation; Performance improvement
http://dx.doi.org/10.1631/FITEE.1500379 CLC number: TP311

1 Introduction

Static analysis is one of the most important
techniques for software assurance. It can be used to
find potential vulnerabilities as early as in the soft-
ware implementation phase by scanning application
programs’ source code, byte code, binary code, or

other artifacts rather than running the executable files.
In recent years, many tools have been developed to
automatically find bugs in program source code, us-
ing techniques such as syntactic pattern matching
(Atkinson and Griswold, 2006), data flow analysis,
type systems, model checking, and theorem proving
(Rutar et al., 2004). As pointed out by Hovemeyer
and Pugh (2004), integrating bug-finding tools into
the development process is an important direction for
future research. These tools not only are powerful but
also possess the feature to be used in an interactive
way through the software development process. For
instance, Coverity and Klocwork (Emanuelsson and
Nilsson, 2008) are two powerful software assurance
tools, both of which have plug-in versions for Eclipse
IDE. However, the plug-in versions are always more

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National High-Tech R&D Program (863) of
China (No. 2013AA12A202), the National Natural Science Founda-
tion of China (Nos. 61172173, 41501505, and 61502205), the Natural
Science Foundation of Hubei Province, China (No. 2014CFB779), and
the Youths Science Foundation of Wuhan Institute of Technology
(No. K201546)

 ORCID: Deng CHEN, http://orcid.org/0000-0001-6359-801X
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2017

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 333

lightweight tools, which just carry out shallow anal-
ysis due to high performance requirements.

To deal with the performance issue, many tech-
niques have been proposed, such as the incremental
analysis technique and distributed technology
(Hovemeyer and Pugh, 2004). Incremental analysis
automatically infers what parts of source code have to
be reanalyzed after the code has been modified. This
approach typically reduces the analysis time substan-
tially, but may, of course, imply a complete reanalysis
in the worst case (Emanuelsson and Nilsson, 2008).
Distributed technology is a general approach to cope
with efficiency issues, but building a robust distrib-
uted system is a complicated and complex task. Apart
from the above techniques, some other techniques
exist. However, many of them have side effects on the
precision of static analysis tools.

In this paper, we aim to improve the perfor-
mance of static analysis tools without side effects on
the detection capability and precision. Our approach
is designed for rule-based static analysis tools. A
rule-based static analysis tool detects vulnerabilities
by checking program source code or other artifacts
against vulnerability rules lexically or syntactically.
We focus on this particular type of tool for several
reasons: (1) This kind of tool is used extensively and
many recently developed tools are of the kind, such as
FindBugs (Hovemeyer and Pugh, 2004; 2007;
Ayewah et al., 2007; Araújo et al., 2011), PMD
(Helmick, 2007; Plosch et al., 2008; Araújo et al.,
2011), and CheckStyle (Loveland, 2009). (2) This
kind of tool is able to detect many kinds of vulnera-
bilities only if the corresponding rules are included.
(3) These tools have some unique characteristics
which make it possible to improve their performance
by novel approaches rather than the above traditional
ones.

Rule-based static analysis tools always work in a
manner as follows. First, they translate program
source code into an intermediate form, such as the
abstract syntax tree (AST). Then, they detect vul-
nerabilities by checking the AST against vulnerability
rules. Finally, they report vulnerabilities in different
formats. The second phase is crucial for rule-based
static analysis tools, which is always performed using
a rule-checking algorithm. To date, most rule-
checking algorithms have been designed based on the
visitor pattern; that is, each AST node is matched with

all vulnerability rules using a depth- or breadth-first
tree-searching approach. The problem with this ap-
proach is that a large number of unnecessary rules are
considered, which will result in much runtime over-
head. Based on this observation, we propose an op-
timized rule-checking algorithm. Given a source file f
that is required to be validated, prior to checking the
file against vulnerability rules, our algorithm first
filters out unnecessary rules regarding f according to
their characteristic objects (which is defined in later
sections). We say a vulnerability rule r is unnecessary
regarding a source file f, if it is impossible for f to
contain violations of r. Our approach should be ef-
fective in improving the performance of static analy-
sis tools, because a source file always contains viola-
tions of a small part of rules rather than all. Addi-
tionally, since the abandoned rules are unnecessary,
no side effects will be caused to the detection capa-
bility and precision.

We filter vulnerability rules in terms of their
characteristic objects. The characteristic objects of a
vulnerability rule r is a set of objects that form a
necessary condition for a source file containing vio-
lations of r. If a source file f contains violations of r, f
should contain characteristic objects of r, but not vice
versa. In this work, we use the classes included in a
vulnerability rule to form the characteristic objects. In
addition, a prefix notation (http://en.wikipedia.org/
wiki/Polish_notation) CObject expression is designed
to describe characteristic objects and relationships
among them. Relying on the evaluation results of
CObject expressions, we filter vulnerability rules
effectively.

To investigate our technique’s feasibility and
effectiveness, we implemented it in a prototype tool
EPMD, which was developed from an open source
static analysis tool called PMD, and used the tool to
perform experiments. The experimental results show
that our approach can improve the performance of
static analysis tools effectively with an average pro-
motion of 28.7%. The earlier conference version of
this paper appeared in Chen et al. (2014).

The contributions of this paper include: (1) an
optimized rule-checking algorithm that can improve
the performance of rule-based static analysis tools;
(2) a formal language that is used to describe char-
acteristic objects of rules; (3) a prototype tool EPMD
that implements our technique; (4) an experiment that
evaluates the effectiveness of our technique.

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 334

2 Background

2.1 Static and dynamic analysis techniques

Generally, there are two categories of automatic
bug-finding approaches: program static analysis
techniques and program dynamic analysis techniques.

Program static analysis techniques (Rutar et al.,
2004; Hovemeyer and Pugh, 2004; 2007; Atkinson
and Griswold, 2006; Ayewah et al., 2007; Helmick,
2007; Emanuelsson and Nilsson, 2008; Plosch et al.,
2008; Araújo et al., 2011) take program source code,
byte code, binary code, or other artifacts as input and
find bugs using techniques such as syntactic pattern
matching, data flow analysis, type systems, and
model checking. Program dynamic analysis tech-
niques do not require program source code as input.
They find bugs from program runtime information,
which is collected by running application programs.
The two kinds of techniques have their own ad-
vantages and disadvantages. Static analysis ap-
proaches can find bugs as early as in the software
implementation phase. Additionally, they can be ef-
ficient and highly automated. Furthermore, they can
cover all the program paths, and latent specifications
provide some benefits such as inferring relationships
among variables according to their naming conven-
tions (Engler et al., 2001). However, they should deal
with some intractable problems: infeasible paths,
complicated data structures, pointer aliasing, etc.
Compared with static analysis techniques, dynamic
analysis techniques (Bounimova et al., 2013; Haydar
et al., 2013; Reinbacher et al., 2014) can be used
more extensively, especially when source codes are
unavailable. Additionally, since they analyze pro-
grams based on runtime information, a higher preci-
sion may be achieved. Apart from that, the tricky
problems with static analysis can be avoided. However,
dynamic analysis techniques have the following
drawbacks: (1) Since they require running applications,

they are less efficient than static analysis techniques.
(2) Before running applications, a lot of configuration
work should be done, which makes these approaches
difficult to automate. (3) They always employ in-
strumentation techniques to extract runtime infor-
mation, which will incur much runtime overhead.
(4) The effect of these approaches largely depends on
the quality of input test cases.

2.2 Rule-based static analysis tools

In this work, we focus on static analysis tech-
niques. Although these techniques have some weak-
nesses, many academic and commercial static analy-
sis tools have still been developed and used exten-
sively in practice, such as FindBugs (Hovemeyer and
Pugh, 2004; 2007; Ayewah et al., 2007; Araújo et al.,
2011), PMD (Helmick, 2007; Plosch et al., 2008;
Araújo et al., 2011), CheckStyle (Loveland, 2009),
PREFix (Rajamani, 2006; Ball, 2008), PREFast
(Rajamani, 2006; Ball, 2008), and Metal (Rajamani,
2006). Most of these tools work with a library of
vulnerability rules. A vulnerability rule is a program
specification (protocol) that the source code is ex-
pected to satisfy. Violations of vulnerability rules will
cause program errors. Additionally, the number of
vulnerability rules is an important indicator of the
detection capability of a static analysis tool. In this
work, we call the kind of static analysis tools with a
library of vulnerability rules ‘rule-based static analy-
sis tools’. As illustrated in Fig. 1, rule-based static
analysis tools typically consist of four parts: compiler
front end, vulnerability rules library, rules checking
engine, and vulnerability reporter. Compiler front end
is responsible for translating program source code
into an intermediate form, such as AST. The vulner-
ability rules library contains a set of vulnerability
rules. The function of the vulnerability reporter is to
output the discovered vulnerabilities in different
formats. The rules checking engine finds bugs by

Fig. 1 Composition of rule-based static analysis tools

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 335

checking AST nodes against vulnerability rules. The
rule-checking algorithm that it employs is a decisive
factor of the performance of rule-based static analysis
tools, especially when a large number of vulnerability
rules are included.

2.3 Rule-checking algorithm

To find bugs, rule-based static analysis tools take
program source files as input and translate them into
ASTs using compiler front end. Then, the rules
checking engine validates programs by checking
ASTs against vulnerability rules.

Fig. 2 gives a Java program, a compressed AST
of which is shown in Fig. 3 with some trivial nodes
neglected for simplicity. The rule-checking algorithm
traverses the AST top down using a depth- or
breadth-first tree search approach and matches AST
nodes with vulnerability rules. If a node n matches a
rule r, n and the surrounding nodes above and below n
will be checked against r and violations will be re-
ported. The whole AST and all vulnerability rules
should be processed, because an AST node may
match multiple vulnerability rules. As we can see,
although the program shown in Fig. 2 has only five
code lines, its AST is far from trivial and has more
than 20 nodes. If the vulnerability rules library is large,
the rule-checking algorithm must be time consuming.

1 package pmd_test;
2
3 import java.text.SimpleDateFormat;
4
5 public class Pmd_Test {
6 public static void main(String[] args) {
7 SimpleDateFormat sdf = new
 SimpleDateFormat("pattern");
8 }
9 }

Fig. 2 Example of a Java program

2.4 Rule description languages

Vulnerability rules are described using various
kinds of rule description languages, such as PQL
(Jarzabek, 1998; Martin et al., 2005), Datalog (Whaley
et al., 2005; Hajiyev et al., 2006; Alpuente et al.,
2009; Zook et al., 2009), and XPath expression
(Panchenko et al., 2010; 2011). Fig. 4 illustrates a
vulnerability rule MDBAndSessionBeanNaming-
Convention (MSBNC) described using an XPath
expression, which is excerpted from the rule library of
PMD. It is designed to check the EJB specification in
which the name of any class implementing Mes-
sageDrivenBean or SessionBean interface should be
suffixed by ‘Bean’. Based on rule description lan-
guages, we can compose various kinds of vulnerabil-
ity rules to extend the detection capability of rule-
based static analysis tools.

 Fig. 3 A compressed abstract syntax tree (AST) of the Java program shown in Fig. 2: (a) AST; (b) information of

AST nodes

TAG TYPE VALUE
n0 CompilationUnit
n1 PackageDeclaration pmd_test
n2 ImportDeclaration java.text.SimpleDateFormat
n3 ClassOrInterfaceDeclaration Pmd_Test
n4 MethodDeclaration ResultType:void
n5 MethodDeclarator main
n6 FormalParameters Count:1
n7 FormalParameter args
n8 Type
n9 ClassOrInterfaceType string
n10 LocalVariableDeclaration
n11 Type
n12 ReferenceType
n13 ClassOrInterfaceType SimpleDateFormat
n14 VariableDeclarator
n15 VariableDeclaratorId sdf
n16 AllocationExpression
n17 ClassOrInterfaceType SimpleDateFormat
n18 Arguments Count:1
n19 Literal "pattern"

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 336

<![CDATA[
// TypeDeclaration/ClassOrInterfaceDeclaration
[
 (
 (./ImplementsList/ClassOrInterfaceType
 [ends-with(@Image,'SessionBean')]) or
 (./ImplementsList/ClassOrInterfaceType

[ends-with(@Image,'MessageDrivenBean')])
)
 and not (ends-with(@Image,'Bean'))
]]]>

Fig. 4 Vulnerability rule MSBNC excerpted from PMD

3 Motivating example

Although many static analysis tools (Loveland,
2009; http://findbugs.sourceforge.net; http://pmd.
sourceforge.net) have improved the rule-checking
algorithm to some extent in implementation, the ef-
fect is not significant. In this section, we present an
extremely bad case that our technique intends to deal
with.

Fig. 5 shows the XPath expression of a vulner-
ability rule SimpleDateFormatNeedsLocale (SDFNL).
It is excerpted from the rule library of PMD. The rule
is designed to detect a misuse of class SimpleDate-
Format from JDK. SimpleDateFormat is a concrete
class for formatting and parsing dates in a locale-
sensitive manner. One of its constructors has two
parameters. The first one is a pattern describing the
date and time format. The second one is the locale. A
common error in instantiating objects from the class is
shown at line 7 of the program illustrated in Fig. 2,
where only the pattern is specified but the locale is
neglected.

<![CDATA[
// AllocationExpression
[ClassOrInterface-
Type[@Image='SimpleDateFormat']]
[Arguments[@ArgumentCount=1]]
]]>

Fig. 5 Vulnerability rule SDFNL excerpted from PMD

Let us consider checking the program shown in

Fig. 6 against the above rule SDFNL. By manual
inspection, we can confirm that no violations of the
rule exist in the program, because the program has
never used class SimpleDateFormat. However, the
rule-checking algorithm will also traverse the whole
AST of the program and match the AST nodes with

all vulnerability rules until no match is found. Virtu-
ally, this situation is ubiquitous in static analysis and
results in enormous time overhead. To mitigate the
problem, we propose an optimized rule-checking
algorithm, which can deal with the situation effec-
tively. Details of our technique will be discussed in
Section 4.

1 package pmd_test;
2
3 import java.util.Collection;
4 import java.util.ArrayList;
5
6 public class Pmd_Test {
7 public static void main(String[] args) {
8 Collection c = new ArrayList();
9 Integer obj = new Integer(1);
10 c.add(obj);
11
12 Integer[] a = (Integer [])c.toArray();
13 }
14 }

Fig. 6 Example of Java program

4 Our technique

In this section, we present our technique of

checking source files against vulnerability rules. Our
technique can handle application programs written in
most of mainstream programming languages (e.g.,
Java, C/C++, and C#). In this section, we take Java
programs as an example to demonstrate its working
principle. We first provide an intuitive description of
our technique and then discuss its main characteristics
in detail.

4.1 General approach

The rule-checking algorithm takes ASTs and
vulnerability rules as input. To find bugs in a source
file, it traverses the AST translated from the source
file top down using a depth- or breadth-first
tree-searching approach. Each AST node is matched
with all vulnerability rules. When a match (n, r) is
found, where n and r are AST node and vulnerability
rule, respectively, node n and its surrounding nodes
will be checked against rule r, and violations will be
reported. The above rule-checking algorithm can be
reduced to a general searching problem: let N and R
be the sets of AST nodes and vulnerability rules,
respectively. The rule-checking algorithm aims at
finding a match (n, r) from the Cartesian product N×R.

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 337

Generally, the time overhead of the rule-checking
algorithm is proportional to |N×R|, where ‘|·|’ denotes
the cardinality of a set. Since

|N×R|=|N|×|R|,

we can improve the performance of rule-checking
algorithms by reducing |N| or |R|, that is, cutting down
the number of AST nodes or vulnerability rules used
for matching. In this work, we optimize the rule-
checking algorithm by filtering vulnerability rules.

We filter vulnerability rules according to their
characteristic objects. The characteristic objects of a
vulnerability rule r is a set of objects that form a
necessary condition for a source file containing vio-
lations of r. In other words, if a source file f contains
violations of r, f should contain characteristic objects
of r, but not vice versa. In this work, we use the
classes included in a vulnerability rule to form the
characteristic objects. Our technique is based on the
observation that a vulnerability rule is always dedi-
cated to some particular classes. Take the rule
MSBNC illustrated in Fig. 4 as an example; it aims to
detect violations concerning class MessageDriv-
enBean and SessionBean. We can conclude that a
source file must be free of violations of the rule if
neither of the classes has been used in the file; that is,
the classes form a necessary condition of rule
MSBNC.

Characteristic objects may have various kinds of
logical relationships. Consider the vulnerability rule
shown in Fig. 4. A disjunction relationship exists
between its characteristic objects MessageDriv-
enBean and SessionBean. To deal with the situation,
we describe characteristic objects using a prefix no-
tation CObject expression, which is able to express
complicated logical relationships. Given a source file
f and a set of vulnerability rules R, our rule-checking
algorithm validates f against R based on the following
approach: for each rule rR, CObj(r) denotes the
CObject expression of r. We evaluate CObj(r) against
f and achieve a Boolean result p. If p equals true, we
add r to a set of vulnerability rules R′; otherwise, we
abandon rule r. Finally, we validate the source file f
against rule set R′ rather than R. The outline of our
rule-checking algorithm is presented in Algorithm 1,
where evaluate(CObj(r), f) denotes the evaluation of
CObj(r) against file f.

Algorithm 1 Our rule-checking algorithm

Input: f, a source file; R, the library of vulnerability rules
Methods:
1 for each rule r in R do
2 P←evaluate(CObj(r), f)
3 if P equals true then
4 Add r to a set of vulnerability rules R′
5 end if
6 end for
7 Validate f against rule set R′

Note that the evaluation of CObj(r) against

source file f may be time consuming especially when
the file is large. To address the problem, we ap-
proximately evaluate CObj(r) against f by evalu-
ate(CObj(r), Pf), where Pf is the set of package
statements at the beginning of file f. The package
statements are used to import a package of objects
into a source file, supported by most of mainstream
languages, such as the import statements in Java,
include statements in C/C++, and using statements in
C#. Since the package statements are always at the
beginning of a source file, they can be extracted
conveniently. Additionally, the number of package
statements of a source file is much smaller than that of
the code lines in the source file. Consequently, our
approximate evaluation of CObj(r) against Pf should
be more efficient than that against f.

4.2 CObject expression

To describe characteristic objects as well as re-
lationships among them, we propose a prefix notation
CObject expression.

A CObject expression is composed of charac-
teristic objects, parameters, commas, parentheses, and
operator symbols. The recursive definition of COb-
ject expression is as follows. Given a characteristic
object λ and two CObject expressions R and S, we
have the following CObject expressions:

exist(λ, F) denotes the existence operation that
determines whether the characteristic object λ has
been used in a source file F. The source file F is a
parameter of the exist operator. When evaluating
CObject expressions, we will apply a source file to the
exist operator; that is, we substitute F with an argu-
ment. For the convenience of notation, we always
omit parameter F in CObject expressions.

neg(R) denotes the negation operation that re-
verses the meaning of a Boolean operand.

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 338

and(R, S) denotes the conjunction operation that
performs a logical conjunction on two Boolean
operands.

or(R, S) denotes the disjunction operation that
performs a logical disjunction on two Boolean
operands.

The CObject expression is compact and easy to
use. Additionally, in our formal language, operators
can be nested within each other. This makes our
language powerful enough to express complex vul-
nerability rules. For instance, the characteristic ob-
jects of the vulnerability rule MSBNC shown in Fig. 4
can be expressed using a CObject expression as
follows:

or(exist(SessionBean), exist(MessageDrivenBean)),

which means that violations of rule MSBNC may
exist in a source file f, if either of the classes Mes-
sageDrivenBean and SessionBean has been used in f.
Note that we omit the prefix javax.ejb of the fully
qualified names javax.ejb.MessageDriven Bean and
javax.ejb.SessionBean for notational convenience.

Given a vulnerability rule r, the evaluation result
of CObj(r) against a source file f is a Boolean value p.
If p equals true, it indicates that violations of r may
exist in f; otherwise, f should be free of violations of
rule r. Based on the evaluation results of CObject
expressions, we can filter the vulnerability rules
effectively.

To examine the expressing capability of CObject
expressions, we inspect all rules of PMD, and no
exceptions are found. The CObject expression may be
limited for some unknown rules (e.g., rules whose
characteristic objects have an if-then relationship),
but we believe it is applicable in most of cases. For
further understanding of the CObject expression, we
present its EBNF grammar specification in Fig. 7.

4.3 Evaluating CObject expressions

In this subsection, we introduce our technique of
evaluating CObject expressions.

Let r be a vulnerability rule. Before evaluating
CObj(r) against a source file f, we should apply f to
CObj(r); that is, we have the following transfor-
mation:

evaluate(CObj(r), f) evaluate(CObj(r)(f)).

CObj(r)(f) is also a prefix notation, which is achieved
by substituting the parameter of exist operators in
CObj(r) with argument f. Taking the CObject ex-
pression of the vulnerability rule MSBNC shown in
Section 4.2 as an example, we have the following
results:

CObj(MSBNC)(f)  or(exist(SessionBean, f),
exist(MessageDrivenBean, f)).

startexpr : expr;

expr : binexpr | unaryexpr | atomexpr;
binexpr

:
BINOP LPAREN expr COMMA expr

RPAREN;
unaryexpr : UNARYOP LPAREN expr RPAREN;
atomexpr

:
EXISTOP LPAREN object COMMA 'F'

RPAREN;
object : (obname DOT)* obname;
obname

:
(LETTER | UNDERLINE)(LETTER |

NUMBER | UNDERLINE)*;
BINOP : 'and' | 'or';

UNARYOP : 'neg';

EXISTOP : 'exist';

DOT : '.';

LETTER : 'a'...'z' | 'A'...'Z';

NUMBER : '0'...'9';

UNDERLINE : '_';

LPAREN : '(';

RPAREN : ')';

COMMA : ',';

Fig. 7 EBNF grammar specification of the CObject
expression

After that, we evaluate CObj(r)(f) using the

classic stack-based approach (http://en.wikipedia.org/
wiki/Polish_notation), which is dedicated to prefix
notations. The method scans CObj(r)(f) from right to
left. For each encountered token η, the following
actions are conducted according to the token type:

1. If η is an operand, push it into a stack T.
2. If η is an operator, perform corresponding

operations on operands popped from the top of T and
push the results back into T.

3. If η is a separator, such as commas and pa-
rentheses, discard it.

Once all the symbols have been processed, a
Boolean value will be left in T, which is the evalua-
tion result. The stack-based approach is efficient and
only a stack with the maximum length of n is em-
ployed, where n is the length of CObj(r)(f). Both the
time and space complexities of the stack-based ap-
proach are O(n).

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 339

4.4 Existence operation

Note that a CObject expression subsumes four
kinds of operators: neg, and, or, and exist. The former
three are logical operators. As to the last one, a
brute-force approach to carry out the operation is as
follows: given a characteristic object λ and a source
file f, we evaluate exist(λ, f) by searching the AST of f
using a depth- or breadth-first tree-searching ap-
proach. Each AST node is matched with λ. A result of
Boolean value true is achieved if any match is found.
Otherwise, we have a result of false.

Obviously, the above approach may cause sig-
nificant time overhead if the source file f is large. To
mitigate the problem, we approximately evaluate
exist(λ, f) in terms of Pf rather than f, where Pf is the
set of package statements at the beginning of f. In
other words, we have the following transformation:

evaluate(exist(λ, f)) evaluate(exist(λ, Pf)).

Our method is based on a common programming

practice: to use a class in a source file, programmers
will first import it using package statements at the
beginning of the source file. Taking the Java class
SessionBean as an example, it may be imported using
one of the following statements: (1) import javax.ejb.
SessionBean; (2) import javax.ejb.*.

The first statement imports exactly one class into
a source file, i.e., SessionBean. The second statement
imports classes in the package javax.ejb on demand.
The package statement is supported by many pro-
gramming languages, such as the import statement in
Java programs, include statement in C/C++ programs,
and using statement in C# programs. Since package
statements are at the beginning of source files, they
can be recognized conveniently. On the other hand,
the number of package statements in a source file is
trivial compared to that of the code lines. Conse-
quently, our technique should be efficient.

Note that some package statements may not be
included in ASTs after a source file is compiled, such
as the preprocessor statement include in C/C++ pro-
grams. In this situation, our rule-checking algorithm
should take ASTs and package statements as input.

Also, note that our technique of evaluating the
existence operation may not work properly in some
special cases. Taking the import statement in Java

programs as an example, the programming practice
that a class should be imported into a source file be-
fore its usage may be violated in the following situa-
tions: (1) Classes within package java.lang can be
used in a source file without import statements. (2)
Redundant import statements may exist in source files.
(3) We cannot ascertain the existence of a specific
object according to import-on-demand statements
(e.g., import javax.ejb.*). (4) We can use an object via
its fully qualified name without import statements. To
deal with case 1, we can evaluate the existence oper-
ation against the whole source file f when the char-
acteristic object λ belongs to the package java.lang.
As to cases 2 and 3, our approximate evaluation
method will give a wrong result true, even if a char-
acteristic object has not been used in a source file.
Finally, the failure to filter out unnecessary rules may
result. The last case is worse, because it may incur
false negatives. In practice, we should avoid this sit-
uation when applying our technique. Although the
above cases may discount the usability of our tech-
nique, they are rare in programs coded with good
programming practices (some program analysis tools
even take redundant import statements as errors).
Therefore, our technique is applicable in most cases.

The above discussions are dedicated to Java
programs. As to other programming languages, some
limitations may not exist. For example, the above
cases 1 and 4 do not exist in C/C++ programs, which
makes our technique more useful.

4.5 An evaluation example

As an example, we evaluate the CObject ex-
pression of rule MSBNC shown in Fig. 4 against an
input program ρ illustrated in Fig. 6. For simplicity,
we omit the prefix javax.ejb of the fully qualified
names javax.ejb.MessageDrivenBean and javax.ejb.
SessionBean. The CObject expression after applying
program ρ is as follows:

or(exist(SessionBean, ρ), exist(MessageDrivenBean, ρ)).

The evaluation process is presented in Table 1.

As we can see, the evaluation result is Boolean value
false, which is consistent with our manual inspection.
According to the evaluation results, we have the
conclusion that it is unnecessary to check program ρ
against rule MSBNC.

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 340

5 Experiments

To evaluate our technique, we implemented it in

a prototype tool called EPMD, which was developed
from the open source static analysis tool PMD. After
that, we evaluated the effectiveness of our technique
through a comparison test based on EPMD. In this
section, we first introduce our prototype tool EPMD.
Then, we present the subject programs used in our
experiment. Next, we elaborate the comparison test
based on EPMD and present experimental results.
Finally, we discuss our technique’s runtime overhead
and limitations.

5.1 Prototype tool EPMD

We implemented our technique in an open
source static analysis tool PMD and called it the ex-
tended version (EPMD). PMD is designed to find
mistakes and smells in Java programs, such as unused
variables, empty catch blocks, and unnecessary object
creation (http://pmd.sourceforge.net). It supports two

kinds of vulnerability rules: Java classes and XPath
expressions. Our primary extensions to PMD are: (1)
implementation of a module that evaluates CObject
expressions; (2) addition of CObject expressions to
the vulnerability rules of PMD.

To evaluate CObject expressions, we con-
structed a lexer and parser, which are used to recog-
nize tokens and validate the syntax of CObject ex-
pressions, respectively. The lexer and parser were
constructed with the help of ANTLR (Schaps, 1999;
Bovet and Parr, 2008; Liu et al., 2008; Parr and Fisher,
2011), which is a language tool. After that, EPMD
evaluates CObject expressions using the stack-based
approach elaborated in Section 4.

We added CObject expressions to the vulnera-
bility rules of PMD by inserting a property COb-
jectExpr to their XML descriptions, which is shown
below:

<property name="CObjectExpr" type="String"
description="rule’s CObject expression"
value="exist(java.ejb.EJBHome)"/>

Table 1 Evaluation example

Step Token (η) Stack* (T) Action

1) Discard

2) Discard

3 ρ ρ Push ρ into stack T

4 , ρ Discard

5 MessageDrivenBean ρ, MessageDrivenBean Push MessageDrivenBean into T

6 (ρ, MessageDrivenBean Discard

7 exist false Pop operands MessageDrivenBean and ρ
Evaluate expression exist(MessageDrivenBean, ρ)→false
Push evaluation result false into stack T

8 , false Discard

9) false Discard

10 ρ false, ρ Push ρ into stack T

11 , false, ρ Discard

12 SessionBean false, ρ, SessionBean Push SessionBean into stack T

13 (false, ρ, SessionBean Discard

14 exist false, false Pop operands SessionBean and ρ
Evaluate expression exist(SessionBean, ρ)→false
Push evaluation result false into stack T

15 (false, false Discard

16 or false Pop operands false and false
Evaluate expression falsefalse→false
Push evaluation result false into stack T

17 Pop and output evaluation result false
* The left and right ends are the bottom and top of stack T, respectively

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 341

Note that not all rules have CObject expressions
(which will be discussed in Section 5.5). Our tech-
nique will not work for rules without the CObjectExpr
property.

5.2 Subjects

We adopted six large-scale open source appli-
cations in our experiments (Table 2). These applica-
tions were selected based on the following consider-
ations: (1) applications with available source code, (2)
applications of a large code base, and (3) applications
coming from various application domains. The sec-
ond requirement is important for our evaluation, be-
cause the performance improvement gained by the
removal of one unnecessary rule is trivial. To achieve
accurate and salient results, we should perform ex-
periments on large-scale applications, where a large
number of unnecessary rules may be pruned away.
Furthermore, to avoid biases, we selected subject
programs from various application domains. Addi-
tionally, they were of different sizes spanning from 73
kilo lines of code (KLoC) to 2675 KLoC (we counted
code lines only; comment lines and blank lines were
excluded).

5.3 Effectiveness of our technique

To investigate the effectiveness of our technique,
we analyzed subject applications using EPMD with
rule sets RS and RS*, respectively. Rule sets RS and

RS* comprise 45 vulnerability rules excerpted from
PMD (part of vulnerability rules can be found in
Appendix). These two rule sets are nearly the same,
except that rules in RS* have an additional property
CObjectExpr. Since our technique will not work for
rules without the property CObjectExpr, we can in-
vestigate the effectiveness of our technique through a
comparison test with rule sets RS and RS*. To
achieve accurate results, we ran EPMD five times for
each group of subjects and rule sets. The platform
used in our experiment is an Intel® CoreTM i3-2100
3.1 GHz machine with 3 GB of memory running
Windows XP. Table 3 presents the average execution
time of EPMD running with rule sets RS and RS*.

We can observe from Table 3 that the execution
time of EPMD with rule set RS* is generally less than
that with RS for all subject applications. The least
ratio of reduction is 15.6% when testing on Eclipse.
The ultimate ratio is 45.3% with PMD. We have an
average time reduction ratio of 28.7%. A side effect
that may be caused by our technique is the increase of
false positives and false negatives. We compared the
bug reports generated by EPMD in each group and
found that the bugs reported by EPMD running with
rule sets RS and RS* were exactly the same. This
result suggests that the fully qualified names of clas-
ses that may cause false negatives to our technique are
rarely used in Java programs.

In our experiment, we validated six real-world
programs against 45 vulnerability rules. The experi-
mental results strongly suggest that our technique is
effective in improving the performance of static
analysis tools without side effects. Moreover, better
results may be achieved if more vulnerability rules are
considered, which we will further investigate in the
future.

5.4 Runtime overhead

The primary runtime overhead of our technique
is introduced in the phase of filtering rules (Section 4).
To filter rules, we evaluated CObject expressions
based on the approach applied to prefix notations.
Different actions were carried out according to the
type of operator, among which the existence operation
is crucial. Let L and M be the counts of tokens of a
CObject expression and package statements of a
source file, respectively. Then the time complexity of
the stack-based evaluation approach is O(L). The

Table 2 Subject programs used in our experiments

Subject program Description
Number
of source

files
KLoC

Eclipse 4.2 Software
development
environment

20 602 2675

ElasticSearch
v0.19.9

Distributed
search engine

2581 230

PMD 5.0 Source code
analyzer

945 73

Tomcat 6.0.35 Web server
and servlet
container

1157 172

SQuirreL SQL
Client 3.4.0

Java SQL client 2890 253

JBoss 6.0.0.Final Application
server

6397 494

KLoC: kilo lines of code

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 342

existence operation has a time complexity of O(M)
because it consists mainly of a loop iterating through
all package statements. Therefore, the time complex-
ity of filtering rules is O(L×M). On the other hand, it
is quite reasonable to assume L to be a constant be-
cause, in general, the CObject expressions of vul-
nerability rules are of limited length. Additionally, it
is well known that the number of package statements
is trivial relative to the number of lines of code in a
source file. Thus, we believe that the runtime over-
head incurred by our technique is within an accepta-
ble range.

5.5 Limitations

Although our technique is effective in improving
the performance of static analysis tools, it has the
following limitations:

1. As discussed in Section 4, our approximate
evaluation approach of the existence operation based
on package statements may not work properly for
programs coded with poor programming practices.
The requirement for high-quality programs may limit
the application scope of our technique.

2. In this work, we compose the CObject ex-
pressions of vulnerability rules manually. An auto-
matic approach to derive the CObject expressions
from the description of vulnerability rules may make
our technique more useful.

3. There exist some rules that have no charac-
teristic objects. Consider the rule ForLoopShould-
BeWhileLoop illustrated in Fig. 8. It is designed to

detect for loops that should be simplified to while
loops. As we can see, this rule does not possess any
characteristic objects but for a keyword for. Our
technique is unable to deal with this situation.

<![CDATA[
// ForStatement
[count(*) > 1]
[not(ForInit)]
[not(ForUpdate)]
[not(Type and Expression and Statement)]
]]>

Fig. 8 Rule ForLoopShouldBeWhileLoop excerpted from
PMD

Although our technique has some limitations, as

above, it is applicable in most of circumstances. The
evaluation results showed that our technique is effec-
tive in improving the performance of static analysis
tools.

6 Related work

Though some state-of-the-art static analysis

tools are efficient enough to satisfy most applications,
performance is an eternal topic, and it is still a key
challenge to integrate bug-finding tools into the de-
velopment process. To deal with the performance
issue, researchers have proposed various kinds of
techniques. In this section, we focus on several typical
techniques.

Table 3 Results of our comparison test with EPMD being run five times for each group of subjects and rule sets

Subject program
Rule
set

Execution time (s)
AVG (s) RDT (s)

RDT
ratio 1 2 3 4 5

Eclipse RS 469.8 437.4 444.0 438.9 467.1 451.4
70.4 15.6%

RS* 380.3 380.2 380.3 382.9 381.6 381.1
ElasticSearch RS 40.7 36.9 37.1 36.7 39.7 38.2

6.6 17.3%
RS* 31.5 31.7 31.7 31.6 31.5 31.6

PMD RS 9.5 6.6 6.7 6.6 8.6 7.6
3.4 45.3%

RS* 4.1 4.2 4.1 4.2 4.2 4.2
Tomcat RS 15.5 14.8 14.6 14.6 15.2 14.9

5.4 36.4%
RS* 9.6 9.5 9.3 9.6 9.5 9.5

SQuirreL SQL
Client

RS 45.2 31.2 31.4 48.1 31.1 37.4
11.1 29.6%

RS* 26.4 26.5 26.2 25.8 26.8 26.3
Jboss RS 57.8 49.0 49.2 66.3 49.6 54.4

15.4 28.2%
RS* 38.8 39.2 39.0 39.0 39.1 39.0

AVG: average execution time of EMPD; RDT: average reduction of execution time

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 343

Incremental analysis (Emanuelsson and Nilsson,
2008) can automatically infer which parts of source
code have to be reanalyzed after the code has been
modified. This approach typically reduces the analy-
sis time substantially, especially for a frequent inter-
active use of static analysis tools in the development
process. However, it is difficult to accurately identify
the associated code when programs have been
changed; in the worst case, a complete reanalysis will
be performed.

A commonly used approach to improve the
performance of static analysis tools is to perform a
less deep analysis, such as GREP (Atkinson and
Griswold, 2006; Emanuelsson and Nilsson, 2008). It
performs lexical analysis only. However, these tools
always have a high rate of false positives, which
discounts their usability.

The technique used by PMD is similar to our
approach, which improves the rule-checking algo-
rithm by filtering rules leveraging a data structure
Rule Chain. A Rule Chain divides all AST nodes into
different categories, where nodes in each category
have the same programming language and node type.
With the help of the Rule Chain, PMD checks AST
nodes against vulnerability rules with the same pro-
gramming language and type rather than all. This
approach is effective in improving the efficiency of
rule-checking algorithms. However, it cannot exclude
all unnecessary vulnerability rules because such rules
may have the same programming language and type
as an AST node.

Many static analysis tools, such as FindBugs
(http://findbugs.sourceforge.net) and CheckStyle
(Loveland, 2009), provide the functionality for users
to select vulnerability rules before checking a pro-
gram. This approach is most similar to our technique.
Both of them aim to improve performance by filtering
rules. However, our technique can filter rules
automatically.

7 Conclusions and future work

Performance is a key challenge of integrating

bug-finding tools into a development process. In this
paper, we proposed an optimized rule-checking al-
gorithm that can improve the performance of static
analysis tools without side effects on their detection

capability and precision. Our rule-checking algorithm
filters unnecessary vulnerability rules automatically
by evaluating their CObject expressions. Although
we discussed our technique based on Java programs
and vulnerability rules described using XPath ex-
pressions, our method is a general approach that is
applicable for most of mainstream programming
languages and other types of vulnerability rules. To
evaluate the effectiveness of our technique, we im-
plemented it in an open source static analysis tool
PMD and called it the extended version (EPMD).
Relying on EPMD, we performed a comparison test
and found that our technique can achieve an average
performance promotion of 28.7%. Additionally, few
false positives and false negatives were caused.

As discussed in Section 5, our technique has
some limitations, which may discount its usability. In
the future, we will mitigate these problems and make
our technique more useful. For example, we may
implement our technique for other programming
languages, where some limitations regarding Java
programs may not exist. Additionally, we may further
promote the ease of use of our technique by deriving
CObject expressions from descriptions of vulnerabil-
ity rules automatically. This task can be performed by
leveraging a syntax transducer, which parses XPath
expressions of vulnerability rules and translates them
to CObject expressions.

References
Alpuente, M., Feliú, M.A., Joubert, C., et al., 2009. Using

Datalog and Boolean equation systems for program
analysis. 13th Int. Workshop on Formal Methods for In-
dustrial Critical Systems, p.215-231.
http://dx.doi.org/10.1007/978-3-642-03240-0_18

Araújo, J.E.M., Souza, S., Valente, M.T., 2011. Study on the
relevance of the warnings reported by Java bug-finding
tools. IET Softw., 5(4):366-374.
http://dx.doi.org/10.1049/iet-sen.2009.0083

Atkinson, D.C., Griswold, W.G., 2006. Effective pattern
matching of source code using abstract syntax patterns.
Softw.-Pract. Exp., 36(4):413-447.
http://dx.doi.org/10.1002/spe.704

Ayewah, N., Pugh, W., Morgenthaler, J.D., et al., 2007.
Evaluating static analysis defect warnings on production
software. ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools & Engineering,
p.1-8. http://dx.doi.org/10.1145/1251535.1251536

Ball, T., 2008. The verified software challenge: a call for a
holistic approach to reliability. LNCS, 4171:42-48.
http://dx.doi.org/10.1007/978-3-540-69149-5_5

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 344

Bounimova, E., Godefroid, P., Molnar, D., 2013. Billions and
billions of constraints: whitebox fuzz testing in produc-
tion. 35th Int. Conf. on Software Engineering, p.122-131.
http://dx.doi.org/10.1109/ICSE.2013.6606558

Bovet, J., Parr, T., 2008. ANTLRWorks: an ANTLR grammar
development environment. Softw.-Pract. Exp., 38(12):
1305-1332. http://dx.doi.org/10.1002/spe.872

Chen, D., Huang, R., Qu, B., et al., 2014. Improving static
analysis performance using rule-filtering technique. 26th
Int. Conf. on Software Engineering and Knowledge En-
gineering, p.19-24.

Emanuelsson, P., Nilsson, U., 2008. A comparative study of
industrial static analysis tools. Electron. Notes Theor.
Comput. Sci., 217:5-21.
http://dx.doi.org/10.1016/j.entcs.2008.06.039

Engler, D., Chen, D.Y., Hallem, S., et al., 2001. Bugs as de-
viant behavior: a general approach to inferring errors in
systems code. ACM SIGOPS Oper. Syst. Rev., 35(5):57-
72. http://dx.doi.org/10.1145/502059.502041

Hajiyev, E., Verbaere, M., de Moor, O., 2006. CodeQuest:
scalable source code queries with Datalog. 20th European
Conf. on Object-Oriented Programming, p.2-27.
http://dx.doi.org/10.1007/11785477_2

Haydar, M., Petrenko, A., Boroday, S., et al., 2013. A formal
approach for run-time verification of web applications
using scope-extended LTL. Inform. Softw. Technol.,
55(12):2191-2208.
http://dx.doi.org/10.1016/j.infsof.2013.07.013

Helmick, M.T., 2007. Interface-based programming assign-
ments and automatic grading of Java programs. 12th
Annual SIGCSE Conf. on Innovation & Technology in
Computer Science Education, p.63-67.
http://dx.doi.org/10.1145/1269900.1268805

Hovemeyer, D., Pugh, W., 2004. Finding bugs is easy. ACM
SIGPLAN Not., 39(12):92-106.
http://dx.doi.org/10.1145/1052883.1052895

Hovemeyer, D., Pugh, W., 2007. Finding more null pointer
bugs, but not too many. ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools &
Engineering, p.9-14.
http://dx.doi.org/10.1145/1251535.1251537

Jarzabek, S., 1998. Design of flexible static program analyzers
with PQL. IEEE Trans. Softw. Eng., 24(3):197-215.
http://dx.doi.org/10.1109/32.667879

Liu, S., Zhang, R., Wang, D., et al., 2008. Implementing of
Gaussian syntax-analyzer using ANTLR. Int. Conf. on
Cyberworlds, p.613-618.
http://dx.doi.org/10.1109/CW.2008.139

Loveland, S., 2009. Using open source tools to prevent write-
only code. 6th Int. Conf. on Information Technology:
New Generations, p.671-677.
http://dx.doi.org/10.1109/ITNG.2009.75

Martin, M., Livshits, B., Lam, M.S., 2005. Finding application
errors and security flaws using PQL: a program query
language. ACM SIGPLAN Not., 40(10):365-383.

http://dx.doi.org/10.1145/1103845.1094840
Panchenko, O., Treffer, A., Zeier, A., 2010. Towards query

formulation and visualization of structural search results.
ICSE Workshop on Search-Driven Development: Users,
Infrastructure, Tools and Evaluation, p.33-36.
http://dx.doi.org/10.1145/1809175.1809184

Panchenko, O., Karstens, J., Plattner, H., et al., 2011. Precise
and scalable querying of syntactical source code patterns
using sample code snippets and a database. 19th Int. Conf.
on Program Comprehension, p.41-50.
http://dx.doi.org/10.1109/ICPC.2011.31

Parr, T., Fisher, K., 2011. LL(*): the foundation of the ANTLR
parser generator. ACM SIGPLAN Not., 46(6):425-436.
http://dx.doi.org/10.1145/1993316.1993548

Plosch, R., Gruber, H., Hentschel, A., et al., 2008. On the
relation between external software quality and static code
analysis. 32nd Annual IEEE Software Engineering
Workshop, p.169-174.
http://dx.doi.org/10.1109/SEW.2008.17

Rajamani, S.K., 2006. Automatic property checking for soft-
ware: past, present and future. 4th IEEE Int. Conf. on
Software Engineering and Formal Methods, p.18-20.
http://dx.doi.org/10.1109/SEFM.2006.10

Reinbacher, T., Brauer, J., Horauer, M., et al., 2014. Runtime
verification of microcontroller binary code. Sci. Comput.
Program., 80(A):109-129.
http://dx.doi.org/10.1016/j.scico.2012.10.015

Rutar, N., Almazan, C.B., Foster, J.S., 2004. A comparison of
bug finding tools for Java. 15th Int. Symp. on Software
Reliability Engineering, p.245-256.
http://dx.doi.org/10.1109/ISSRE.2004.1

Schaps, G.L., 1999. Compiler construction with ANTLR and
Java—tools for building tools. Dr. Dobb’s J., 24(3):84-
89.

Whaley, J., Avots, D., Carbin, M., et al., 2005. Using Datalog
with binary decision diagrams for program analysis.
Asian Symp. on Programming Languages and Systems,
p.97-118. http://dx.doi.org/10.1007/11575467_8

Zook, D., Pasalic, E., Sarna-Starosta, B., 2009. Typed datalog.
LCNS, 5418:168-182.
http://dx.doi.org/10.1007/978-3-540-92995-6_12

Appendix: Part of vulnerability rules used in
our experiments

This appendix presents part of vulnerability rules

used in our experiments. All vulnerability rules are
excerpted from PMD. The vulnerability rules are
listed in Table A1. As seen, we present the names of
vulnerability rules (Name), XML files that a vulner-
ability rule belongs to (File), and CObject expressions
of vulnerability rules (CObject expression) in the
table.

Chen et al. / Front Inform Technol Electron Eng 2017 18(3):332-345 345

Table A1 Some vulnerability rules used in our experiments

Name File CObject expression

SimpleDateFormatNeedsLocale design.xml exist(java.text.SimpleDateFormat)

UnsynchronizedStaticDateFormatter design.xml exist(java.text.SimpleDateFormat)

RemoteSessionInterfaceNamingConvention j2ee.xml exist(javax.ejb.EJBHome)

LocalInterfaceSessionNamingConvention j2ee.xml exist(javax.ejb.EJBLocalObject)

LocalHomeNamingConvention j2ee.xml exist(javax.ejb.EJBLocalHome)

RemoteInterfaceNamingConvention j2ee.xml exist(javax.ejb.EJBObject)

ProperLogger logging-jakarta-commons.xml exist(org.apache.commons.logging.Log)

MoreThanOneLogger logging-java.xml exist(java.util.logging.Logger)

LoggerIsNotStaticFinal logging-java.xml exist(java.util.logging.Logger)

ReplaceVectorWithList migrating.xml exist(java.util.Vector)

ReplaceHashtableWithMap migrating.xml exist(java.util.Hashtable)

ReplaceEnumerationWithIterator migrating.xml exist(java.util.Enumeration)

UseArrayListInsteadOfVector optimizations.xml exist(java.util.Vector)

UseCollectionIsEmpty design.xml exist(java.util)

MDBAndSessionBeanNamingConvention j2ee.xml or(exist(javax.ejb.SessionBean),
exist(javax.ejb.MessageDrivenBean))

StaticEJBFieldShouldBeFinal j2ee.xml or(or(or(exist(javax.ejb.SessionBean),
exist(javax.ejb.EJBHome)),
or(exist(javax.ejb.EJBLocalObject),
exist(javax.ejb.EJBLocalHome))),
exist(javax.ejb.EJBObject))

JUnitStaticSuite junit.xml or(exist(junit.framework.TestCase),
exist(org.junit.Test))

File: the XML file that contains the XPath expressions of vulnerability rules

